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Supplementary Material

The main purpose of this supplementary section is to pro-
vide proofs for Theorems 1 and 2.

Preliminaries
Here we shall give a proof of (1) as well as preliminary
results that will be needed to complete the proofs of Theo-
rems 1 and 2.

Proposition 1. The fixed point error probability pe,fx is
upper bounded as shown in (1).

Proof. From the definitions of pe,fx, pe,fl, and pm,

pe,fx

= Pr{Ŷfx 6= Y }
= Pr{Ŷfx 6= Y, Ŷfx = Ŷfl}+ Pr{Ŷfx 6= Y, Ŷfx 6= Ŷfl}
= Pr{Ŷfl 6= Y, Ŷfx = Ŷfl}+ Pr{Ŷfx 6= Y, Ŷfx 6= Ŷfl}
≤ pe,fl + pm.

Next is a simple result that allows us to replace the prob-
lem of upper bounding pm by several smaller and easier
problems by virtue of the union bound.

Proposition 2. In a M -class classification problem, the to-
tal mismatch probability can be upper bounded as follows:

pm ≤
M∑
j=1

M∑
i=1,i6=j

Pr(Ŷfx = i|Ŷfl = j) Pr(Ŷfl = j)

(15)

Proof.

pm = Pr(Ŷfx 6= Ŷfl) = Pr

 M⋃
j=1

(Ŷfx 6= j, Ŷfl = j)


≤

M∑
j=1

Pr(Ŷfx 6= j, Ŷfl = j)

=

M∑
j=1

Pr(Ŷfx 6= j|Ŷfl = j) Pr(Ŷfl = j)

=

M∑
j=1

Pr

 M⋃
i=1,i6=j

Ŷfx = i

∣∣∣∣Ŷfl = j

Pr(Ŷfl = j)

≤
M∑
j=1

M∑
i=1,i6=j

Pr(Ŷfx = i|Ŷfl = j) Pr(Ŷfl = j)

where both inequalities are due to the union bound.

The next result is also straightforward, but quite useful in
obtaining upper bounds that are fully determined by aver-
ages.

Proposition 3. Given a random variable X and an event
E , we have:

E [X · 1E ] = E [X|E ] Pr(E) (16)

where 1E denotes the indicator function of the event E .

Proof. By the law of total expectation,

E [X · 1E ]
= E [X · 1E | E ] Pr(E) +E [X · 1E | Ec] Pr(Ec)
= E [X · 1 | E ] Pr(E) +E [X · 0 | Ec] Pr(Ec)
= E [X|E ] Pr(E).

Proof of Theorem 1
Let us define pm,j→i for i 6= j as follows.

pm,j→i = Pr{Ŷfx = i | Ŷfl = j} (17)

We first prove the following Lemma.

Lemma 1. Given BX and BF , if the output of the floating-
point network is Ŷfl = j, then that of the fixed-point net-
work would be Ŷfx = i with a probability upper bounded
as follows:

pm,j→i ≤
∆2

A

24
E


∑

h∈A

∣∣∣∂(Zi−Zj)
∂Ah

∣∣∣2
|Zi − Zj |2

∣∣∣∣Ŷfl = j


+

∆2
W

24
E


∑

h∈W

∣∣∣∂(Zi−Zj)
∂wh

∣∣∣2
|Zi − Zj |2

∣∣∣∣Ŷfl = j

 . (18)

Proof. We can claim that, if i 6= j:

pm,j→i ≤ Pr{Zi + qZi
> Zj + qZj

| Ŷfl = j} (19)

where the equality holds for M = 2.
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From the law of total probability,

pm,j→i

≤
∫

fX(x) Pr
(
zi + qzi > zj + qzj | Ŷfl = j,x

)
dx,

(20)

where x denotes the input of the network, or equivalently
an element from the dataset and fX() is the distribution of
the input data. But for one specific x given Ŷfl = j, we
have:

Pr
(
zi + qzi > zj + qzj

)
=

1

2
Pr
(∣∣qzi − qzj

∣∣ > |zj − zi|
)

where the 1
2 term is due to the symmetry of the distribution

of the quantization noise around zero per output. By (7),
we can claim that

qzi − qzj =
∑
h∈A

qah

∂(zi − zj)

∂ah
+
∑
h∈W

qwh

∂(zi − zj)

∂wh
.

(21)

Note that qzi − qzj is a zero mean random variable with the
following variance

∆2
A

12

∑
h∈A

∣∣∣∣∂(zi − zj)

∂ah

∣∣∣∣2 +
∆2

W

12

∑
h∈W

∣∣∣∣∂(zi − zj)

∂wh

∣∣∣∣2 .
By Chebyshev’s inequality, we obtain

Pr
(
zi + qzi > zj + qzj

)
≤

∆2
A

∑
h∈A

∣∣∣∂(zi−zj)
∂ah

∣∣∣2 + ∆2
W

∑
h∈W

∣∣∣∂(zi−zj)
∂wh

∣∣∣2
24 |zi − zj |2

.

