
Tensor Decomposition via Simultaneous Power Iteration
(Supplementary Material)

Po-An Wang 1 Chi-Jen Lu 1

A. Technical Lemmas
For a matrix A, let σmax(A) and σmin(A) denote its largest
and smallest singular values, respectively. Then we will
need the following lemma relating such singular values of
a matrix and its sub-matrix.

Lemma A.1. (Corollary 3.1.3 in (Hom & Johnson, 1991))
Let A and B be matrices such that B is derived from A by
deleting some of its rows and/or columns. Then σmax(A) ≥
σmax(B) and σmin(A) ≤ σmin(B).

For a matrix Z, let Z�2 = Z � Z denote the Hadamard
(entry-wise) product of Z with itself. Then we will need the
following lemma relating the singular values of matrices Z
and Z�2.

Lemma A.2. For any matrix Z, σmin(Z
�2) ≥ (σmin(Z))2

and σmax(Z
�2) ≤ (σmax(Z))2.

Proof. One can relate the singular values of the Hadamard
product Z�2 to those of the Kronecker product Z ⊗ Z.
In particular, as Z � Z can be obtain from Z ⊗ Z by
deleting some rows and columns, Lemma A.1 tells us that
σmin(Z � Z) ≥ σmin(Z ⊗ Z) and σmax(Z � Z) ≤
σmax(Z ⊗ Z). Then the lemma follows as the Kronecker
product Z⊗Z is known to have the property that σmin(Z⊗
Z) = (σmin(Z))2 and σmax(Z ⊗ Z) = (σmax(Z))2.1

We will need the following two tail bounds. The first is for
the sum of the squares of independent standard normal ran-
dom variables, known as the χ-square distribution, which
follows from the bound in (Laurent & Massart, 2000).

Lemma A.3. Let z1, . . . , zL be a sequence of i.i.d. random
variables, each from the distribution N (0, 1). Then for any
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1See e.g. Theorem 4.2.12 in (Hom & Johnson, 1991) for the
case of square matrices; the extension to rectangular matrices is
straightforward.

δ ∈ (0, 1), we have
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z2i − 1

∣∣∣∣∣∣ ≥ δ
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(
δ2L

)
.

The second is the following matrix version of the Bernstein
inequality (see e.g. Theorem 1.6 in (Tropp, 2012)).

Lemma A.4. Consider a finite sequence Z1, . . . , Zn of in-
dependent, random, matrices in Rd×k. Assume that each
random matrix satisfies E[Zi] = 0 and ‖Zi‖ ≤ R almost
surely. Define the variance parameter

σ2 = max

{∥∥∥∥∥
n∑

i=1

E[ZiZ
>
i ]

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

E[Z>
i Zi]

∥∥∥∥∥
}
.

Then, for all t ≥ 0,

Pr

[∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥ ≥ t

]
≤ (d+ k) · 2

−t2

σ2+Rt/3 .

We will also need the following two matrix perturbation
bounds.

Lemma A.5. (Theorem 2.5 in (Stewart & Sun, 1990)) Let
A,E ∈ Rk×k be given. If A is invertible, and

∥∥A−1E
∥∥ <

1 then Ā := A+ E is invertible, and

∥∥Ā−1 −A−1
∥∥ ≤

‖E‖
∥∥A−1

∥∥2
1− ‖A−1E‖

.

Lemma A.6. (Lemma 2.2 in (Schmitt, 1992)) Given any
A, Ā ∈ Rk×k with smallest singular values σ > 0 and
σ̄ > 0, respectively, we have∥∥∥Ā 1

2 −A
1
2

∥∥∥ ≤
∥∥Ā−A

∥∥
σ̄

1
2 + σ

1
2

.

B. Proofs in Section 3
B.1. Proof of Lemma 1

Recall that Q(t) is derived from Y (t) by the QR decom-
position Y (t) = Q(t) ·R(t) via the Gram-Schmidt process,
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which has the same effect as performing k copies of the QR
decomposition on the k sub-matrices Y (t)

[m], for m ∈ [k], to

obtain the k sub-matrices Q(t)
[m], for m ∈ [k].

Let us fix any m ∈ [k] and t ≥ 0. To simply our no-
tation, we will drop the indices of m and t in the fol-
lowing. We will write Q for Q(t−1)

[m] , Q′ for Q(t)
[m], Y for

Y
(t)
[m], and Φ̂ for Φ̂

(t)
[m]. We will write U for U[m], with

the vector u1, . . . , um as its columns, while we will use
V to denote the d × (d − m) matrix having the vectors
um+1, . . . , ud as its columns. We will write tan, cos, sin
for tanm, cosm, sinm, respectively. Furthermore, for a ma-
trix A, let σmin(A) and σmax(A) denote its smallest and
largest singular values, respectively.

Recall that our goal is to bound tan(Q′) in terms of
tan(Q). As discussed before, Q′ is derived from Y by a
QR decomposition, with Y = Q′R for some matrix R. To
achieve our goal, we will first show that R is invertible so
that Q′ = Y R−1, and then relate tan(Q′) to the singular
values σmax(V

>Y ) and σmin(U
>Y ), followed by bound-

ing these two singular values.

