Gradient Coding

7. Appendix - Proofs
7.1. Proof of Lemma 1

By Condition 1, we know that for any I C [n], |I| = n — s, we have 1 € span{b; | € I'}. In other words, there exists
atleast one € R(™~*) such that:
zB(I,:)=1 a1

Therefore, by construction, we have: AB = 1(n) and the scheme (A, B) is robust to any s stragglers.

s

xXn’

7.2. Proof of Theorem 1

Consider any scheme (4, B) robust to any s stragglers, with B € R"**_ Now, construct a bipartite graph between n

workers, {W7y, ..., W,}, and k partitions, { P\, ..., Py}, where we add an edge (i, j) if worker ¢ and partition j is worker ¢
has access to partition j. In other words, for any i € [n],j € [k]:
1 ifB(i,j) £0
- 12
€ {0 otherwise (12)

Now, it is easy to see that the degree of the i*" worker W is ||b; ] ,-

Also, for any partition P}, its degree must be at least (s + 1). If its degree is s or less, then consider the scenario where all
its neighbors are stragglers. In this case, there is no non-straggler worker with access to P;, which contradicts robustness to
any s stragglers.

Based on the above discussion, and using the fact that the sum of degrees of the workers in the bipartite graph must be the
same as the sum of degrees of partitions, we get:

n

> " lbillg > k(s + 1) (13)

i=1
Since we assume all workers get access to the same number of partitions, this gives:

k 1
ille = FEED  forany i € (14)

7.3. Proof of Theorem 2
Consider groups of partitions {G'1, ..., G, /(s+1)} as follows:

Gi={P1,...,Ps1}
Go = {Psy2,..., Pasio}

: (15)
Gn/(s+1) = {Pn—s»--wpn} (16)

Fix some set I C [n], |[I| = n — s. Based on our construction, it is easy to observe that for any group G, there exists some
index in I, say ig, € I, such that the corresponding row in B, bi% has all 1s at partitions in G; and Os elsewhere. This is

because there are (s + 1) rows of B that correspond in this way to G; (one in each block E,lock), and so atleast one would
survive in the set I of cardinality (n — s). Now, it is trivial to sec that:

1 ESpan{biG]_ li=1,...,n/(s+1)} (17

Also, since

Span{bicj ] =1,... ,TL/(S + 1)} c Span{bi "L € [}7 (13)
we have 1 € span{b; | i € I}.

Finally, since the above holds for any set I, we get that B satisfies Condition 1. The remainder of the theorem follows from
Lemma 1.
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7.4. Proof of Theorem 3
Consider the subspace given by the null space of the random matrix matrix H (constructed in Algorithm 2):
S={xeR"|Hzx =0} (19)

Note that H has (n — 1)s different random values (s for each column), since its last column is simply the negative sum of
its previous (n — 1) columns. Now, we have the following Lemma listing some properties of H and S.

Lemma 2. Consider H € R***"™ as constructed in Algorithm 2, and the subspace S as defined in Eq. ??. Then, the
following hold:

e Any s columns of H are linearly independent with probability 1
e dim(S) =n — s with probability 1

e 1 € S, where 1 is the all-ones vector

For i € [n], let S; denote the set S; = {i mod n, (i +1) mod n,...,(i +s) mod n}. Then, S; corresponds to the
support of the i* row of B in our construction, as also given by the support structure in Eq. (10).

Recall that we denote the i*" row of B by b;. By our construction, we have:
bi(i) =1
bi(Si \ {i}) = _Hgil\{i}Hi (20)

Now, we have the following lemma;

Lemma 3. Consider the i'" row of B constructed using Algorithm 2 (also shown in Eq. ??). Then,

e b, es
o Every element of b;(S; \ {i}) is non-zero with probability 1

e For any subset I C [n],

I| = n — s, the set of vectors {b; | i € 1} is linearly independent with probability 1

Now, using Lemma ??, we can conclude that for any subset I C [n], |I| = n — s, dim (span{b; |i € [}) = n — s and
span{b; | i € I} C S. Consequently, from Lemma ??, since dim(S) = n — s and 1 € S, this implies that:

span{b; | i € I} = S with probability 1 (21

and, 1 € span{b; |i € I}. Taking union bound over every I shows that B satisfies Condition 1. The remainder of the
theorem follows from Lemma 1.

7.4.1. PROOF OF LEMMA ??

Consider any subset I C n, |I| = s such that n ¢ I. Then, all the elements of H; are independent, and det(H) is a
polynomial in the elements of ;. Consequently, since every element is drawn from a continuous probability distribution
(in particular, gaussian), the set { Hy | det(H) = 0} is a zero measure set. So, P (det(Hy) # 0) = 1, and thus the columns
of Hj are linearly independent with probability 1.

If n € I, then we have:

det(Hy) = det(H) (22)

where we let H = [H N{n}s — Zie[n]\ 1 H i] . The elements of H are independent, so using the same argument as above, we

again have P(det(H) = det(H) # 0) = 1. Finally, taking a union bound over all sets I of cardinality s shows that any s
columns of H are linearly independent.

