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Abstract

The cardinality constraint is an intrinsic way to
restrict the solution structure in many domains,
for example, sparse learning, feature selection,
and compressed sensing. To solve a cardinal-
ity constrained problem, the key challenge is
to solve the projection onto the cardinality con-
straint set, which is NP-hard in general when
there exist multiple overlapped cardinality con-
straints. In this paper, we consider the scenario
where the overlapped cardinality constraints sat-
isfy a Three-view Cardinality Structure (TVCS),
which reflects the natural restriction in many ap-
plications, such as identification of gene regula-
tory networks and task-worker assignment prob-
lem. We cast the projection into a linear pro-
gramming, and show that for TVCS, the vertex
solution of this linear programming is the so-
lution for the original projection problem. We
further prove that such solution can be found
with the complexity proportional to the number
of variables and constraints. We finally use syn-
thetic experiments and two interesting applica-
tions in bioinformatics and crowdsourcing to val-
idate the proposed TVCS model and method.

1. Introduction

The cardinality constraint is an intrinsic way to restrict
the solution structure in many real problems, for example,
sparse learning (Olshausen & Field, 1997), feature selec-
tion (Zhang, 2009), and compressed sensing (Candes et al.,
2006). The generic cardinality constrained optimization
can be expressed as

i 1
Juin - f(w) (1a)
subjectto  ||[wyllo <sY Vgeg (1b)
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where w is the optimization variable, g is an index subset
of [p] :={1,2,--- ,p}, w is the sub-vector of w indexed
by g. ||w,||o denotes the cardinality of the sub-vector, i.e.,
the number of nonzeros in w,, G is the hyper set of all
predefined groups, and s € R!9! is the upper bound vec-
tor - sY € R refers to the upper bound of the sparsity over
group g. Objective f is the loss function which could be
defined with different form according to the specific appli-
cation. The problem (1) refers to a nonconvex optimization
(NP-hard) due to the cardinality constraint. Some efficient
iterative methods such as IHT (Yuan et al., 2014), CoSaMP
(Needell & Tropp, 2009), GradMP (Nguyen et al., 2012),
and their variants can guarantee to solve the original prob-
lem under some mild conditions. A key component in all
of these methods is the projection operator

Pogs)(V) := argmin  ||lw — v||2 2)

weQ(g,s)

where 2(G,s) denotes the feasible set to the con-
straint (1b). While in some special case, for example,
G = {[p]}. the projection is trivial, it is quite challenging,
especially when G includes multiple overlapped index sets
(even NP-hard in some cases).

In this paper, we consider the scenario where the over-
lapped cardinality constraints (1b) satisfy a Three-view
Cardinality Structure (TVCS):

Definition 1. (Three-view Cardinality Structure
(TVCNS)) For Q(G,s), the hyper set G consisting of subsets
of [p] admits the TVCS structure if the following conditions
are satisfied:

e There exists a partition Gy, Gy and Gy such that G =

GoUG1 UGy,
e Go={lpl};
o All element sets in G, have no overlap;

o All element sets in Go have no overlap.

This definition basically requires that G can be partitioned
into three hyper sets Gy, G1, and G, and overlaps can only
happen between element sets in different hyper sets. Gy is
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Figure 1. Two examples of groups for TVCS model. The first
model has p = 10, Go = {go},gl = {91,92793,94,95}792 =
{ge,g7}. The second model organizes elements as matrix (p =
25). Each row and column is a group, and Go = {go},G1

{91,92, 93,94, 95}, G2 = {g6, g7, gs, 9o, g10}.

usually used to restrict the overall sparsity. Figure 1 pro-
vides two examples of G for TVCS.