First, from the condition (3), we have cosQ > 0 which
implies that Q has full rank and consists of orthonormal
columns. Our key lemma is the following, which we will
prove later in Subsection B.1.1.
Lemma B.1. The following two bounds hold:

• σmin

(
U>Y

)
≥ λm cos2(Q)− ‖Φ̂‖, and

• σmax

(
V >Y

)
≤ λm+1 sin

2(Q) + ‖Φ̂‖.

Using this lemma and the assumption ‖Φ̂‖ ≤ 4 cos2(Q)
in (3), we have

σmin

(
U>Y

)
≥ λm cos2(Q)−4 cos2(Q) > 0,

as ∆ ≤ λm

2 . This implies that Y has full rank, R−1 exists,
Q′ = Y R−1 has orthonormal columns, and (U>Q′)−1 ex-
ists. Then from standard properties of principal angles (see
e.g. (Zhu & Knyazev, 2012)), we know that

tan(Q′) =
σmax(V

>Q′)

σmin(U>Q′)
=
∥∥(V >Q′)(U>Q′)−1

∥∥ ,
which equals∥∥(V >Y R−1)(U>Y R−1)−1

∥∥ =
∥∥(V >Y )(U>Y )−1

∥∥
≤ σmax(V

>Y )

σmin(U>Y )
.

Then by Lemma B.1, together with the assumption from
(3) that ‖Φ̂‖ ≤ 4β = 4β sin2(Q) +4β cos2(Q), we can
bound the denominator by

σmax(V
>Y ) ≤ (λm+1 +4β) sin2(Q) +4β cos2(Q),

while using the assumption ‖Φ̂‖ ≤ 4 cos2(Q), we can
bound the enumerator by

σmin(U
>Y ) ≥ λm cos2(Q)−4 cos2(Q).

Combining these bounds together, we obtain

tan(Q′) ≤ λm+1 +4β

λm −4
tan2(Q) +

4β

λm −4
.

Then the rest of the analysis is identical to that of Hardt &
Price (2014) (for the proof of their Lemma 2.2). Specif-
ically, we can rewrite the righthand side above as the
weighted average of two terms

(1− α) · λm+1 +4β

λm+1 + 24
tan2(Q) + α · β,

with α = 4
λm+1+34 , which can be upper-bounded by

max

{
λm+1 +4β

λm+1 + 24
tan2(Q), β

}
,

and similarly, we can also have

λm+1 +4β

λm+1 + 24
≤ max

{
λm+1

λm+1 +4
, β

}
.

Since λm+1

λm+1+4 ≤ ( λm+1

λm+1+44 )1/4 = (λm+1

λm
)1/4 = ρ, we

thus have the desired bound

tan(Q′) ≤ max
{
max {ρ, β} tan2(Q), β

}
.

To finish the proof, it remains to prove Lemma B.1, which
we do next.

B.1.1. PROOF OF LEMMA B.1

Recall from (2) that for any column Yj of Y and for any
target vector ui,

u>
i Yj = λi

(
u>
i Qj

)2
+ u>

i Φ̂j .

These equations can be summarized as

U>Y = Λ
(
U>Q

)�2
+ U>Φ̂, and

V >Y = Λ̄
(
V >Q

)�2
+ V >Φ̂,

using the notation Λ for the m × m diagonal matrix with
λ1, . . . , λm at its diagonal, Λ̄ for the (d − m) × (d − m)
diagonal matrix with λm+1, . . . , λd at its diagonal, and
A�2 = A � A for the Hadamard (entry-wise) product of
matrix A with itself. From this, we have

σmin

(
U>Y

)
= σmin

(
Λ
(
U>Q

)�2
+ U>Φ̂

)
≥ σmin

(
Λ
(
U>Q

)�2
)
−
∥∥∥U>Φ̂

∥∥∥
≥ σmin (Λ)σmin

((
U>Q

)�2
)
−
∥∥∥Φ̂∥∥∥ ,
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as well as

σmax

(
V >Y

)
= σmax

(
Λ̄
(
V >Q

)�2
+ V >Φ̂

)
≤ σmax

(
Λ̄
(
V >Q

)�2
)
+
∥∥∥V >Φ̂

∥∥∥
≤ σmax

(
Λ̄
)
σmax

((
V >Q

)�2
)
+
∥∥∥Φ̂∥∥∥ .

From Lemma A.2, we have

σmin

((
U>Q

)�2
)
≥
(
σmin

(
U>Q

))2
= cos2(Q),

since Q has orthonormal columns, and moreover

σmax

((
V >Q

)�2
)
≤
(
σmax

(
V >Q

))2
= sin2(Q).

As σmin

(
Λ̄
)
= λm and σmax (Λ) = λm+1, Lemma B.1

follows.

B.2. Proof of Theorem 2

Suppose we have Q(0) such that for every m ∈ [k],
tanm(Q(0)) ≤ 1 and hence cosm(Q(0)) ≥ 1√

2
. We would

like to apply Lemma 1 repeatedly with β = ε
2 to achieve

tanm(Q(t)) ≤ ε
2 for every m. To be able to do this, we

need to verify that for every t, the condition (3) in Lemma 1
is satisfied. For this, we first claim that ‖Φ̂(t)

[m]‖ ≤ ∆ε
2 . This

holds since for any vector x = (x1, . . . , xm) of unit length,∥∥∥Φ̂(t)
[m]x

∥∥∥ ≤
∑
j∈[m]

∥∥∥xjΦ(Id, Q
(t)
j , Q

(t)
j )
∥∥∥ ≤

∑
j∈[m]

|xj | · ‖Φ‖

which by the Cauchy-Schwarz inequality is at most

√
m‖x‖ · ‖Φ‖ =

√
m · ‖Φ‖ ≤ ∆ε

2
.

