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1 Non-linear Activation Functions
By definition,

def exp(t) — exp(—t)
PR cplt) o)’

and

exp(t) + exp(—t)
It is easy to verify that

sech?(t) = [1 + tanh(t)] [1 — tanh(t)] = 1 — tanh?(t).
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By eq. (1),

exp(t) + exp(—t) _exp(t) — exp(~1)

tant! () = exp(t) +exp(—t)  [exp(t) + exp(—t)]? [exp(t) - exp(~2)
_ lexp(t) + exp(—)° — [exp(t) — exp(-)]* _ 4 _ sech2({)
lexp(t) + exp(—t)]” lexp(t) + exp(—1)]”

By definition,

; def 1
sigm(t) = pra——
Therefore
iom’ (1) = — 1 __(—exp(— :—exp(—t) = sigm —si
signl () =~ (o) = 7 P — sign() 1 signlt)].

A smoothed version of the relu function is given by

t t
relu,(t) f oln (exp <L) + exp <>) ,
w w

where w > 0 and 0 < ¢ < 1. Then,

1 L 1t 1 t

elu (1) =w e +—e
relu/ (t) = —exp | — —exp | —
v exp (4) +exp (L) \w Plw w PG

exp (1)
e+ L>exp (%) +exp (L)
+(1 !
= —
exp((t—1)L)+1
1-—
:L+(1—L)31gm( " Lt) (2)
By definition,
t ift>0
e“@—{a@@@_niu<o
Therefore
1 ift>0
elu'(t) = { aexp(t) ift<0. (3)

2 Examples of RFIMs

Table 1 shows a list of commonly used RFIMs, with detailed derivations given in the following
subsections.



Table 1: Commonly used RFIMs

Subsystem

the RFIM g¥(w)

A tanh neuron
A sigm neuron

A relu neuron
A elu neuron

A linear layer

A non-linear layer
A soft-max layer
Two layers

sech?(wTz)zzT

sign(wTz)[1 — sign(w )] zET

[t4 (1 —1)sigm (twT)] 2T
ifwTz >0

if wTez <0

&&T
{ (vexp(wT@))? EZT
diag[zZT, - ,ZZ7]
diag [vf(w1, B)EELT, -, V5 (W, T)ELT]
a dense matrix as shown in eq. (10)
a dense matrix as shown in eq. (12)

2.1 A Single tanh Neuron

Consider a neuron with parameters w and a Bernoulli output y € {+,—}, ply = +)

ply=—)=p~, and p* + p~ = 1. By the definition of RFIM, we have

v _ +6lnp+8lnp+ _Olnp~ dlnp~
g'(w) =p ow  OJwT ow  JwT
1 op* op* 1 Op~ Op~
T pt dw dwT | pm Ow dwT’

Since pt +p~ =1,

ot o _
ow  Ow
Therefore, the RFIM of a Bernoulli neuron has the general form
” 1 1\ Op™ Op™ 1 OpT Op*
g'(w)=|—+— ) 5— =
pt p ow OwT  ptp~ dw OwT
A single tanh neuron with stochastic output y € {—1,1} is given by
1 — pu(x
ply=-1)= 7; ),
1+ pu(x
ply=1) = 2( )

By eq. (4),

9% (w) =

1 1 du 1 Ju
Top(@) Tp(@) \ 29w ) \ 2 dwT
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An alternative analysis is given as follows. By egs. (5) to (7),

exp(—wTx)
exp(wTz) + exp(—wTx)’

exp(wT)

exp(wTZ) + exp(—wTx)’

Then,

~ JwdwT

. 8%lnp
9 (W) = Eyp(y | 2) ( (y)>

82
T OwowT
0 [exp(w
~ OwT |exp(w

In [exp(wT&) 4+ exp(—wT&)] (first linear term vanishes)

TZ) — exp(—wTZ) | _
= —~ |z
TE) + exp(—wTE)
0 N
= %tanh(uﬂm)a:

= sech?(wTa)EET.

The intuitive meaning of g¥(w) is a weighted covariance to emphasize such “informative” x’s
that

e are in the linear region of tanh
e contain “ambiguous” samples

We will need at least dim(w) samples to make g¥(w) full rank.