The TVCS model is motivated from some important ap-
plications, for example, in recommendation, task-worker
assignment, and bioinformatics.

e Online recommendation. Suppose we want to rec-
ommend a certain number of books (among p books)
to a customer - corresponding to the Gy based spar-
sity constraint. Among the selected books, we want to
maintain some diversities - the recommended books
by the same author should not exceed a certain num-
ber (G; based sparsity constraint) and about the same
topic should not exceed a certain number either (G
based sparsity constraint). One can refer to the top
graph in Figure 1: G; is grouped by authors and G is
grouped by topics.

o Task-worker assignment. Suppose we have a bunch
of tasks and workers, and we want to assign the tasks
to workers. For example, in crowdsourcing, we usu-
ally assign several different workers to each task since
we want to use the answers from multiple workers
to improve the accuracy. On the other hand, each
worker is usually assigned to multiple tasks so there
is a “many to many” relationship in this assignment.

The goal is to pursue the optimal assignment under
a certain criteria in crowdsourcing, while satisfying
some restrictions. For example, the total assignments
should be bounded by the total budget (corresponding
to Gy), the total cost of assignments to a single worker
cannot exceed a certain threshold (corresponding to
G1), and the total cost of assignments on a single task
cannot exceed a certain threshold (corresponding to
Go). Let X be the assignment matrix, and its rows
are indexed by workers and the columns are indexed
by tasks. These constraints can be illustrated by the
bottom graph in Figure 1.

¢ Identification of gene regulatory networks. The es-
sential goal of identifying gene regulatory network is
to identify a weighted directed graph, which can be
represented by a square matrix W withp = N x N
elements in total where IV is the number of vertices.
A sparse network constraint is to restrict the in-degree
and out-degree for each vertex, which corresponds to
the sparsity in each row and column of W.

To solve the TVCS constrained projection (2), we show
an interesting connection between the projection and a lin-
ear programming (LP) that the vertex solution to this linear
programming is an integer solution which solves the origi-
nal problem.

To find an integer solution to such LP efficiently, we for-
mulate it into a feasibility problem, and further an equiva-
lent quadratic convex optimization. By using the rounding
technique, we can avoid solving the exact solution of this
LP problem. We propose an iterative algorithm to solve
it and each iteration can be completed in linear time. We
also show that the iterate linearly converges to the optimal
point. Finally, the proposed TVCS model is validated by
the synthetic experiment and two important and novel ap-
plications in identification of gene regulatory networks and
task assignment problem of crowdsourcing.

2. Related Works

Recent years have witnessed many research works in the
field of structured sparsity and group-based sparsity. Yuan
& Lin (2006) introduced the group LASSO, which pur-
sues group-wise sparsity that restricts the number of groups
for the selected variables. Jenatton et al. (2011) construct
a hierarchical structure over the variables and use group
LASSO with overlapped groups to solve it. Exclusive
LASSO (Zhou et al., 2010; Kong et al., 2014) was pro-
posed for the exclusive group sparsity which can be treated
as relaxing our cardinality constraints to convex regular-
izations. In (Kong et al., 2014), the authors discussed the
overlapping situation and tried to solve the problem using
convex relaxation, which is different from our approach.
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Besides the aforementioned works, some proposed more
general models to cover various sparsity structures. Bach
et al. (2012) extended the usage of L;-norm relaxation to
several different categories of structures. And recently,
another generalization work (El Halabi & Cevher, 2015)
proposed convex envelopes for various sparsity structures.
They built the framework by defining a totally unimodu-
lar penalty, and showed how to formulate different sparsity
structures using the penalty. The work above concentrated
on using convex relaxation to control the sparsity.

Besides using convex relaxation, there are also some works
focusing on projection-based methods. When the exact
projection operator was provided, Baraniuk et al. (2010)
extended the traditional IHT and CoSaMP methods to gen-
eral sparsity structures. In this work, the authors also in-
troduced the projection operator for block sparsity and tree
sparsity. Cevher et al. (2009) investigated cluster sparsity
and they applied dynamic programming to solve the projec-
tion operator for their sparsity model. Hegde et al. (2009)
introduced a “spike trains” signal model, which is also re-
lated to exclusive group sparsity. Its groups always have
consecutive coordinates, and each group cannot contain
more than one nonzero element. To solve the projection
problem of their model, they showed the basic feasible so-
lutions of the relaxed linear programming (LP) are always
integer points. In our work, we also use LP to solve the pro-
jection problem. But our model defines the group structure
differently and aims at different applications.