Moreover, we can assume without loss of generality that
max{ ε

2 , ρ} = ρ because otherwise, we immediately have
tanm(Q(1)) ≤ ε

2 for every m, as the condition (3) is sat-
isfied for t = 1. Then a simple induction shows that for
every t ≥ 1, the condition (3) in Lemma 1 holds and

tanm(Q(t)) ≤ max
{ε
2
, ρ tan2m(Q(t−1))

}
≤ max

{ε
2
, ρ2

t−1
}

for every m. Thus, we have ρ2
t−1 ≤ ε

2 and tanm(Q(t)) ≤
ε
2 whenever t ≥ N − 1, for some

N = O

(
log

log 1
ε

log 1
ρ

)
= O

(
log

(
1

γ
log

1

ε

))
,

by noting that log 1
ρ ≥ Ω(log 1

1−γ ) ≥ Ω(γ).

Next, we show that for any t ≥ N , each Q
(t)
i is close

enough to ui. For this, we rely on the following.

Proposition B.1. For any t ≥ N , we have u>
i Q

(t)
i ≥√

1− ε2

2 for every i ∈ [k].

Proof. Let us fix any i ∈ [k]. In the following, we first
show that (u>

i Q
(t)
i )2 ≥ 1− ε2

2 for any t ≥ N −1, and then
we show that u>

i Q
(t)
i ≥ 0 for any t ≥ N , which together

prove the proposition.

First, consider any t ≥ N − 1, which from the discus-
sion above has tani(Q

(t)) ≤ ε
2 . Note that (u>

i Q
(t)
i )2 ≥

cos2i (Q
(t))− sin2i−1(Q

(t)), because

cos2i (Q
(t)) ≤

∥∥∥u>
i Q

(t)
[i]

∥∥∥2
=

∥∥∥u>
i Q

(t)
[i−1]

∥∥∥2 + (u>
i Q

(t)
i

)2
≤ sin2i−1(Q

(t)) +
(
u>
i Q

(t)
i

)2
.

From this and the fact that cos2i (Q
(t)) = 1

1+tan2
i (Q

(t))
and

sin2i−1(Q
(t)) ≤ tan2i−1(Q

(t)), we get(
u>
i Q

(t)
i

)2
≥ 1

1 + ε2

4

− ε2

4
≥ 1− ε2

2
.

Next, consider any t ≥ N and our goal is to show that
u>
i Q

(t)
i > 0. Recall that Q(t)

i is derived from

Y
(t)
i =

∑
j

λj

(
u>
j Q

(t−1)
i

)2
· uj + Φ̂

(t−1)
i

by subtracting from it its projection to some unit vector z
in the column space of Q

(t)
[i−1] and then scaling it to unit

length. Thus, the sign of u>
i Q

(t)
i is the same as that of

u>
i

(
Y

(t)
i −

(
z>Y

(t)
i

)
z
)

= u>
i Y

(t)
i −

(
z>Y

(t)
i

) (
u>
i z
)

≥ λi

(
u>
i Q

(t−1)
i

)2
−
∥∥∥Φ̂(t−1)

i

∥∥∥− sini−1(Q
(t))

≥ λi

(
1− ε2

2

)
− 5ε

8
,

since (u>
i Q

(t−1)
i )2 ≥ 1− ε2

2 for t−1 ≥ N−1, ‖Φ̂(t−1)
i ‖ ≤

∆ε
2 ≤ ε

8 , and sini−1(Q
(t)) ≤ tani−1(Q

(t)) ≤ ε
2 for t ≥

N . Finally, as λi ≥ λk ≥ 2ε, the last line above is positive,
which implies that u>

i Q
(t)
i > 0.

As ‖Q(t)
i ‖ = ‖ui‖ = 1, this proposition immediately im-

plies that for any t ≥ N and i ∈ [k],∥∥∥Q(t)
i − ui

∥∥∥ =

√
2− 2u>

i Q
(t)
i ≤ ε,
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as u>
i Q

(t)
i ≥ (u>

i Q
(t)
i )2 ≥ 1− ε2

2 .

Finally, let us show that for any t ≥ N , each λi can be
approximated well by λ̂i = T̄ (Q

(t)
i , Q

(t)
i , Q

(t)
i ). Fix any

t ≥ N and i ∈ [k]. Note that |λi − λ̂i| is at most∣∣∣λi − T
(
Q

(t)
i , Q

(t)
i , Q

(t)
i

)∣∣∣+ ∣∣∣Φ(Q(t)
i , Q

(t)
i , Q

(t)
i

)∣∣∣ .
The second term above is at most ‖Φ‖‖Q(t)

i ‖3 ≤ ε
4 , and

the first term above is at most∣∣∣∣λi − λi

(
u>
i Q

(t)
i

)3∣∣∣∣+∑
j 6=i

∣∣∣∣λj

(
u>
j Q

(t)
i

)3∣∣∣∣
≤ λi

(
1−

(
u>
i Q

(t)
i

)3)
+
∑
j 6=i

λj

(
1−

(
u>
i Q

(t)
i

)2)

≤ λi
3ε2

4
+
∑
j 6=i

λj
ε2

2
,

where the first inequality uses the fact that for j 6= i,
(u>

j Q
(t)
i )3 ≤ (u>

j Q
(t)
i )2 ≤ ‖Q(t)

i ‖2 − (u>
i Q

(t)
i )2 =

1− (u>
i Q

(t)
i )2, while the second inequality uses the bound

(u>
i Q

(t)
i )3 ≥ (1− ε2

2 )
3/2 ≥ 1− 3ε2

4 . As a result, we have∣∣∣λi − λ̂i

∣∣∣ ≤∑
j

λj
3ε2

4
+

ε

4
≤ ε,

using the assumption
∑

j λj ≤ 1 from (1). This completes
the proof of the theorem.