Since any s columns in H are linearly independent, this implies that rank(H) = s. Since the subspace S is simply the null
space of H, we have dim(S) =n — s.

Finally, since H,, = — > i€fn—1] H; (by construction), we have H1 = 0 and thus 1 € S.



Gradient Coding

7.4.2. PROOF OF LEMMA ??

By construction of b;, we have:
Hb;, = H; + Hs,\{z'}bz‘(sz' \{i}))=H;,—H;=0 23)

Thus, b; € S.
Now, if possible, let for some k € S; \ {i}, b;(k) = 0. Then, since b; € .S, we have:

Hb; = H; + Hg\ (513 bi(S: \ {3, k}) =0 24

Consequently, the set of columns {j | j € S; \ {7, k}} U {i} is linearly dependent which contradicts H having any s columns
being linearly independent (in Lemma ??). Therefore, we must have every element of b;(.S; \ {7}) being non-zero.

Now, consider any subset I C [n],|I| = n — s. We shall show that the matrix By (corresponding to the rows of B with
indices in ) has rank n — s with probability 1. Consequently, the set of vectors {b; | i € I} would be linearly independent.
To show this, we consider some n — s columns of By, say given by the set J C [n], |J| = n — s, and denote the sub-matrix
of columns by By ;. Then, it suffices to show that det(B; ;) # 0. Now, by the construction in Algorithm 2, we have:
det(By, ;) = poly, (H)/poly,(H), for some polynomials poly, () and poly,(-) in the entries of H. Therefore, if we can
show that there exists at least one H’ with H'1 = 0 and poly, (H’)/poly,(H") # 0, then under a choice of i.i.d. standard
gaussian entries of H, we would have:

P (poly, (H)/poly,(H) # 0) = 1 (25)

The remainder of this proof is dedicated to showing that such an H’ exists. To show this, we shall consider a matrix
B € R"™5%" guch that supp(é) supp(B 1) and det(B; ;) # 0, where B. .J corresponds to the sub-matrix of B with
columns in the set .J. Given such a B we shall show that there exists an s x n matrix H' (with H'1 = 0) such that when
we run Algorithm 2 with this H’, we get a matrix B’ s.t. B} = B i.e. the output matrix from Algorithm 2 is identical to our
random choice B on the rows in the set . This suffices to show the existence of an H’ such that poly, (H")/poly,(H') # 0,
since poly, (H') /polyy(H') = det(B} ;) = det(By) # 0.

Let us pick a random matrix B as:
B=DBjD (26)

where B7 is a matrix with the same support as By and with each non-zero entry i.i.d. standard gaussian, and D is a diagonal
matrix such that D;; = Z;:f B’ (j4,1), i € [n]. Note that a consequence of the above choice of B is that the sum of all its
rows is the all 1s vector. Now, it can be shown that any (n — s) columns of B form an invertible sub-matrix with probability

1. Let S; be the support of the i*” row of B. The rows of BT have the supports S;,% € I. Now because of the cyclic support
structure in B, any collection {i1,i2,...,i;}(0 < k < n — s) satisfies the property:

bS5, > s+ k 27)

Using Lemma 4 in (?), this implies that there is a perfect matching between the rows of B} and any of its (n — s) columns .
Consequently, with probability 1, any (n — s) columns of Bj form an invertible sub-matrix. Also, since every column of
B7 contains atleast one non-zero (again, owing to the support structure of B), this implies that with probability 1, all the

diagonal entries of D are non-zero. Combining the above two observations, we can infer that any (n — s) columns of B
form an invertible sub-matrix with probability 1.

So far, we have shown existence of a matrix B with the following properties: (i) B has the same support structure as By, (ii)
any (n — s) columns of B form invertible sub-matrix, (iii) the sum of all rows of B3 is the all 1s vector. Now, for any such
B, we shall show that there exists an H’ such that H'B” = 0 such that any s columns of H' form an invertible sub-matrix.
This implies that when we run Algorithm 2 with this H’, the output matrix would be the same as B on the rows in the set 1.
The remainder of the proof then follows from our earlier discussion.

Now, consider any set @ C [n], |Q| < s. Suppose we pick any invertible H’ ;,, and set H:’{n]\Q = _H:/,QETQ(ET[n]\Q)_l'

Then, such an H' satisfies H 'BT — ( and its columns in the set () form an invertible sub-matrix. Now, since invertibility
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on the set ) simply corresponds to det(H ’Q) # 0 (i.e. some fixed polynomial being non-zero), if we actually picked a

uniformly random H’ on the subspace H’ BT =0, then
P (det(H:"Q) £0|H'BY = 0) —1 (28)
Taking a union bound over all (s, we get that

P (any s columns of H' form an invertible sub-matrix | H'B” = O) =1 (29)

Thus, there exists an H' satisfying H 'BT = 0 with any s of its columns forming an invertible sub-matrix. Also, since the
sum of all rows of B is 1, this implies H'1 = 0.



