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1. Supplementary materials
1.1. the proof for Theorem 1

Proof. At first we denote the underlying cost function of
GPIS as fi(x):

for t = 0, we have the cost function of the classical sketch
(CS):

1
fi(@) := 5|y — SAzl3, (1

fort = 1,2, ..., N we have the the cost function of Iterative
Hessian Sketch (IHS):

fiw) = 518 A — 2 — maT ATy — Axt), @)

and then we denote the optimal solution of f; constrained
to set K as 2t and [|rl,, [|2 = [lzf,, — x!||2 have:

Irisalle = 25y — 2ill2 = [1Pic(af =V F(2:)) - xi(ll;)
then we denote cone C; to be the smallest close cone at !
containing the set K — z!, again because of the distance
preservation of translation by Lemma 6.3 of (Oymak et al.,
2015), we have:

17f 1 ll2 = 1Pr—at (2 = 0V f(25) — 282

= sup {UT(a:i T ,qu(xl))} , S
vECNBY

then because of the optimality condition on the constrained
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LS solution %, we have:

rflla=sup {o"(z; —af —nV (i)}
veCNBI
< sup {o" (@i —al — V(@) + " VI())}
veCNBd
= sup {v” (2 — %) =" (Vf(z:) - VF(2))}
vECNBI
= sup {vT(I—-nATSTSA)!}
veCNBe
< sup {vT(I — nATSTSA)u} 7|2
u,veC:NBY
< sup {UT(I — nATSTSA)u} 7|2,
u,veEB
4)
We denote:
o = sup vl (I —nATSTSA)u, (6)
w,veB
then by recursive subsitution we have:
It llz < agllrgllz, @)

and suppose we run GPIHS inner loop k; time, we have:

k
7k 1ll2 < {ae}™ gl ®)

and we transfer it in terms of A-norm:

/L
Ik, alla < {ae}™ ;HTBIIA- ©)

From the main theorems of the Classical sketch (Pilanci &
Wainwright, 2015) and Iterative Hessian Sketch (Pilanci &
Wainwright, 2016) we have following relationships:

25 — 2*[la < 2p0l|Ax* —yll2 = 2pollefl,  (10)

and,
28 — 2*]|a < pellzh — z* | a. (11)

Then by triangle inequality we have:
lzg — a*lla < llzg = 22lla +2p0llell2,  (12)
and,

leg™ = a*lla < llog™ = allla + pellag — 2*[la. (13)
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Then for ¢ = 0 we can have:

lzg — 2*lla < llzg — 2214 + 2p0]lell2

L

ke

<o}y Ellwg —allla+ 2polle2,
(14)

fort =1,2,..., N we have:
(B

< llwg = 2i7 a + pellag ' —2¥(|a

L. _
< {an}™ \/p\lxé ¥

+pelleg = 2*[la

< {{at}k‘ ((1 +pt)\/5> +Pt} lzg™" = a*]la,

15)
The last inequality holds because:
log" = 2y, lla < llog™" — a*[la+ |27 — 2¥[|a

<{1+p} g —a*la,
(16)
Then we denote:

o = (o)™ ((1 m)ﬁ) o (D)

and do recursive substitution we can have:

N
lzg — 2|4 < {HPI} lzg = 2*|la. (18)
t=1
hence we finish the proof of Theorem 1. O

1.2. The proofs for Theorem 2 and 3

Proof. From the theory of the Classical sketch and Iterative
Hessian Sketch we have following relationships:

20 — 2*]|a < 2p0|Az* —yll2 = 2pollells,  (19)

and,
2} — 2*||la < pellzh — 27| a (20)

Then by triangle inequality we have:
lzg — 2|4 < llwg — @2lla + 2pollell, @D
and,

leg™ = a*lla < llog™ = allla + pellag — 2*[la- (22)