B.3. Proof of Lemma 2

From the definition of w̄, we can express u>
i w̄ as

1

L

∑
j∈[L]

T (ui, wj , wj) +
1

L

∑
j∈[L]

Φ(ui, wj , wj). (1)

The first term above equals

1

L

∑
j∈[L]

λi

(
u>
i wj

)2
= λi ·

1

L

∑
j∈[L]

(
u>
i wj

)2
,

and note that the sum has a χ-square distribution be-
cause each u>

i wj is an independent random variable with
the standard normal distribution N (0, 1).2 Then from
Lemma A.3, we know that for δ = γ

4 , there exists some
L ≤ O( 1

γ2 log d) such that the first term in (1) differs from

λi by at most λiγ
4 with probability at least 1− 1

200d2 .

The second term in (1) can be bounded in a similar way
as follows. Since ‖ui‖ = 1 and Φ is symmetric, we know

2This is because each component of wj has the distribution
N (0, 1), and the distribution of u>

i wj has mean
∑

r ui,r · 0 = 0

and variance
∑

r u
2
i,r · 1 = 1, where ui,r denotes the r’th com-

ponent of ui.

that the matrix Φ(ui, Id, Id) has norm ‖Φ(ui, Id, Id)‖ ≤
‖Φ‖ ≤ ∆

3d and can be decomposed as
∑

r∈[d] λ̃r · ũr ⊗ ũr,
for some orthonormal vectors ũr’s as well as some values
λ̃r’s, each with |λ̃r| ≤ ∆

3d . Then by a similar analysis as
above, together with a union bound, we can have with prob-
ability at least 1− d · 1

200d2 = 1− 1
200d that∣∣∣∣∣∣ 1L

∑
j∈[L]

Φ(ui, wj , wj)

∣∣∣∣∣∣ ≤
∑
r∈[d]

∣∣∣λ̃r

∣∣∣ · 1
L

∑
j∈[L]

(
ũ>
r wj

)2
≤

∑
r∈[d]

∆

3d
·
(
1 +

γ

4

)
≤ ∆

2
.

By combining the two bounds above, we can conclude that
for any i ∈ [d], the sum in (1) differs from λi by at most
1
4 (λiγ + 2∆) with probability at least 1 − 1

100d . Then the
lemma immediately follows by a union bound.

B.4. Proof of Lemma 3

Consider any w̄ satisfying the condition (5) in Lemma 2.
By definition, M̄ = T̄ (Id, Id, w̄) can be decomposed as

T (Id, Id, w̄) + Φ(Id, Id, w̄).

The first matrix can be expressed as

T (Id, Id, w̄) =
∑
i∈[d]

λi

(
u>
i w̄
)
· ui ⊗ ui,

with λ̄i = λi(u
>
i w̄) and ui as its i’th eigenvalue and eigen-

vector, respectively. Note that as ∆ ≤ λi−λi+1

4 , we have

λ̄i ≥ λ2
i −

1

4

(
λ2
i γ + 2λi∆

)
≥ λ2

i −
λ2
i − λ2

i+1

4
− λ2

i − λiλi+1

8

≥ λ2
i −

3
(
λ2
i − λ2

i+1

)
8

,

as well as

λ̄i+1 ≤ λ2
i+1 +

1

4

(
λ2
i+1γ + 2λi+1∆

)
≤ λ2

i+1 + λ2
i+1

λ2
i − λ2

i+1

4λ2
i

+
λi+1λi − λ2

i+1

8

≤ λ2
i+1 +

3
(
λ2
i − λ2

i+1

)
8

,

which together imply that

λ̄i − λ̄i+1 ≥
λ2
i − λ2

i+1

4
≥ ∆2.
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It remains to bound the norm of Φ(Id, Id, w̄), which is

‖Φ(Id, Id, w̄)‖ ≤ ‖Φ‖ · ‖w̄‖,

where ‖w̄‖2 =
∑

i∈[d]

(
u>
i w̄
)2

is at most

∑
i∈[d]

(
λi +

1

4
(λiγ + 2∆)

)2

≤
∑
i∈[d]

(2λi)
2 ≤ 4.

This implies that ‖Φ(Id, Id, w̄)‖ ≤ 2‖Φ‖, which completes
the proof of the lemma.

