Supplementary Material

The main purpose of this supplementary section is to provide proofs for Theorems 1 and 2.

Preliminaries

Here we shall give a proof of (1) as well as preliminary results that will be needed to complete the proofs of Theorems 1 and 2.

Proposition 1. The fixed point error probability $p_{e,fx}$ is upper bounded as shown in (1).

Proof. From the definitions of $p_{e,fx}$, $p_{e,fl}$, and p_m ,

$$\begin{split} & p_{e,fx} \\ &= \Pr\{\hat{Y}_{fx} \neq Y\} \\ &= \Pr\{\hat{Y}_{fx} \neq Y, \hat{Y}_{fx} = \hat{Y}_{fl}\} + \Pr\{\hat{Y}_{fx} \neq Y, \hat{Y}_{fx} \neq \hat{Y}_{fl}\} \\ &= \Pr\{\hat{Y}_{fl} \neq Y, \hat{Y}_{fx} = \hat{Y}_{fl}\} + \Pr\{\hat{Y}_{fx} \neq Y, \hat{Y}_{fx} \neq \hat{Y}_{fl}\} \\ &\leq p_{e,fl} + p_{m}. \end{split}$$

Next is a simple result that allows us to replace the problem of upper bounding p_m by several smaller and easier problems by virtue of the union bound.

Proposition 2. In a M-class classification problem, the total mismatch probability can be upper bounded as follows:

$$p_m \le \sum_{j=1}^M \sum_{i=1, i \ne j}^M \Pr(\hat{Y}_{fx} = i | \hat{Y}_{fl} = j) \Pr(\hat{Y}_{fl} = j)$$
 (15)

Proof.

$$p_{m} = \Pr(\hat{Y}_{fx} \neq \hat{Y}_{fl}) = \Pr\left(\bigcup_{j=1}^{M} (\hat{Y}_{fx} \neq j, \hat{Y}_{fl} = j)\right)$$

$$\leq \sum_{j=1}^{M} \Pr(\hat{Y}_{fx} \neq j, \hat{Y}_{fl} = j)$$

$$= \sum_{j=1}^{M} \Pr(\hat{Y}_{fx} \neq j | \hat{Y}_{fl} = j) \Pr(\hat{Y}_{fl} = j)$$

$$= \sum_{j=1}^{M} \Pr\left(\bigcup_{i=1, i \neq j}^{M} \hat{Y}_{fx} = i | \hat{Y}_{fl} = j\right) \Pr(\hat{Y}_{fl} = j)$$

$$\leq \sum_{j=1}^{M} \sum_{i=1, i \neq j}^{M} \Pr(\hat{Y}_{fx} = i | \hat{Y}_{fl} = j) \Pr(\hat{Y}_{fl} = j)$$

where both inequalities are due to the union bound. \Box

The next result is also straightforward, but quite useful in obtaining upper bounds that are fully determined by averages.

Proposition 3. Given a random variable X and an event \mathcal{E} , we have:

$$\mathbb{E}\left[X \cdot \mathbb{1}_{\mathcal{E}}\right] = \mathbb{E}\left[X|\mathcal{E}\right] \Pr(\mathcal{E}) \tag{16}$$

where $\mathbb{1}_{\mathcal{E}}$ denotes the indicator function of the event \mathcal{E} .

Proof. By the law of total expectation,

$$\mathbb{E}[X \cdot \mathbb{1}_{\mathcal{E}}]$$

$$= \mathbb{E}[X \cdot \mathbb{1}_{\mathcal{E}} \mid \mathcal{E}] \Pr(\mathcal{E}) + \mathbb{E}[X \cdot \mathbb{1}_{\mathcal{E}} \mid \mathcal{E}^{c}] \Pr(\mathcal{E}^{c})$$

$$= \mathbb{E}[X \cdot 1 \mid \mathcal{E}] \Pr(\mathcal{E}) + \mathbb{E}[X \cdot 0 \mid \mathcal{E}^{c}] \Pr(\mathcal{E}^{c})$$

$$= \mathbb{E}[X \mid \mathcal{E}] \Pr(\mathcal{E}).$$

Proof of Theorem 1

Let us define $p_{m,j\to i}$ for $i\neq j$ as follows.

$$p_{m,j\to i} = \Pr{\{\hat{Y}_{fx} = i \mid \hat{Y}_{fl} = j\}}$$
 (17)

We first prove the following Lemma.

Lemma 1. Given B_X and B_F , if the output of the floating-point network is $\hat{Y}_{fl} = j$, then that of the fixed-point network would be $\hat{Y}_{fx} = i$ with a probability upper bounded as follows:

$$p_{m,j\to i} \le \frac{\Delta_A^2}{24} \mathbb{E} \left[\frac{\sum_{h\in\mathcal{A}} \left| \frac{\partial (Z_i - Z_j)}{\partial A_h} \right|^2}{|Z_i - Z_j|^2} \middle| \hat{Y}_{fl} = j \right] + \frac{\Delta_W^2}{24} \mathbb{E} \left[\frac{\sum_{h\in\mathcal{W}} \left| \frac{\partial (Z_i - Z_j)}{\partial w_h} \middle|^2}{|Z_i - Z_j|^2} \middle| \hat{Y}_{fl} = j \right].$$
(18)

Proof. We can claim that, if $i \neq j$:

$$p_{m,j\to i} \le \Pr\{Z_i + q_{Z_i} > Z_j + q_{Z_j} \mid \hat{Y}_{fl} = j\}$$
 (19)

where the equality holds for M=2.