The remaining task of this proof is just bound the term
25T — 2L || 4 for both GPIS and Acc-GPIS algorithm and

then chain it. For all the sketched objective function f;(z) ,
t=0,1,..., N, and any pair of vectors z, z’ € K we have:

fe(z) = fe(z')= < Vfola)),x — 2 >=[|S* Az — )3

(23)
If we set 2’ = at, by first order optimality condition we
immediately have:

felx) = folal) > 18" Az — 2|3

¢ Al —z) t 2
1S m” (. —z)2l3 (24)

> inf Stoll2 Y e — 2812
- {verange(A)mSn1|| ”2 H *HA;

so we have:

fi(z) — fi(al)

infvETange(A)ﬂS"*1 ||StU||2 7

lo —ailla <

(25)

From the convergence theory in (Beck & Teboulle, 2009)
which the authors in their Remark 2.1 have stated to hold
for convex constrained sets, for GPIS inner iterates we
have:

BLRSUPycrange(a)nsn—1 15" ]|3

2k ’
(26)

fo(zr) = fe(a) <
and for Acc-GPIS inner loop we have:

QﬂLRsupv range(A)NSn—1 ”SthQ
felwr) = folal) < Erange(A)n 2

(k+1)2 ’
27
hence for GPIS:
Lo:R
26" = lla < 52;7 (28)
for Acc-GPIS,
26LoR
oGt —alfla < m» (29)

Then by simply towering the inequalities we shall obtain
the desired results in Theorem 2 and 3. O

1.3. The proofs for quantitative bounds of o, p; and o,
for Gaussian sketches

To prove the results in Proposition 1, 2 and 3 we need the
following concentration lemmas as pillars:

Lemma 1. For any g € RY, we have:

sup ng:maX{O7 sup uTg} 30)

veCNB4 ueCnsd—1
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Proof. By the definition of cone projection operator we
have:

sup v’ g =|[Pe(g))2 >0 31)
veECNBI

if sup,cenpa v1g > 0:

T UTQ T
sup v’ g = sup HDHQWS sup u' g, (32)

veCNB veCNB ueCNSd—1

and meanwhile since C N S¢~! € C N B we have:

sup v'g> sup u'y, (33)
veCnBd ueCnSd—1
hence we have:
sup v'g= sup wu'y, (34)
veCnBd ueCnSd—1
O

Lemma 2. [f'sup, ,ccnpa v Mu > 0, we have:

sup v Mu= sup vl Mu (35)

u,veCNBI u,veCNSI—1

Proof. Since u,v € C N BY, ||ul|2 and ||v||2 are both less
than or equal to 1, we can have the following upper bound:

vT Mu

sup v"Mu = sup (———)[[vll2]|ull2
w,vECNBI u,vECNBI lvll2|u|l2
< sup vl Mu,
u,veCNSd—1

and meanwhile since C NS4t € C N B we have:

sup v Mu > sup vl Mu, (36)
u,v€ECNBI u,veCNSI—1
hence we have:
T _ T
sup v Mu= sup v Mu (37)
u,veECNBI u,veECNSI—1
O

Lemma 3. If the entries of the sketching matrix S is i.i.d
drawn from Normal distribution and v € C, we have:

[1SAv]l2 = ir(bm =W = O)[[v]]2, (38)

1SAv[l2 < VL(by +W + 0)[[0]|2, (39)

ey
V2

with probability at least 1 — e_%. (b, =
Vm, W= W(ACNS* 1))

Proof. This Lemma follows the result of the simplified
form of the Gordon’s Lemma [Lemma 6.7](Oymak et al.,
2015):

ISAv|2 > (bm—W(ACﬂS"_l) — 0)]|Av||2
> Hlbn — WAC NS = 0) ]
||SAv||2 (b +W(ACHS”‘1) + 0)|| Av]|2