In addition, there are some works for the cases without an
efficient exact projection operator (Hegde et al., 2015a;b;
Nguyen et al., 2014). This is meaningful since the projec-
tion operator for complex structured sparsity often involves
solving complicated combinatorial optimization problems.
Hegde et al. (2015a) discussed how to guarantee conver-
gence if using approximate projection in IHT and CoSaMP
for compressive sensing. They proved that the convergence
needs a “head approximation” to project the update (gra-
dient) before applying it. Hegde et al. (2015b) proposed
a general framework to formulate a series of models as a
weighted graph, and designed an efficient approximate pro-
jection operator for the models. Nguyen et al. (2014) ap-
plied the approximate projection-based IHT and CoSaMP
to general convex functions and stochastic gradients.

3. Preliminary: GradMP and IHT
Frameworks

This section briefly reviews two commonly used algorithm
frameworks to solve the cardinality constrained optimiza-
tion (1): iterative hard thresholding (IHT) (Yuan et al.,
2014; Nguyen et al., 2014) and gradient matching pur-
suit (GradMP) (Nguyen et al., 2012; 2014) (the general
version of CoSaMP (Needell & Tropp, 2009)) for solving

cardinality constrained problem. Other methods like hard
thresholding pursuit (HTP) also follows similar steps and
has been shown to be effective both empirically and theo-
retically (Yuan et al., 2016). The procedures of IHT and
GradMP for our model are shown in Algorithms 1 and 2,
where supp(-) is the support set of the argument vector.

Therefore, one can see that the efficiency of both algo-
rithms relies on the computation of the gradient and the
projection. To avoid the expensive computation of the gra-
dient, GradMP and IHT can be extended to the stochastic
versions (Nguyen et al., 2014) by assigning g the stochastic
gradient at the gradient computation step.

Both Algorithms 1 and 2 (and their stochastic variants)
guarantee some nice properties: the iterate converges to a
small ball surrounding the true solution at a linear rate un-
der certain RIP-type conditions (Nguyen et al., 2014) and
the radius of such ball converges to zero when the number
of samples goes to infinity.

Algorithm 1: Iterative Hard Thresholding.
Input: Sparsity parameter s.

Result: Problem solution w?.

Initialize w°,t = 0;

while stop criterion is not met do

g=Vf(w'); // Gradient computation
zt = wl — g ; // Gradient descent
witl =Pgg ¢ (2') // Projection
t=t+1;

end

Algorithm 2: Gradient Matching Pursuit.

Input: Sparsity parameter s.

Result: Problem solution w'.

Initialize WO, t=0;

while stop criterion is not met do

g = Vf(w'); // Gradient computation
I = supp(Pq(g.25) (8));

I'=TUsupp(w'); // Subspace selection
z' = argming 0« f(2); // Subspace
optimization
W't = Pog g (2") ;
t=t+1;

// Projection

end

A common component in Algorithms 1 and 2 is the pro-
jection operator. If all the groups except [p] in G do not
overlap each other, the projection problem can be easily
solved by sequential projections (Yang et al., 2016). But
for those cases involving overlapped groups, it is generally
challenging to solve them efficiently.
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4. Projection Operator

This section introduces how to solve the essential projec-
tion step. Note that the projection onto a nonconvex set
is NP-hard in general. By utilizing the special structure
of TVCS, we show that the projection can be solved effi-
ciently. Due to the page limitation, all proofs are provided
in the supplementary material.

4.1. LP Relaxation

Firstly, we can cast the projection problem (2) to an equiv-
alent integer linear programming problem (ILP) according
to Lemma 1.

Lemma 1. The projection problem (2) is equivalent to the
following integer linear programming problem (ILP):

(v?,x) 3)
subjectto Ax <s
x € {0,1}*

max
x

where v? is applying element-wise square operation on

vector v. Ais a |G| X p matrix which is defined as:
]_T
=g @

where C' € {0,1}191Y91%2 \whose rows represent the in-
dicator vector of each group g € Gy and Gs.