2.2 A Single sigm Neuron

A single sigm neuron is given by

ply=1) = p(z),
w(x) = sign(w'z)
By eq. (4),
o (w) = 1 Ip(y =1) dp(y = 1)
ply=0)p(y=1) Oow owT
1 ou Ou

(@)(1 = () dw dw
= %ﬂ(m))/ﬂ(@(l — p(x))*&ET
— p(@)(1 - p(x))zE"
=sign(w’®) [l — sign(wTE)] ZET.



2.3 A Single relu Neuron
Consider a single neuron with Gaussian output p(y |w, z) = G(y | u(w, z),?). Then

[9InG(y|p, 0®) dlnG(y|p,0°)
| ow owT

[0 1 0 1
p(y | w,z) 87w (‘202(21 - .U)2> JwT <—202(y - H)Qﬂ

r 2
1 ou Ou

p(y | w,z) <_O_2(;U' - y)> &an-r‘|

1 ) o O Ou
= ;Ep(y | w,x) (/.t - y) 671” AwT
1 op op
02 dw wT’
We set 0 =1 to get rid of a scale parameter of the RFIM. We get
On o
Ow dwT’

gy(w ‘ :B) = Ep(y|w,w)

9'(w|z) =
A single relu neuron is given by
w(w, ) = relu,(wTE).

By egs. (2) and (8),
g¥(w) = [L + (1 —¢)sigm (tbuﬂxﬂ i zxT.

2.4 A Single elu Neuron

Similar to the analysis in Subsec. 2.3, a single elu neuron is given by

wlw, ) = elu(wT).

By eq. (3),
o [ & if wTE >0
ow | aexp(wTz)z if wTE <O0.
By eq. (8),
) = &&T if wTE >0
I = (aexp(wT™@))? 387 if wTa < 0.

2.5 RFIM of a Linear Layer

Consider a linear layer
p(y) =G (y| W'z, 0°I),

where W = (w1,--- ,wp,). By the definition of the multivariate Gaussian distribution,

D,
1 D, 1
lnp(y):—§1n2ﬂ'— Y In o 2—2



Therefore,

Therefore,

0 1
1 —_— 1 = — P — T4 P T o~ i~ NT.
np(y) JuT np(y) = — (v — wi@) (y; —wjz) @

Vi, Vj

0
3wi
W is vectorized by stacking its columns {wi}lp:yl. In the following W will be used interchangeably

to denote either the matrix or its vector form. Correspondingly, the RFIM ¢¥(W') has D, x D,
blocks, where the off-diagonal blocks are

oy ) ) 1 N 1
Vi j, By (M lnp(y)wlnp(y)> = 1 Ep) [ —w]@) (y; - wja)] 227 =0,

J
and the diagonal blocks are

. 0 0 1 2 . -
" B <(‘3w MpY) 57 1“?“”) = By (i — w] @)’ 337 = — 53T,

In summary,
1
g¥(W) = —diagzT, - ,227].
o

By setting 0 = 1 we get
g¥ (W) = diag[zz™, - - ,227].

2.6 RFIM of a Non-Linear Layer

The statistical model of a non-linear layer with independent output units is

Dy
ply| W, z) =[] pyi | wi, ).
i=1
Then,
Dy
Inp(y|W,z) =Y Inp(y; | wi,z).
i=1
Therefore,
2
2 Fwgwr Py |wy, )
- ] w _
3W6WT Ilp(y| 739)

82
Fwn, 0wy, WPUD, |wp,, )

Therefore the RFIM ¢g¥(W) is a block-diagonal matrix, with the i’th block given by
2 82
B wa) | 5o gt PPWi Wi 2) | = =By i) | g0y e | wi @) |

which is simply the single neuron RFIM of the ¢’th neuron.