<
< VEL(by + W(ACNS™Y) +6)||v]|2

O

1.3.1. THE PROOF FOR PROPOSITION 1

Proof. Let’s mark out the feasible region of the step-size 7:

a(n, S*A)
= sup v (I —nATSTSA)w
u,veBd
> sup v (I —nATSTSA)ww
veBd
= sup (|[v]|5 — [l SAv3)
veB
> sup (1= nL(bm + Vd + 6 — ¢)*)|[0]3),
veBd
. . 1
so if we choose a step size n < m we can en-
)

sure that with probability 1 — e~ 2 (e > 0) we have
a(n, StA) > 0 and the Lemma 2 become applicable:

a(n, S'A)
= sup vI(I—-nATSTSA)u
w,veEB
=  sup oI (I—-nATSTSA)wu
w,veSd—1
1
= sup  ~[(u+4v)T(I —nATSTSA)(u+ v)
w,veSd—1 4
—(u—v)T(I —nATSTSA)(u — v)]
1
= sup flutof; —nlSA(u+ o)
u,veESI—1

—llu =3 +nlSA(u - v)|3]

1
sup 2 [(1 = nu(bm — Vd—6)%)|u+ 0|3
u,veSI—1

+ (L (b + Vd +0)* — 1) |u — v|3]
The last line of inquality holds with probability at least 1 —
2

IN

2e~ T according to Lemma 3. Then since we have set 7 <

1 . .
FACRv- sl and meanwhile notice the fact that ||Ju +

v||3 < 4 we have:

a(n, S'A)
1
< sup (1 — (b — Vd — 0)?||lu + v|3
u,veSd—1 4
< (1= nulbm — Vd—0)?)
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If we chose n = we have:

S S
L(bpm+Vd+6)2

oz(n,StA) < (1 _ Z%—M) ’ (40)

(b + Vd + 6)2

Then let e — 0, we shall get the result shown in Proposition
1. O

1.3.2. THE PROOF FOR PROPOSITION 2

Proof. Recall that p, is defined as:

T(1 atT ot
SUP,cacnsn-1 U (575" ' — 1)z

p(S' A) = , (41

inf,cacnsn—1 %Hst””%

we start by lower-bounding the denominator, by simplified
Gordon’s lemma [Lemma 6.7](Oymak et al., 2015) we di-
rectly have:

1 by, — W — 6)?
inf  —||Sv|% > M, (42)
vEACNS"—1 M m

with probability at least (1 — % ).Then we move to the

upper bound for the numerator:

tT at
ol (SmS —I> z

= e+ EE ey
T gt (43)
~w-" w2

1.1
= 1S @+ )l o+ 21

1
+ v =zl = —[15*(v = 2) 12}

and,

WACNS" —2)=E,( sup ¢ (v—2))
veACns—1
=Ey(g"z+ sup  w'g) (44)
veACNS—1

= W(ACNS™)

hence we have the following by [Lemma 6.8](Oymak et al.,
2015):

tT ot
T <S S —I)z
m

1
{m(bm||v+z||g +W+0) — |v+z|§}

1
{ar ol = sl + w462~ o - 212}

1[0 2, (W + 0)
=1 { - v a1+ 22 o,

lo—zll2 ¢,
(45)
02

with probability at least (1 —8e~ 5 ). Note that ||v+ z||2 +
lv— 2|2 < 2v2and ||v + 2|3 + |Jv — 2|3 < 4, we have:

tT qt
ol (S 5 —I)z
m

_ 2
USRS TE TAL

1 b2, 5 2b,(W+0)
T {(1 - E)HU —zllz + o

- m 4
2b,, (W + 0 b2
m m
thus finishes the proof. O

1.3.3. THE PROOF FOR PROPOSITION 3

Proof. Recall that o is defined as:

t 2
o(SH A) = S,querange(A)ﬂS”*l [S*vll3

1nfv6range(A)F‘lS"_1 ||Stq}||% ,

(47)

by simply apply again the Gordon’s lemma [Lemma
6.7](Oymak et al., 2015), with W(AS*~1) < v/d, we with
obtain the upper bound on the numerator:

sup 1S™|13 < (b + Vd+0)%,  (48)

vErange(A)NSr—1
and the lower bound:

inf 15%]|3 > (b — Vd —0)?,  (49)

vErange(A)NSn—1
both with probability at least 1 — ¢~ . 0

1.4. Details of the implementation of algorithms and
numerical experiments

For our GPIS and Acc-GPIS algorithms, we have several

key points of implemenations:

o Count sketch

As described in the main text.
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e Line search