Each row in A corresponds to one group g from G. For
example, C;; = 1 if the j-th coordinate is in the i-th group,
otherwise C;; = 0. The first row 17 corresponds to the
overall sparsity i.e. G.

It is NP-hard to solve an ILP in general. One common way
to handle such ILP is making a linear programming (LP)
relaxation. In our case, we can use a box constraint x €
[0, 1] to replace the integer constraint x € {0, 1}P:

(v?,x) (5)
subjectto Ax <'s
x € [0,1]7

max
x

However, there is no guarantee that a general ILP can be
solved via its LP relaxation, because the solution of the re-
laxed LP is not always integer. Although one can make a
rounding to the LP solution and acquire a integer solution,
such solution is not guaranteed to be optimal (or even fea-
sible) to the original ILP.

Fortunately, due to the special structure of our TVCS
model, we find that its relaxed LP has some nice properties
which make it possible to get the optimal solution of the
ILP efficiently. The following theorem reveals the relation-
ship between the ILP problem and the relaxed LP problem.

Theorem 2. Given G satisfying TV CS, all the vertices of
the feasible set to (5) are integer points. Furthermore, there
is an optimal solution on the vertex that solves the ILP (3).

This theorem suggests that finding a vertex solution of the
relaxed LP can solve the original projection problem onto
a TVCS G. The proof basically shows that matrix A (for
TVCS) is a totally unimodular matrix (Papadimitriou &
Steiglitz, 1982). We provide the detailed proof in the sup-
plementary material.

4.2. Linearly Convergent Algorithm for Projection
Operator onto TVCS

To find a solution on the vertex, one can use the Simplex
method. Although Simplex method guarantees to find an
optimal solution on the vertex and could be very efficient in
practice, it does not have a deterministic complexity bound.
In the IHT and GradMP algorithms, projection operator
is only a sub-procedure in one iteration. Hence, we are
usually supposed to solve lots of instances of problem (3).
Simplex might be efficient practically, but its worst case
may lead to exponential time complexity (Papadimitriou
& Steiglitz, 1982). In this section, the integer solution to
the linear programming can be found within the complex-
ity proportional to the number of variables and constraints.

Equivalent Feasibility Problem Formulation. The dual
of LP problem (5) can be written as:
min ([s717]",y) (6)
y
subject to [AT I] y>viy>0

Since the duality gap of LP is zero, combining the primal
LP (5) and dual LP (6), we can formulate an equivalent
problem, i.e. the feasibility problem over the following
constraints:

find x,y
subjectto ([s' 17]7,y) = (v* x)
[AT Iy >V?
=[]
y>0,x>0

Iterative Algorithm. The feasibility problem with linear
constraints above is equivalent to the following optimiza-
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tion problem:

win (5T 1TTTy) - (v 0)?

1 1
+ v = [AT Nyl + S l[Ax = 8] |
(N
subjectto 0<x<1,y>0

where [z] is the element-wise hinge operator, i.e. it trans-
forms each element z; to max(z;,0).

This is a convex optimization problem with a quadratic ob-
jective and box constraints. We adopt the projected gradi-
ent descent to solve this problem, and show it converges
linearly.

Theorem 3. For the optimization problem with the form
min f(z) = |[Az — a] | + || Bz — b
subjectto z € )

where Q = {z | Cz < c}, the projected gradient descent
algorithm z' T+ < Pqo(z' — vV f(2!)) has a linear conver-
gence rate with some o < 1 (depending on A and B):

12 — P (27| < allz’ — Ppe (2],
where P, (+) is the projection onto the optimal solution set.

Notice that the objective function f in Theorem 3 is not
necessarily strongly convex, which means the well recog-
nized linear convergence conclusion from the strong con-
vexity is not applicable here.

Theorem 3 mainly applies Hoffman’s Theorem (Hoffman,
2003) to show that f is an optimal strongly convex function
(Liu & Wright, 2015). This leads to a linear convergence
rate.