B.5. Proof of Lemma 4

Suppose we have a matrix M̄ = M + Φ̄, where

M =
∑
i∈[d]

λ̄i · ui ⊗ ui

with λ̄i − λ̄i+1 ≥ ∆2 for every i ∈ [k] and ‖Φ̄‖ ≤ α1∆
2

√
dk

for a small enough constant α1. The key observation is that
although we run one copy of the matrix power method of
Hardt & Price (2014) to update the whole d×k matrix Z(s),
we can actually see our algorithm as running k copies of
the matrix power method on k sub-matrices Z(s)

[1] , . . . , Z
(s)
[k]

simultaneously. This allows us to apply their analysis im-
mediately.

More precisely, although our QR decomposition at each
step s is applied to the whole d × k matrix Y (s) to ob-
tain our d × k matrix Z(s), the Gram-Schmidt process we
use has the effect that each d×m sub-matrix Z

(s)
[m] can also

be seen as obtained from the d × m matrix Y
(s)
[m] by a QR

decomposition. Thus, our algorithm can be seen as running
k copies of the algorithm of (Hardt & Price, 2014) simulta-
neously, and we can apply the following lemma of theirs3

simultaneously for every m ∈ [k] with X(s) being our d×k

matrix Z
(s)
[m].

Lemma B.2. Fix any m ∈ [k]. Suppose that the initial
X(0) and the noise G

(s)
m = Φ̄ ·X(s) at each step s is such

that

5
∥∥∥U>

[m]G
(s)
m

∥∥∥ ≤
(
λ̄m − λ̄m+1

)
cosm(X(0))

5
∥∥∥G(s)

m

∥∥∥ ≤
(
λ̄m − λ̄m+1

)
ε

for some ε < 1
2 . Then for γm = 1 − λ̄m+1

λ̄m
, there exists

some S = O( 1
γm

log tanm(X(0))
ε ) such that for any t ≥ S

we have tanm(X(t)) ≤ ε.

3It corresponds to Theorem 2.3 in (Hardt & Price, 2014). Al-
though it is stated there for m = k, it in fact works for any value
of k and hence m.

It remains to show that we can have an initial Z(0), such
that for each m ∈ [k], Z(0)

[m] satisfies the condition required
by Lemma B.2. For this, we need the following bound from
(Mitliagkas et al., 2013).
Proposition B.2. For any δ, we have

Pr

[
cosk(Z

(0)) ≤ δ√
dk

]
≤ O(δ) + 2−Ω(d).

By applying this proposition, with δ = 10α0 for a small
enough constant α0, we can have cosk(Z

(0)) ≥ 10α0√
dk

with high probability. From Lemma A.1, we know that
for any m ∈ [k], cosm(Z(0)) = σmin(U

>
[m]Z

(0)
[m]) ≥

σmin(U
>Z(0)) = cosk(Z

(0)). Thus, with high probabil-
ity we in fact have cosm(Z(0)) ≥ 10α0√

dk
for every m ∈ [k].

Given such an initial Z(0), we can have for every s and m
that

5‖G(s)
m ‖ ≤ 5‖Φ̄‖ ≤ 10α0∆

2

√
dk

which satisfies the two conditions needed by Lemma B.2,
with ε = 1

3 . Then we can repeatedly apply Lemma B.2,
simultaneously for every m ∈ [k], and a simple induc-
tion shows that for some S = O( 1γ log d), we have
tanm(Z(s)) ≤ ε < 1 for any m ∈ [k] and s ≥ S. This
completes the proof of our Lemma 4

C. Proofs in Section 5
C.1. Proof of Lemma 5

First, we claim that tank(Q) < 1 with high probability.
To show this, note that by Proposition B.2, we have with
high probability that cosk(Z) > 4α0√

dk
for a small enough

constant α0. In the following, let us assume that we indeed
have such a matrix Z, and note that it has tank(Z) <

√
dk

4α0
.

Then we need the following.
Lemma C.1. (Lemma 2.2 in (Hardt & Price, 2014)) Let
Z,G ∈ Rd×k satisfy

4
∥∥U>G

∥∥ ≤ (λk − λk+1) cosk(Z)

4 ‖G‖ ≤ (λk − λk+1)β

for some β < 1. Then for ρ =
(

λk+1

λk

)1/4
, we have

tank(MZ +G) ≤ max{β,max{β, ρ} tank(Z)}.

Recall that we assume λk+1 = 0, and to apply the lemma,
let β = 4α0√

dk
and G = Φ̄Z. Note that

‖G‖ ≤
∥∥Φ̄∥∥ ≤ λkβ

4
,

which satisfies both requirements of the lemma, and thus
with Ȳ = MZ +G, we have

tank(Q) = tank(Ȳ ) ≤ β tank(Z) < 1.
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Next, let us bound σmin(P ) and σmax(P ). Recall that

P = Q>MQ = Q>UΛU>Q,

which implies that

σmin(P ) ≥ σmin

(
Q>U

)
σmin (Λ)σmin

(
U>Q

)
and

σmax(P ) ≤ σmax

(
Q>U

)
σmax (Λ)σmax

(
U>Q

)
.

Since the matrix Q has orthonormal columns, we have

(σmin

(
U>Q

)
)2 = (cosk(Q))2 =

1

1 + tan2k(Q)
≥ 1

2
,

as well as

σmax

(
U>Q

)
≤ ‖U‖ ‖Q‖ = 1.

Finally, as σmax (Λ) = λ1 and σmin (Λ) = λk, we have

σmin(P ) ≥ λk

2
and σmax(P ) ≤ λ1.