(22)

From (20) and (22), we can derive (18).

Plugging (18) of Lemma 1 into (15) and using (16),

pm ≤
M∑
j=1

M∑
i=1,i6=j

∆2
A

24
E


∑

h∈A

∣∣∣∂(Zi−Zj)
∂Ah

∣∣∣2
|Zi − Zj |2

1Ŷfl=j


+

∆2
W

24
E


∑

h∈W

∣∣∣∂(Zi−Zj)
∂wh

∣∣∣2
|Zi − Zj |2

1Ŷfl=j


 (23)

which can be simplified into (8) in Theorem 1.

Proof of Theorem 2
We start with the following lemma.

Lemma 2. Given BA and BW , pm,j→i is upper bounded
as follows:

pm,j→i ≤ E

[
e−T ·V

∏
h∈A

sinh (T ·DA,h)

T ·DA,h
·

∏
h∈W

sinh (T ·DW,h)

T ·DW,h

∣∣∣∣Ŷfl = j

]
(24)

where T = 3V∑
h∈A ∆2

A,h+
∑

h∈W ∆2
W,h

, V = Zj − Zi,

DA,h = ∆A

2 ·
∂(Zi−Zj)

∂Ah
, and DW,h = ∆W

2 ·
∂(Zi−Zj)

∂Wh
.

Proof. The setup is similar to that of Lemma 1. Denote
v = zj − zi. By the Chernoff bound,

Pr
(
qzi − qzj > v

)
≤ e−tvE

[
et(qzi−qzj )

]
for any t > 0. Because quantizations noise terms are inde-
pendent, by (21),

E
[
et(qzi−qzj )

]
=
∏
h∈A

E

[
etqah

d′
ah

] ∏
h∈W

E

[
etqwh

d′
wh

]

where d′ah
=

∂(zi−zj)
∂ah

and d′wh
=

∂(zi−zj)
∂wh

. Also,

E

[
etqah

d′
ah

]
is given by

E

[
etqah

d′
ah

]
=

1

∆A

∫ ∆A
2

−∆A
2

etqah
d′
ahdqah

=
2

td′ah
∆A

sinh

(
td′ah

∆A

2

)
=

sinh (tdah
)

tdah

where dah
=

d′
ah

∆A

2 . Similarly, E

[
etqwh

d′
wh

]
=

sinh (tdwh)
tdwh

where dwh
=

d′
wh

∆W

2 .

Hence,

Pr
(
qzi − qzj > v

)
≤ e−tv

∏
h∈A

sinh (tda,h)

tda,h

∏
h∈W

sinh (tdw,h)

tdw,h
. (25)

By taking logarithms, the right-hand-side is given by

−tv +
∑
h∈A

(
ln sinh (tda,h)− ln (tda,h)

)
+
∑
h∈W

(
ln sinh (tdw,h)− ln (tdw,h)

)
.
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This term corresponds to a linear function of t added to a
sum of log-moment generating functions. It is hence con-
vex in t. By taking derivative with respective to t and set-
ting to zero,

v +
|A|+ |W|

t
=
∑
h∈A

da,h
tanh(tda,h)

+
∑
h∈W

dw,h

tanh(tdw,h)
.

But tanh(x) = x − 1
3x

3 + o
(
x5
)
, so dropping fifth order

terms yields:

v+
|A|+ |W|

t
=∑

h∈A

1

t(1− (tda,h)2

3 )
+
∑
h∈W

1

t(1− (tdw,h)2

3 )
.

Note, for the terms inside the summations, we divided nu-
merator and denominator by da,h and dw,h, respectively,
then factored the denominator by t. Now, me multiply both
sides by t to get:

tv+ |A|+ |W| =∑
h∈A

1

1− (tda,h)2

3

+
∑
h∈W

1

1− (tdw,h)2

3

.

Also 1
1−x2 = 1 + x2 + o(x4), so we drop fourth order

terms:

tv + |A|+ |W|

=
∑
h∈A

(
1 +

(tda,h)2

3

)
+
∑
h∈W

(
1 +

(tdw,h)2

3

)
which yields:

t =
3v∑

h∈A (da,h)2 +
∑

h∈W (dw,h)2
(26)

By plugging (25) into (26) and using the similar method of
Lemma 1, we can derive (24) of Lemma 2.

Theorem 2 is obtained by plugging (24) of Lemma 2 into
(15) and using (16). Of course, D(i,j)

Ah
is the random vari-

able of da,h when ŷfx = i and ŷfl = j, and the same ap-
plies to D

(i,j)
wh and dw,h. We dropped the superscript (i, j)

in the Lemma as it was not needed for the consistency of
the definitions.