The convergence rate « = 1/(14+2), where \ is the Hoff-
man constant (Hoffman, 2003) that depends on A, B and
is always positive. L is the Lipschitz continuous gradient
constant. More details are included in the supplementary
materials.

To show the complexity of this algorithm, we firstly count
how many iterations we need. Since we know that we can
just make a rounding' to the result x* when we attain ||x! —
%*||oo < 0.5. Letz := [x' y "] represent all the variables
in (7). Because ||z' —z*|| > ||2' —2*||oc > ||x' —%x* |00, We
can do the rounding safely when ||z* — z*|| < 0.5, where
z*,x* are the optimal points of this problem. According to

! Acute readers may notice that the convergent point may be on
the face of the polytope in some cases instead of vertex. However,
we can add a small random perturbation to ensure the optimal
point to be vertices with probability 1.

Theorem 3, we have the linear convergence rate o < 1, so
the number of iterations we need is

Therefore, we claim that we can obtain the solution x* by
rounding after log,, W iterations.

Secondly, we show that the computation complexity in
each iteration is linear with dimensionality p and the
amount of groups |G|. Since each column of A contains at
most 3 nonzero elements, the complexity of the matrix mul-
tiplications in computing the gradient of (7) is O(p + |G|).
Together with other computation, the complexity for each
iteration is O(p + |G|).

5. Empirical Study

This section will validate the proposed method on both syn-
thetic data and two practical applications: crowdsourcing
and identification of gene regulatory networks.

5.1. Linear Regression and Classification on Synthetic
Data

In this section, we validate the proposed method with lin-
ear regression objective and squared hinge objective (clas-
sification) on synthetic data. Let w € RVP*V? be a ma-
trix, G1 and G, are defined as groups with all rows and all
columns respectively. The linear regression loss is defined
as Y ., ({(X;,w) — y;)? and the squared hinge loss is de-
finedas Y, , max(0,1—y;(X;, w))?, where n is the total
number of training samples. X; and y; are the features and
label of the i-th sample respectively.

In the linear regression experiment, the true model w €
RVPXV?P is generated from the following procedure: gen-
erate a random vector and apply the projection operator to
get a support set which satisfy our sparsity constraints; the
elements of positions in support set are drawn from stan-
dard normal distribution. p is fixed as 400 and n is grad-
ually increased. The group sparsity upper bounds s9 for
g € G1 and g € G, are uniformly generated from the inte-
gers in the range[1, ,/p]. The overall sparsity upper bound
issetby 0.8 x min(}_ g 89,5 g, s7). Each X;’s is an
/P X /p ii.d. Gaussian random matrix. y; is generated
from y; = (X;, W) + e;, where e; is the i.i.d. Gaussian
random noise drawn from N(0,0.01?). We compare the
proposed methods to bilevel exclusive sparsity with non-
overlapped groups (row-wise or column-wise) (Yang et al.,
2016), overall sparsity (Needell & Tropp, 2009), and ex-
clusive LASSO (Kong et al., 2014). For fairness we project
the final result of all the compared methods to satisfy all
constraints. All the experiments are repeated 30 times and
we use the averaged result. We use selection recall and suc-
cessful recovery rate to evaluate the performance. Selection
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recall is defined as Isupp(W™)Nsupp(W)|/||w ||y, Where w* is the
optimization result. Successful recovery rate is the ratio of
the successful feature selection i.e. supp(w*) = supp(w)
to the total number of repeated experiments. In Figure 2
we can observe that our model with all sparsity constraints
always have the best performance. While the performance
of exclusive LASSO and our method is comparable when
the number of samples are very limited, our method out-
performs exclusive LASSO when the number of samples
increases.

For classification experiments, we use the same settings of
sparsity with linear regression. Here we set p = 400, and
change n from 200 to 800. The true model w and fea-
ture matrices are generated by the same way as the linear
regression experiment. The class label y; € {—1,1} is
got by y; = sign(X;, w). Besides the selection recall, we
also compare the classification error. In Figure 3, we can
see that the superiority of our method is even more signifi-
cant in the classification experiment. Although the overall
sparsity has the lowest selection recall, it still has a similar
classification error with the methods that consider row or
column groups.