C.2. Proof of Lemma 6

First, from the definition, we have∥∥P̄ − P
∥∥ =

∥∥Q>M̄Q−Q>MQ
∥∥ ≤ ‖Q‖2

∥∥Φ̄∥∥ ≤ ε

as Q has orthonormal columns so that ‖Q‖2 ≤ 1. There-
fore, given the assumption that 0 < ε ≤ σmin(P )

2 , we have

σmin(P̄ ) ≥ σmin(P )−
∥∥P̄ − P

∥∥ > 0,

which implies that P̄ is invertible.

Then according to Lemma A.5, we have

∥∥P̄−1 − P−1
∥∥ ≤

∥∥P̄ − P
∥∥∥∥P−1

∥∥2
1−

∥∥P̄ − P
∥∥ ‖P−1‖

≤ 2ε(σmin(P ))−2,

as
∥∥P−1

∥∥ = (σmin(P ))−1 and ‖P̄ − P‖ ≤ ε ≤ σmin(P )
2 .

Combining this with Lemma A.6, we obtain∥∥∥P̄− 1
2 − P− 1

2

∥∥∥ ≤
∥∥P̄−1 − P−1

∥∥
(σmin(P̄−1))

1
2 + (σmin(P−1))

1
2

≤ 2ε(σmin(P ))−2(σmax(P ))
1
2 ,

since σmin(P̄
−1) ≥ 0 and σmin(P

−1) = (σmax(P ))−1.

C.3. Proof of Theorem 3

First, given ε ∈ (0, 1
2 ) and ‖Φ̄‖ ≤ α0εmin{ λk√

dk
,

λ3
k√
λ1
},

for a small enough constant α0, we know from Lemma 5
and Lemma 6 that with high probability,

• σmax(P ) ≤ λ1,

• σmin(P ) ≥ λk

2 , and

• ‖P̄− 1
2 − P− 1

2 ‖ ≤ λkε
64 .

Assume from now on that the above three conditions hold.
Next, observe that∥∥T̄ (W̄ , W̄ , W̄

)
− T (W,W,W )

∥∥
≤

∥∥T̄ (W̄ , W̄ , W̄
)
− T

(
W̄ , W̄ , W̄

)∥∥+ (2)∥∥T (W̄ , W̄ , W̄
)
− T

(
W, W̄ , W̄

)∥∥+ (3)∥∥T (W, W̄ , W̄
)
− T

(
W,W, W̄

)∥∥+ (4)∥∥T (W,W, W̄
)
− T (W,W,W )

∥∥ . (5)

The term in (2) is at most∥∥Φ (W̄ , W̄ , W̄
)∥∥ ≤ ‖Φ‖

∥∥W̄∥∥3 ≤ ε

4

as ‖Φ‖ ≤ α0λ
3
2

k ε for a small enough constant α0 and∥∥W̄∥∥ ≤ ‖Q‖
∥∥∥P̄− 1

2

∥∥∥ ≤
∥∥∥P̄− 1

2

∥∥∥ ,
which can be upper-bounded by∥∥∥P− 1

2

∥∥∥+ ∥∥∥P̄− 1
2 − P− 1

2

∥∥∥ ≤ 4λ
− 1

2

k .

The term in (3) is at most∥∥T (W̄ −W, W̄ , W̄
)∥∥ ≤ ‖T‖

∥∥W̄ −W
∥∥∥∥W̄∥∥2

≤
∥∥∥P̄− 1

2 − P− 1
2

∥∥∥ 16λ−1
k

≤ ε

4
.

Similarly, the term in (4) can be upper-bounded by

‖T‖
∥∥W̄ −W

∥∥ ‖W‖
∥∥W̄∥∥ ≤ ε

4

and the term in (5) can be upper-bounded by

‖T‖
∥∥W̄ −W

∥∥ ‖W‖2 ≤ ε

4
.

As a result, we can conclude that∥∥T̄ (W̄ , W̄ , W̄
)
− T (W,W,W )

∥∥ ≤ ε

with high probability, which proves the theorem.

D. Proofs in Section 6
Our streaming algorithm for orthogonal tensors with g of
the form g(x) = x⊗ x⊗ x is summarized in Algorithm 2.
We will use the parameters

L =
c0 log k

∆2
, S =

c0 log k

γ
,N = c0 log

(
1

γ
log

1

ε

)
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Algorithm 2 Streaming robust tensor power method
Input: a stream of data {x1, x2, . . . , }, parameters
L, S,N , index sets {Bs}Ss=1 , {Jt}

N
t=1.

Initialization Phase
Let w̄ = 0 ∈ Rd.
for τ = 1 to L do

Update w̄ = w̄ + 1
Lxτ .

end for
Sample Y

(0)
1 , . . . , Y

(0)
k ∼ N d (0, 1).

Factorize Y (0) as Z(0)R(0) by QR decomposition.
for s = 1 to S do

for τ ∈ Bs do
Update Y (s) = Y (s) + 1

|Bs|
(
x>
τ w̄
)
xτx

>
τ Z

(s−1).
end for
Factorize Y (s) as Z(s)R(s) by QR decomposition.

end for
Tensor power phase
Let Q(0) = Z(S).
for t = 1 to N do

for τ ∈ Jt do
Update Y (t)

i = Y
(t)
i + 1

|Jt|xτ

(
x>
τ Q

(t)
i

)2
,∀i ∈ [k].