We implement the line-search scheme given by (Nes-
terov, 2007) and is described by Algorithm 3 for GPIS
and Acc-GPIS in our experiments with parameters
Yu = 2, and 74 = 2. Such choice of line-search pa-
rameters simply means: when even we find the con-
dition f;(Pxc(x; — nV fi(x;))) < my does not hold,
we shrink the step size by a factor of 2; and then at the
beginning of each iteration, we increase the step size
chosen at previous iteration by a factor of 2, then do
backtracking again. Hence our methods are able to en-
sure we use an aggressive step size safely in each iter-
ation. This is an important advantage of the sketched
gradient method since we observe that for stochas-
tic gradient such as SAGA a heuristic backtracking
method similar to Algorithm 3 may work but it will
demand a very small v4 (tends to 1) otherwise SAGA
may go unstable, and an aggressive choice like our
Y4 = 2 is unacceptable for SAGA. (Hence we suspect
that SAGA is unlikely to be able to benefit computa-
tional gains from line-search as our method does.)

e Gradient restart for Acc-GPIS

(O’Donoghue & Candes, 2015) has proposed two
heuristic adaptive restart schemes - gradient restart
and function restart for the accelerated gradient meth-
ods and have shown significant improvements without
the need of the knowledge of the functional parame-
ters v and L. Such restart methods are directly appli-
cable for the Acc-GPIS by nature due to its sketched
deterministic iterations. Here we choose the gradient
restart since it achieves comparable performance in
practice as function restart but cost only O(d) opera-
tions.

1.4.1. PROCEDURE TO GENERATE SYNTHETIC DATA
SETS

The procedure we used to generate a constrained least-
square problem sized n by 100 with approximately s-sparse
solution and a condition number &« strictly follows:

1) Generate a random matrix A sized n by 100 with i.i.d
entries drawn from N(0, 1).

2) Calculate A’s SVD: A = UX VT and replace the singu-
lar values diag(X); by a sequence:

diag(%); = diag(%)i—1 (50)

=

3) Generate the “ground truth” vector x4 sized 100 by
1 randomly with only s non-zero entries in a orthongo-
nal transformed domain ®, and calculate the [; norm of it
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Figure 1. Experimental results on the average choices of GPIS’s
step sizes given by line-search scheme (Nesterov, 2013)

Table 1. Synthetic data set for step size experiment

DATA SET SIZE s @

SYN4 (20000, 100) - I

(r = ||®x4||1). Hence the constrained set can be described
as K = {z : | Pzx||1 < r}.

4) Generate a random error vector w with i.i.d entries such
that 14%scllz 10,

llwll2

5)Sety = Axge +w

1.4.2. EXTRA EXPERIMENT FOR STEP SIZE CHOICE

We explore the step size choices the GPIS algorithm pro-
duce through using the line-search scheme with respect to
different sparsity level of the solution. The result we shown
is the average of 50 random trials.

The result of the step-size simulation demonstrates that the
step sizes chosen on average by the line-search scheme for
the GPIS algorithm is actually related with the sparsity of
the ground truth x,: at a regime when the x4 is sparse
enough, the step size one can achieve goes up rapidly w.r.t
the sparsity. While in our Proposition 2 we revealed that
the outerloop of GPIS/Acc-GPIS can benefit from the con-
strained set, and here surprisingly we also find out numer-
ically that the inner loop’s can also benefit from the con-
strained set by aggressively choosing the large step sizes.
Such a result echos the analysis of the PGD algorithm on
constrained Least-squares with a Gaussian map A (Oymak
et al., 2015). Further experiments and theoretical analysis
of such greedy step sizes for sketched gradients and full
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gradients on general maps is of great interest and will go
beyond the state of the art analysis for convex optimization.
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