Feature selection recall with #sample Recovery rate with #sample

A 0.7
—A-ours —A-ours
-e-row 0.6 [|-e-row
0.9 col / col .2
 [|--overall 0.5 [|*overall /
exclusive LASSO . exclusive LASSO|
0.8 -

Recover Rate

o o o o
- N W

Qs e ST .
200 250 300 350 400 200 250 300 350 400

#sample #sample

(a) Selection recall. (b) Successful recovery rate.

Figure 2. Selection recall and successful recovery rate for least
square loss.

Feature selection recall with #sample Cl ion error with #sample
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0.6 col
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Classification error

(D

200 400 600 800 200 400 600 800

#sample #sample

(a) Selection recall. (b) Classification error.

Figure 3. Selection recall and classification error for squared
hinge loss.

5.2. Application in Crowdsourcing

This section applies the proposed method to the worker-
task assignment problem in crowdsourcing. Take the im-

age labeling task as an example. Given n workers and m
images, each image can be assigned to multiple workers
and each worker can label multiple images. The predicted
label for each image is decided by all the labels provided
by the assigned workers and the quality of each worker on
the image. The goal is to maximize the expected prediction
accuracy based on the assignment. Let X € {0, 1}"*™
be the assignment matrix, i.e. X;; = 1 if assign the i-th
worker to j-th task, otherwise X;; = 0. Q € [0,1]"*™
is the corresponding quality matrix, which is usually esti-
mated from the golden standard test (Ho et al., 2013). The
whole formulation is defined to maximize the average of
the expected prediction accuracy over m tasks over a TVCS
constraint:

m

1

max  — £iee(Q 5 X ) ®)
j=1
subject to ZXij < ghorker /5.
i=1

m

E Xij S StaSk,\V/i;
j=1

ZXij < Stotal; X e {0’ 1}n><m

i
where £, (-, ) is the expected prediction accuracy, s¥orker
is the “worker sparsity”, i.e. the largest number of assigned
workers for each task, and s is the “task sparsity”, i.e.
each worker can be assigned with at most sk tagks, and
st is the total sparsity to control the budget, i.e., the max-
imal number of assignment. In image labeling task, we as-
sume that each image can only have two possible classes
and the percentage of images in each class is one half. We
use the Bayesian rule to infer the predicted labels given the
workers’ answer. Here we consider the binary classifica-
tion task. Let y,; € {1,0} be the true label of the j-th task
and y; be the prediction given labels by selected workers,
ie.,

_Jo, it P(y; = 1Yo, ) < Ply; = 0o, 5);
/ 1, otherwise

where Yij is the ¢-th worker’s predication on j-th task. Set
(1, contains the indices of the selected workers for j-th
task, i.e. Xij =1,Vie Qj, and Xi’j = O,\V/i, ¢ Qj

Then E,o(Q.,j, X. ;) can be defined in the following:
Eace(Q., X j) =P(y; = 1Ly; =1)+P(y; =0,y; = 0)
By this way, the expected accuracy will not be continuous,

so we use smooth function to approximate the expected ac-
curacy and adopt the stochastic gradient with the proposed
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projection operator to optimize it. Due to the space limi-
tation, the detailed derivation of the objective formulation
can be found in the supplemental material.

We conduct experiment for crowdsourcing task assignment
on synthetic data. Specifically, we generate the quality ma-
trix ) from uniformly random distribution with interval
[0.5,0.9]. The prior probability P(y; = 1) and P(y; = 0)
are set as 0.5 for all the tasks.

To avoid evaluating the expectation term, we apply the
stochastic iterative hard thresholding framework (Nguyen
etal., 2014). Eachiteration we get Y|y, = land Y|y; =0

by sampling based on @ i.e. IP’(YU =1lly; =1) = Q4
P(Y;; = Oly; = 0) = Q;;. Then we can get a stochastic
gradient based on the sampled Y.