Update λ
(t)
i = λ

(t)
i + 1

|Jt|

(
x>
τ Q

(t)
i

)3
,∀i ∈ [k].

end for
Factorize Y (t) as Q(t)R(t) by QR decomposition.

end for
Output: ûi = Q

(N)
i and λ̂i = λ

(N)
i ,∀i ∈ [k]

for a large enough constant c0. Moreover, we partition the
time steps into consecutive blocks: with the first block [L]
for finding the vector w̄, the next S blocks B1, . . . , BS for
the matrix power method in the initialization phase, fol-
lowed by N blocks J1, . . . , JN for the tensor power phase,
with their sizes |Bs| and |Jt| given in (6) and (6) respec-
tively. The proofs of related lemmas in Section 6 are given
next.

D.1. Proof of Lemma 7

First, from the assumption that T = Ex[x⊗ x⊗ x], where
Ex[·] denotes the expectation over the distribution of x, we
have the following.

Proposition D.1. Ex[‖x‖2x] =
∑

i∈[d] λiui.

Proof. Recall that if we sample w according to the dis-
tribution N d(0, 1), then for any u ∈ Rd, we have
Ew[(u

>w)2] = ‖u‖2, where Ew[·] denotes the expectation
over w. Then we have

Ew[T (Id, w, w)] =
∑
i∈[d]

λiEw

[(
u>
i w
)2]

ui =
∑
i∈[d]

λiui,

as ‖ui‖2 = 1. On the other hand, from the assumption that

T = Ex[x⊗ x⊗ x], we also have

Ew[T (Id, w, w)] = Ew

[
Ex

[(
x>w

)2
x
]]

= Ex

[
Ew

[(
x>w

)2
x
]]

= Ex

[
‖x‖2x

]
.

The proposition follows by combining these two equalities.

This suggests us to take w̄ = 1
L

∑L
τ=1(‖xτ‖2xτ ), for some

L to be determined next. This is because for any i ∈ [k],
the random variable zτ = u>

i (‖xτ‖2xτ ) falls in [−1, 1] and
has expected value

E[zτ ] = u>
i

∑
i∈[d]

λiui = λi

for each τ , so that for δ = 1
4 (λiγ + 2∆),

Pr
[∣∣u>

i w̄ − λi

∣∣ > δ
]
= Pr

[∣∣∣∣∣ 1L
L∑

τ=1

zτ − λi

∣∣∣∣∣ > δ

]
which by Hoeffding inequality is at most

2−Ω
(
δ2L

)
≤ 1

100k

for some L = O( 1
δ2 ) = O( 1

∆2 log k). Then by a union
bound, with probability 0.99 we have w̄ satisfying |u>

i w̄−
λi| ≤ δ for every i ∈ [k]. As w̄ can clearly be computed in
O(d) space, the lemma follows.

D.2. Proof of Lemma 8

The streaming algorithm for this lemma can be found in the
initialization phase of our Algorithm 2, which is based on
that of Li et al. (2016).

Recall that Li et al. (2016) considered the matrix case,
in which each vector xτ in the stream has the expecta-
tion E[xτ ⊗ xτ ] = M for some d × d matrix M to
be decomposed. To apply their result, let us make the
connection by seeing T (Id, Id, w̄) as their matrix M and
Mτ = g(xτ )(Id, Id, w̄) = (x>

τ w̄) · xτ ⊗ xτ as their esti-
mator xτ ⊗ xτ , by noting that

E[Mτ ] = E[g(xτ )(Id, Id, w̄)] = E[g(xτ )](Id, Id, w̄) = M.

Since ‖w̄‖ ≤ 1, ‖Mτ‖ ≤ ‖w̄‖‖xτ‖3 ≤ 1, and ‖M‖ ≤
‖T‖‖w̄‖ ≤ 1, we have

‖Mτ −M‖ ≤ ‖Mτ‖+ ‖M‖ ≤ 2.

Thus, we have from the matrix Bernstein inequality
(Lemma A.4) that

Pr

[∥∥∥∥∥ 1

|B|
∑
τ∈B

Mτ −M

∥∥∥∥∥ ≥ δ

]
≤ 2d2−Ω(δ2|B|),
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for any block B of time steps, and this allows us to apply
the analysis of (Li et al., 2016).

Following (Li et al., 2016), we use the parameters

εs = ε0ρ
s and βs = min

{
ρ/
√
1 + ε2s−1, ρεs−1

}
,

with ε0 =
√
dk

α0
for a small enough constant α0, and divide

the time steps into S = O( 1γ log d) blocks, with the s’th
block Bs having size

|Bs| ≤
c0 log(ds)

∆4β2
s

, (6)

for a large enough constant c0. Then according to the anal-
ysis in (Li et al., 2016) together with that in our proof of
Lemma 4, one can show that tanm(Z(s)) ≤ εs for every
s ≤ S, so that we can have tanm(Z(S)) ≤ 1, for ev-
ery m ∈ [k]. Moreover, from the analysis in (Li et al.,
2016), we know that the number of samples needed can be
bounded by

S∑
s=1

|Bs| ≤ O
(
ε20 log(dS)

∆4γ

)
= O

(
dk log(dS)

∆4γ

)
.

Finally, note that for each update, the matrix product
MτZ

(s−1) equals (x>
τ w̄)xτx

>
τ Z

(s−1), which can be com-
puted in O(kd) space. Thus, the algorithm works in O(kd)
space, and the lemma follows.