2.7 RFIM of a Softmax Layer
Recall that (w;)
) ) exp(w; &
Viel{l,---,m}, ply=1i)==m—— =

{ boooply=1i) ST exp(wid)
Then

Vi, Inp(y=1i)=w;& — lnz exp(w; ).
i=1
Hence ) -
Olnp(y =1i) _ 5158 — ixp(ij) _
ow; > oisq exp(w;x)

where 0;; = 1 if and only if ¢ = j and d;; = 0 otherwise. Then

Vi, Vj,

2 . A A
Vi, Vj, Vk, ML(?J_TZ) = ;1 exp(w; ) zxT exp(w; ) 5 exp(w,T)TTT
Ow;owy > iy exp(w;2) (> exp(w;x))
= (=0km; + mjnk) T (9)

The right-hand-side of eq. (9) does not depend on i. Therefore

(m —n})zxT  —mnxET - — NN EZT
—mEET (2 —03)TXT -~y TET
g*(W) = : : . : : (10)
N MEET =& ET - (1 — 12, TET

2.8 RFIM of Two layers

Consider a two layer structure, where the output y satisfies a multivariate Bernoulli distribution
with independent dimensions. By a similar analysis to Subsec. 2.1, we have

D,
: dc/h dclh
W) = vs(e,h) axlﬂv mé”. (11)

It can be written block by block as ¢g¥(W) = [Gij]thDh’ where each block G;; means the
correlation between the i’th hidden neuron with weights w; and the j’th hidden neuron with
weights w;. By eq. (11),

D
4 OcTh OcTh 607 hi Ocjih;
Gij = Z vi(e, h) == Zl/f O e

ow; 8w (“)wz (“)wj
D
Oh; Oh; ! . -
= ny cl, CleJla a T Zl/f(cl,h)cilcjl (Vf(wi,sc)w) (Vf(wj,w)a:T)
=1
Dy
= ZCilelVf(Cl,h)l/f(wi,SC)Vf(wj,:B)Ii:f:T. (12)

=1

The proof of the other case, where two relu layers have stochastic output y satisfying a
multivariate Gaussian distribution with independent dimensions, is very similar and is omitted.



3 Proof of Theorem 3

Proof. By assumption, the joint distribution p(x, h) is in a factorable form. Therefore

L
logp(a, h) = logp(h; |61, 71), (13)
=1

where [ = 1,--- , L is the index of subsystems, h; is the subsystem output, and r; is the reference
of the subsystem. We have Lﬂle{hl} = {x,h} and Lﬂle{ﬁl} = {©}. Therefore

9? 0
E, <_391<%’ZT log p(z, h)) = Ep (‘W log p(hy |9h7'l)>

; ))
=FEpir) | Ephy |7) | — 557771 h; 16,7
»( )( p(h | >( 06,007 ogp(hy |6, 7))
= Ep (ghl(gl)) 9
and

82
E,| ———=1 h)| =0 (Vi1 #1s).
p ( aallaelz ng(w7 )) ( 1 7& 2)

Based on the Hessian expression of RFIM, 7 (@) is in a block-diagonal form, with each block
given by E, (g™ (6,)). O

4 Experimental Settings & Zoomed Learning Curves

The training/validation/testing sets have 50,000/10,000/10,000 images, respectively. Each sam-
ple is a gray scale image of size 28 x 28 (784 dimensional feature space) and is labeled as one of
ten different classes. For all methods, the mini-batch size is fixed to 50 and the Ly regularization
strength is fixed to 1072, For each optimizer, we try to find the best learning rate in the range
{-++,1071,5%x1072,1072,5x 107,103, - - - }. On the tested architectures, a good learning rate
configuration for RNGD is usually around 1072 or 5 x 1073. The optimizers are in their default
settings in TensorFlow 1.0. For the Adam optimizer, 8; = 0.9, 82 = 0.999, ¢ = 10~8. For RNGD,
we set empirically 7' = 100, A = 0.005 and w = 1. We use the Glorot uniform initializer to set
the initial weights.

For each method and each learning rate configuration, we try 40 independent runs with
different random seeds. Then, we select the best configuration based on the validation accuracy.
Then, we plot the 40 learning curves as well as the average validation curve. The learning curves
are obtained by evaluating the training error and validation accuracy after each epoch (one pass
over all available training data).

See the following figs. (1-4) for the learning curves on four different architectures with relu
activation units and Lo regularization. Only the training curves and validation curves are shown
for a clear presentation. The testing accuracy is close to the validation accuracy (run our codes
to see the detailed results).
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Figure 1: A MLP with shape 784-80-80-80-10.
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Figure 2: A MLP with shape 784-80-80-80-10 and batch normalization after each hidden layer.
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Figure 3: A MLP with shape 784-100-100-100-10.
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Figure 4: A MLP with shape 784-100-100-100-10 and batch normalization after each hidden

layer.
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