
Optimal Densification for Fast and Accurate Minwise Hashing

A. Proofs
Theorem 5 Give any two finite sets S1, S2 ∈ Ω, with A =
|S1 ∪ S2| > a = |S1 ∩ S2| > 0 and |Ω| = D → ∞. The
limiting variance of the estimators from densification and
improved densification when k = D →∞ is given by:

lim
k→∞

V ar(h) =
a

A

[
A− a

A(A+ 1)

]
> 0 (15)

lim
k→∞

V ar(h+) =
a

A

[
3(A− 1) + (2A− 1)(a− 1)

2(A+ 1)(A− 1)
− a

A

]
> 0

(16)

Proof: When k = D, then Nemp = D − A. Substituting
this value in the variance formulas from (Shrivastava & Li,
2014c) and taking the limit as D = k → ∞, we get the
above expression after manipulation. When 0 < R = a

A <
1, they both are strictly positive. �

Theorem 6

Pr
(
h∗(S1) = h∗(S2)

)
=
|S1 ∩ S2|
|S1 ∩ S2|

= R (17)

V ar(h∗) =
R

k
+A

R

k2
+B

RR̄

k2
−R2 (18)

lim
k→∞

V ar(h∗) = 0 (19)

where Nemp is the number of simultaneous empty bins be-
tween S1 and S2 and the quantities A and B are given by

A = E
[
2Nemp +

Nemp(Nemp − 1)

k −Nemp

]

B = E
[
(k −Nemp)(k −Nemp − 1) + 2Nemp(k −Nemp − 1)

+
Nemp(Nemp − 1)(k −Nemp − 1)

k −Nemp

]

Proof:

The collision probability is easy using a simple observa-
tion that values coming from different bin numbers can
never match across S1 and S2, i.e. h∗i (Si) 6= h∗j (S2) if
i 6= j, as they have disjoint different range. So when-
ever, for a simultaneous empty bin i, i.e. Ei = 1, we get
h∗i (S1) = h∗i (S2) after reassignment, the value must be
coming from same non-empty bin, say numbers k which is
not not empty. Thus,

Pr(h∗i (S1) = h∗i (S2)) = Pr(h∗k(S1) = h∗k(S2)|Ek = 0) = R

The variance is little involved. From the collision probabil-
ity, we have the following is unbiased estimator.

R̂ =
1

k

k−1∑

j=0

1{h∗j (S1) = h∗j (S2)}. (20)

For variance, define the number of simultaneously empty
bins by

Nemp =
k−1∑

j=0

1{Ej = 1}, (21)

where 1 is the indicator function. We partition the event(
h∗j (S1) = h∗j (S2)

)
into two cases depending on Ej . Let

MN
j (Non-empty Match at j) and ME

j (Empty Match at
j) be the events defined as:

MN
j = 1{Ej = 0 and h∗j (S1) = h∗j (S2)} (22)

ME
j = 1{Ej = 1 and h∗j (S1) = h∗j (S2)} (23)

Note that, MN
j = 1 =⇒ ME

j = 0 and ME
j = 1 =⇒

MN
j = 0. From the LSH property of estimator we have

E(MN
j |Ej = 0) = E(ME

j |Ej = 1)

= E(ME
j +MN

j ) = R ∀j (24)

It is not difficult to show that,

E
(
MN
j M

N
i

∣∣i 6= j, Ej = 0 and Ei = 0
)

= RR̃,

where R̃ = a−1
f1+f2−a−1 . Using these new events, we have

R̂ =
1

k

k−1∑

j=0

[
ME
j +MN

j

]
(25)

We are interested in computing

V ar(R̂) = E





1

k

k−1∑

j=0

[
ME
j +MN

j

]



2

−R2 (26)

For notational convenience we will use m to denote the
event k − Nemp = m, i.e., the expression E(.|m) means
E(.|k−Nemp = m). To simplify the analysis, we will first
compute the conditional expectation

f(m) = E





1

k

k−1∑

j=0

[
ME
j +MN

j

]



2 ∣∣∣∣m


 (27)

By expansion and linearity of expectation, we obtain

k2f(m) = E


∑

i 6=j
MN
i M

N
j

∣∣∣∣m


+ E


∑

i6=j
MN
i M

E
j

∣∣∣∣m




+E


∑

i 6=j
ME
i M

E
j

∣∣∣∣m


+ E

[
k∑

i=1

[
(MN

j )2 + (ME
j )2

] ∣∣∣∣m
]
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MN
j = (MN

j )2 and ME
j = (ME

j )2 as they are indicator
functions and can only take values 0 and 1. Hence,

E



k−1∑

j=0

[
(MN

j )2 + (ME
j )2

] ∣∣∣∣m


 = kR (28)

The values of the first three terms are given by the follow-
ing 3 expression using simple binomial enpension and us-
ing the fact that we are dealing with indicator random vari-
able which can only take values 0 or 1.

E


∑

i 6=j
MN
i M

N
j

∣∣∣∣m


 = m(m− 1)RR̃ (29)

E


∑

i 6=j
MN
i M

E
j

∣∣∣∣m


 = 2m(k −m)

[
R

m
+

(m− 1)RR̃

m

]

(30)

Let p be the probability that two simultaneously empty bins
i and j finally picks the same non-empty bin for reassign-
ment. Then we have

E


∑

i 6=j
ME
i M

E
j

∣∣∣∣m


 = (k −m)(k −m− 1)

[
pR+ (1− p)RR̃

]

(31)

because with probability (1 − p), it uses estimators from
different simultaneous non-empty bin and in that case the
ME
i M

E
j = 1 with probability RR̃. We know that Algo-

rithm 1 which uses 2-universal hashing the value of p = 1
m .

This is because any pairwise assignment is perfectly ran-
dom with 2-universal hashing.

Substituting for all terms with value of p and rearranging
terms gives the required expression.

When k = D, thenNemp = D−A. Substituting this value
in the variance formulas and taking the limit as D = k →
∞, we get 0 for all R.

Theorem 7

V ar(h∗) ≤ V ar(h+) ≤ V ar(h) (32)

Proof: We have p∗ = 1
m ≤ p+ = 1.5

m+1 ≤ p = 2
m+1 . The

value of p+ and p comes from analysis in (Shrivastava &
Li, 2014c)

Theorem 8 Among all densification schemes, where the
reassignment process for bin i is independent of the reas-
signment process of any other bin j, Algorithm 1 achieves
the best possible variance.

Under any independent re-assignment, the probability that
two empty bins chooses the same non-empty bin out of m
non-empty bins is lower bounded by 1

m which is achieved
by optimal densification.