D.3. Proof of Theorem 4

According to Lemma 7 and Lemma 8, let us assume that
we have obtained some Z ∈ Rd×k such that tanm(Z) < 1
for every m ∈ [k]. Now let us focus on the tensor power
phase.

Consider a fixed iteration t. We would like to show that
tanm(Q(t)) ≤ βt with high probability, using Lemma 1.
For this, we need to show that the condition (3) there is
satisfied with high probability. For j ∈ [k], let qj denote
Q

(t−1)
j , and recall that Φ̂(t)

j = Φ(Id, qj , qj), which now
equals

1

|Jt|
∑
τ∈Jt

(
x>
τ qj
)2

xτ − T (Id, qj , qj) .

Let Φ̂(t) be the d × k matrix with Φ̂
(t)
j as its j’th column.

Then we have the following.
Lemma D.1. ‖Φ̂(t)‖ > ∆βt

2 with probability at most 1
200t2 .

Proof. Let us see Φ̂(t) as the average of |Jt| i.i.d. random
matrices, so that we can apply the matrix Bernstein inequal-
ity (Lemma A.4). More precisely, for τ ∈ Jt, let Aτ denote
the d× k matrix with(

x>
τ qj
)2

xτ − T (Id, qj , qj)

as its j’th column, so that Φ̂(t) = 1
|Jt|
∑

τ∈Jt
Aτ . Note that

we have E[Aτ ] = 0 for each τ , because

E
[(
x>
τ qj
)2

xτ

]
= E [(xτ ⊗ xτ ⊗ xτ ) (Id, qj , qj)]

= (E [xτ ⊗ xτ ⊗ xτ ]) (Id, qj , qj)

= T (Id, qj , qj) .

Moreover, we claim that ‖Aτ‖ ≤ 2. This is because for any
v = (v1, . . . , vk) ∈ Rk with ‖v‖ = 1, ‖Aτv‖ is at most∥∥∥∥∥∥

∑
j∈[k]

vj
(
x>
τ qj
)2

xτ

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
j∈[k]

vjT (Id, qj , qj)

∥∥∥∥∥∥
where the first term above is at most∑

j∈[k]

|vj |
(
x>
τ qj
)2 ‖xτ‖ ≤

∑
j∈[k]

(
x>
τ qj
)2 ≤ ‖xτ‖ ≤ 1

as the qj’s are orthonormal, while the second term above is∥∥∥∥∥∥
∑
j∈[k]

vj
∑
i∈[d]

λi

(
u>
i qj
)2

ui

∥∥∥∥∥∥
which can be upper-bounded by

∑
i∈[d]

λi

∥∥∥∥∥∥
∑
j∈[k]

vj
(
u>
i qj
)2

ui

∥∥∥∥∥∥ ≤
∑
i∈[d]

λi ≤ 1

using a similar argument and the assumption that∑
i∈[d] λi ≤ 1. Then we can apply Lemma A.4, and con-

clude that

Pr

[∥∥∥∥∥ 1

|Jt|
∑
τ∈Jt

Aτ

∥∥∥∥∥ >
∆βt

2

]
≤ 1

200t2

for our choice of |Jt|.

Note that ‖Φ̂(t)
[m]‖ ≤ ‖Φ̂(t)‖ for any m ∈ [k], and recall that

we start with cos2m(Q(0)) = 1
tan2

m(Q(0))+1
≥ 1

2 . There-
fore, given this lemma, we can then apply Lemma 1 re-
peatedly and a simple induction shows that the probabil-
ity that tanm(Q(t)) > βt for some m and t is at most∑

t
1

200t2 ≤ 0.01. Thus, with high probability we have
tanm(Q(t)) ≤ βt for every m and t. Let N be the number
such that βt >

ε
2 for t ≤ N − 2 and β = ε

2 for t ≥ N − 1.
Note that

N = O

(
log

log 1
ε

log 1
ρ

)
= O

(
log

(
1

γ
log

1

ε

))
,

and recall from the proof of Theorem 2 that from Q(N) we
can obtain the required ûi’s and λ̂i’s.
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It remains to bound the number of samples needed in this
phase, which is

N∑
t=1

|Jt| ≤ O
(
log(dN)

∆2

) N∑
t=1

1

β2
t

.

As βt = max{ρ2t−1, ε
2}, we have βt =

ε
2 for t ≥ N − 1

and βt = βN−2ρ
2t−2N−2 ≥ ε

2ρ
2t−2N−2

for t ≤ N − 2.
Therefore,

N∑
t=1

1

β2
t

≤ 8

ε2
+

4

ε2

N−2∑
t=1

ρ2(2
N−2−2t) ≤ O

(
1

ε2(1− ρ4)

)
,

where 1
1−ρ4 = 1+ρ4

1−ρ8 ≤ 2
1−ρ8 and 1 − ρ8 = 1 −

maxi∈[k]
λ2
i+1

λ2
i

= mini∈[k]
λ2
i−λ2

i+1

λ2
i

= γ. As a result, we
have

N∑
t=1

|Jt| ≤ O
(
log(dN)

∆2γε2

)
.

Combining this with the number of samples for the initial-
ization phase, including that for finding w̄, we have the
stated sample complexity bound of the theorem.
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