Besides the proposed formulation (8), we evaluate the ran-
dom assignment algorithm and the Q-based linear pro-
gramming (Ho et al., 2013). The random assignment al-
gorithm widely used in practice is the most straightforward
approach: given the total assignment budget s°° and the
restrictions (s¥°™*" and s®K) for workers and tasks, ran-
domly assign tasks to the workers. The Q-based linear pro-
gramming uses the linear combination of @);; over % to eval-
uate the overall accuracy on task j for simpler formulation.
In addition, it does not consider the restriction on tasks,
thus it may assign lots of workers to a difficult task®. To
make a fair comparison, the task restriction is added into
this method. To get the assignment result which satisfies
the task and worker restriction, we use our projection oper-
ator in the other methods too.

We evaluate the experiments on different value of
stask gworker by getting them as different ratios of the to-
tal number of tasks and workers. The overall sparsity is
set by the same way as in Section 5.1. To measure the
performance, we compare the sampled expected accuracy.
The samples (i.e., Y) are independent to the samples used
in training. Figure 4 shows the comparison of the ex-
pected accuracy of the three approaches. We can observe
that the accuracy increases with larger ratio (i.e. more as-
signments). The random assignment strategy needs more
assignments to get the same accuracy compared with the
other two methods.

5.3. Application in Identification of Gene Regulatory
Networks

In this section, we apply the projection operator to the iden-
tification of gene regulatory networks (GRN).

2A “difficult” task means that all workers’ qualities are low on
this task.

Accuracy with Ratio

N Accuracy with Ratio

0.95
0.9 0.95
0.85 0.94
g 0.8 gO.SS
30.75 3
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0.7% 08
0.65 —A-ours 0.75 —A-ours
0.6 -e-random -e-random
- Q-based 0.7 Q-based
0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05
Ratio Ratio

(@ n = 100, m = 1, 000. (b) n = 200, m = 10, 000.

Figure 4. Expected accuracy of crowdsourced classification.

Background. Gene regulatory network represents the re-
lations between different genes, which plays important
roles in biological processes and activities by controlling
the expression level of RNAs. There is a well-known
biological competition named DREAM challenge about
identifying GRN. Based on the time series gene ex-
pression data which are RNAs’ level along time sequence,
contestants are required to recover the whole gene network
of given size. One popular way to infer GRN is to utilize
the sparse property of GRN: e.g., one gene in the network
is only related to a small number of genes and we already
know that there exists no relationship between some genes.
Therefore, the amount of edges connecting to one vertex is
far less than the dimension of the graph. It is a practical
case of row-wise and column-wise sparsity for matrix. We
could apply the projection operator to constrain the num-
ber of edges related to each vertex to identify the whole
network. Recently, the dynamic Bayesian network (DBN)
(Zou & Conzen, 2005) is supposed to be an effective model
to recover GRNs. The RNAs’ level of all genes in GRN at
time ¢ is stored in gene expression vector x;, € RV, where
each entry corresponds to one gene respectively and NV is
the number of genes in GRN. Hence, We define the total
amount of time points in the experiment as 7'. Gene activ-
ity model is usually assumed to be

Xt+1:PXt+et, tle—l,

where P € RV*¥ ig the covariance matrix of GRN and
e; € R¥ is Gaussian white noise. Then the difference of
RNA levels between time points ¢t + 1 and ¢, i.e. yy4+1,¢ €
RY is defined as follows:

Vitlt = X1 — X = Wxp+e, t=1...T—1,

where W = P — I is the true sparse N-by-N matrix.
Therefore, the GRN is only considered between different
genes and we eliminate edges whose start and end vertex
are the same. We define that Y := [y271, e YrT-1] €
RN*(T=1) and X := [x1,...,x7_1] € RV*T=D_ The
objective function is

