Optimal Densification for Fast and Accurate Minwise Hashing

A. Proofs

Theorem 5 Give any two finite sets Sy, 52 € Q, with A =
[S1USs| >a=|S1NSs| >0and | = D — oo. The
limiting variance of the estimators from densification and
improved densification when k = D — oo is given by:

lim Var(h) = %|:AE4A7+G1):| >0 (15)
. _a[3A-1)+2A-1)(a—-1) a
Jim Var(h®) = Z[ WALDA=1) Z} >0

(16)

Proof: When k = D, then N¢p,p, = D — A. Substituting
this value in the variance formulas from (Shrivastava & Li,
2014c) and taking the limit as D = k — oo, we get the

above expression after manipulation. When 0 < R = 4 <
1, they both are strictly positive. ]
Theorem 6
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Var(h)zE—i-A +Bﬁ_R (18)
lim Var(h*) =0 (19)
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where Ny, is the number of simultaneous empty bins be-
tween S1 and Ss and the quantities A and B are given by

A=E {2Nemp + Nemp(Nemp = 1) 1)}

k — Nemp
B = E{(kz — Nemp)(k — Nemp — 1) + 2Nemp(k — Nemp — 1)

Ne'mp(Nemp - 1)(k — Nemp — 1):|

+ k — Nemp

Proof:

The collision probability is easy using a simple observa-
tion that values coming from different bin numbers can
never match across S and Ss, i.e. hi(S;) # hj(S’g) if
i # j, as they have disjoint different range. So when-
ever, for a simultaneous empty bin ¢, i.e. E; = 1, we get
hf(S1) = h}(Sz2) after reassignment, the value must be
coming from same non-empty bin, say numbers k which is
not not empty. Thus,

Pr(hi(51) = hi(52)) = Pr(hi(51) = hy(S2)|Ex = 0) =

The variance is little involved. From the collision probabil-
ity, we have the following is unbiased estimator.

1 k—
EZﬂ{h* (S1) = h3(S2)}. (20)
3=0

For variance, define the number of simultaneously empty
bins by

k-1

=Y 1{E; =1},

Jj=0

Nemp (2 1)

where 1 is the indicator function. We partition the event
(h;f(Sl) = h;(SQ)) into two cases depending on Ej;. Let
M ]N (Non-empty Match at j) and M JE (Empty Match at
7) be the events defined as:

MY =1{E; =0 and R}(S:) = }(S2)}

J

(22)
(23)

Note that, MJN =1 = MJE = 0 and MJE =1 =
M ]N = 0. From the LSH property of estimator we have

E(M]|E; = 0) = E(M]’|E; = 1)

=EMP+MN)=RVj (24

It is not difficult to show that,

E(MNMN|i# j,E; =0 and E; = 0) = RR,

where R = Wlal Using these new events, we have
1 k—1
R= = [MF + MY] (25)
=0
We are interested in computing
1 k—1 2
Var(R) =E - [(MP + M) — R? (26)
j=0

For notational convenience we will use m to denote the
event k — Nepmp = m, ie., the expression E(.|m) means
E(.|k — Nemp = m). To simplify the analysis, we will first
compute the conditional expectation
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RBY expansion and linearity of expectation, we obtain

K fm)=E |> MYMY|m| +E > MNMF|m
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N _ (N2 E _ (AfE)2 .
M;¥ = (M;¥)? and M;j* = (M;”)” as they are indicator

functions and can only take values 0 and 1. Hence,

k—1
E | (MY + (MP)] |m

Jj=0

—kR  (28)

The values of the first three terms are given by the follow-
ing 3 expression using simple binomial enpension and us-
ing the fact that we are dealing with indicator random vari-
able which can only take values O or 1.

E Y MNMY|m| =m(m—-1)RR  (29)

i

R (m—1RR
+7

m| =2m(k —m)
m m

E |y MNMP
i#j

(30)

Let p be the probability that two simultaneously empty bins
¢ and j finally picks the same non-empty bin for reassign-
ment. Then we have

Under any independent re-assignment, the probability that
two empty bins chooses the same non-empty bin out of m
non-empty bins is lower bounded by % which is achieved
by optimal densification.

E > MFMP|m| = (k—m)(k —m—1) pR—I—(l—p)RR}

i#]
(€19

because with probability (1 — p), it uses estimators from
different simultaneous non-empty bin and in that case the
MEFM 7E = 1 with probability RR. We know that Algo-
rithm 1 which uses 2-universal hashing the value of p = L.
This is because any pairwise assignment is perfectly ran-
dom with 2-universal hashing.

Substituting for all terms with value of p and rearranging
terms gives the required expression.

When k = D, then Ne,,, = D — A. Substituting this value
in the variance formulas and taking the limit as D = k —
o0, we get 0 for all R.

Theorem 7

Var(h*) < Var(h™) < Var(h) (32)

. _ 1 + _ 15 _ 2
Proof: We have px = .- < p™ = 2> <p= =7 The

m—+1
value of p™ and p comes from analysis in (Shrivastava &

Li, 2014c)

Theorem 8 Among all densification schemes, where the
reassignment process for bin 1 is independent of the reas-
signment process of any other bin j, Algorithm I achieves
the best possible variance.