T-1
1 - 1 _
fW) = §HY—WXH3T =3 D l(xear —x0) =W ||,

t=1
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SN SP ACC F-measure MCC AUC
Our Method 0.6875+0.0295 0.73974+0.0319  0.7119+0.0305 0.7126+0.0306  0.4264+0.0611  0.7136+0.0306
GENIE3 0.5611£0.0277 0.498440.0547 0.5319+0.0244  0.527940.0277  0.0595+0.0547  0.566240.0244
CLR 0.5167+£0.0583 0.447640.1147 0.4844+0.0575 0.479540.0583  -0.035740.1147 0.5210+0.0575
TIGRESS 0.1333+£0.0541  0.830240.0367 0.4585+0.0374 0.22584+0.0817 -0.055240.1061  0.5567+0.0358
PCC 0.5042+0.0124  0.433340.0245 0.4711£0.0101 0.466140.0124  -0.06254+0.0245 0.5091+0.0101
ARACNE 0.1167£0.0519  0.91274+0.0579 0.4881+£0.0197 0.205140.0519  0.0479+0.0579  0.58084+0.0197
MINET 0.5764+£0.0425 0.538140.0888  0.5585+0.0458  0.554740.0425  0.11474+0.0888  0.5910+0.0458

Table 1. Performance evaluation of our method and six other state-of-art methods

Time-course Gene Expression Data.

To evaluate our

method, we employ GeneNetWeaver (Marbach et al., 2009;
Schaffter et al., 2011), the official DREAM Challenge tool
for time-series expression data generation. With typical
gene network structure and ordinary differential equation
(ODE) models, GeneNetWeaver will produce the time-
course gene expression data at pre-specified time points.
In the simulation studies, we control the size of gene net-
work to be N = 30 vertexes and the gene expression data
are generated under 10% Gaussian white noise.

The network is shown in Figure 5. In this Figure, it is clear
that one gene only has a few connections to other genes.
Therefore, the GRN is sparse and we are able to restrict the
in-degree and out-degree of every vertex by representing
the network as a matrix and controlling the sparsity within
each row and column.

Performance evaluation. Six commonly-used criteria
are considered to measure the performance, i.e., sensi-
tivity (SN), specificity (SP), accuracy (ACC), F-measure,
Matthews correlation coefficient (MCC), and the Area Un-
der ROC Curve (AUC):

TP p_ TN
~ TP +FN’ ~ TN +FP’
ACC — TP + TN 7

TP + FP + TN + FN

2 x SN x SP
F-measure = ————,
SN + SP
TP x TN — FP x FN

/(TP + FP)(TP + EN)(TN + FP)(TN + FN)’

SN

MCC =

where TP and TN denote the true positive and true neg-
ative, and FP and FN denote the false positive and false
negative, respectively. With these criteria, we compare the
performance of our method with six representative algo-
rithms, including PCC, ARACNE (Margolin et al., 2006),
CLR (Faith et al., 2007), MINET (Meyer et al., 2008), GE-
NIE3 (Huynh-Thu et al., 2010), TIGRESS (Haury et al.,
2012). The results are summarized in Table 1. Our method
outperforms other six state-of-art methods: the AUC of our
method achieve 0.7 higher which is far more than other
methods; 5 out of 6 different measure show that our method
has significant advantage compared to other algorithms.

N
/7

\ XY _——
% A Y~ \ >

A\ -
L VWAV
’:-'&‘ N ) &\‘

b A

Figure 5. This gene regulatory network contains 30 vertexes
which are represented by blue circles. One edge starts at gene
1 and ends at gene 2 if gene 1 has influence on gene 2.

6. Conclusion

This paper considers the TVCS constrained optimization,
motivated by the intrinsic restrictions for many important
applications, for example, in bioinformatics, recommenda-
tion system, and crowdsourcing. To solve the cardinality
constrained problem, the key step is the projection onto the
cardinality constraints. Although the projection onto the
overlapped cardinality constraints is NP-hard in general,
we prove that if the TVCS condition is satisfied the projec-
tion can be reduced to a linear programming. We further
prove that there is an iterative algorithm which finds an in-
teger solution to the linear programming within time com-
plexity O((p + |G|) log,, %), where R is the distance from
the initial point to the optimization solution and o < 1
is the convergence rate. We finally use synthetic exper-
iments and two interesting applications in bioinformatics
and crowdsourcing to validate the proposed TVCS model.
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