From the law of total probability,

$$p_{m,j\to i} \le \int f_{\mathbf{X}}(\mathbf{x}) \Pr\left(z_i + q_{z_i} > z_j + q_{z_j} \mid \hat{Y}_{fl} = j, \mathbf{x}\right) d\mathbf{x},$$
(20)

where \mathbf{x} denotes the input of the network, or equivalently an element from the dataset and $f_{\mathbf{X}}()$ is the distribution of the input data. But for one specific \mathbf{x} given $\hat{Y}_{fl} = j$, we have:

$$\Pr(z_i + q_{z_i} > z_j + q_{z_j}) = \frac{1}{2} \Pr(|q_{z_i} - q_{z_j}| > |z_j - z_i|)$$

where the $\frac{1}{2}$ term is due to the symmetry of the distribution of the quantization noise around zero per output. By (7), we can claim that

$$q_{z_i} - q_{z_j} = \sum_{h \in \mathcal{A}} q_{a_h} \frac{\partial (z_i - z_j)}{\partial a_h} + \sum_{h \in \mathcal{W}} q_{w_h} \frac{\partial (z_i - z_j)}{\partial w_h}.$$
(21)

Note that $q_{z_i} - q_{z_j}$ is a zero mean random variable with the following variance

$$\frac{\Delta_A^2}{12} \sum_{h \in \mathcal{A}} \left| \frac{\partial (z_i - z_j)}{\partial a_h} \right|^2 + \frac{\Delta_W^2}{12} \sum_{h \in \mathcal{W}} \left| \frac{\partial (z_i - z_j)}{\partial w_h} \right|^2.$$

By Chebyshev's inequality, we obtain

$$\Pr\left(z_{i} + q_{z_{i}} > z_{j} + q_{z_{j}}\right)$$

$$\leq \frac{\Delta_{A}^{2} \sum_{h \in \mathcal{A}} \left|\frac{\partial(z_{i} - z_{j})}{\partial a_{h}}\right|^{2} + \Delta_{W}^{2} \sum_{h \in \mathcal{W}} \left|\frac{\partial(z_{i} - z_{j})}{\partial w_{h}}\right|^{2}}{24 \left|z_{i} - z_{j}\right|^{2}}.$$
(22)

From (20) and (22), we can derive (18).

Plugging (18) of Lemma 1 into (15) and using (16),

$$p_{m} \leq \sum_{j=1}^{M} \sum_{i=1, i \neq j}^{M} \left(\frac{\Delta_{A}^{2}}{24} \mathbb{E} \left[\frac{\sum_{h \in \mathcal{A}} \left| \frac{\partial (Z_{i} - Z_{j})}{\partial A_{h}} \right|^{2}}{|Z_{i} - Z_{j}|^{2}} \mathbb{1}_{\hat{Y}_{fl} = j} \right] + \frac{\Delta_{W}^{2}}{24} \mathbb{E} \left[\frac{\sum_{h \in \mathcal{W}} \left| \frac{\partial (Z_{i} - Z_{j})}{\partial w_{h}} \right|^{2}}{|Z_{i} - Z_{j}|^{2}} \mathbb{1}_{\hat{Y}_{fl} = j} \right] \right)$$
(23)

which can be simplified into (8) in Theorem 1.

Proof of Theorem 2

We start with the following lemma.

Lemma 2. Given B_A and B_W , $p_{m,j\to i}$ is upper bounded as follows:

$$p_{m,j\to i} \leq \mathbb{E}\left[e^{-T\cdot V} \prod_{h\in\mathcal{A}} \frac{\sinh\left(T\cdot D_{A,h}\right)}{T\cdot D_{A,h}} \cdot \prod_{h\in\mathcal{W}} \frac{\sinh\left(T\cdot D_{W,h}\right)}{T\cdot D_{W,h}} \middle| \hat{Y}_{fl} = j\right]$$
(24)

where
$$T = \frac{3V}{\sum_{h \in \mathcal{A}} \Delta_{A,h}^2 + \sum_{h \in \mathcal{W}} \Delta_{W,h}^2}$$
, $V = Z_j - Z_i$, $D_{A,h} = \frac{\Delta_A}{2} \cdot \frac{\partial (Z_i - Z_j)}{\partial A_h}$, and $D_{W,h} = \frac{\Delta_W}{2} \cdot \frac{\partial (Z_i - Z_j)}{\partial W_h}$.

Proof. The setup is similar to that of Lemma 1. Denote $v = z_i - z_i$. By the Chernoff bound,

$$\Pr\left(q_{z_i} - q_{z_j} > v\right) \le e^{-tv} \mathbb{E}\left[e^{t(q_{z_i} - q_{z_j})}\right]$$

for any t > 0. Because quantizations noise terms are independent, by (21),

$$\mathbb{E}\left[e^{t(q_{z_i}-q_{z_j})}\right] = \prod_{h \in A} \mathbb{E}\left[e^{tq_{a_h}d'_{a_h}}\right] \prod_{h \in \mathcal{W}} \mathbb{E}\left[e^{tq_{w_h}d'_{w_h}}\right]$$

where
$$d'_{a_h}=\frac{\partial(z_i-z_j)}{\partial a_h}$$
 and $d'_{w_h}=\frac{\partial(z_i-z_j)}{\partial w_h}$. Also, $\mathbb{E}\left[e^{tq_{a_h}d'_{a_h}}\right]$ is given by

$$\mathbb{E}\left[e^{tq_{a_h}d'_{a_h}}\right] = \frac{1}{\Delta_A} \int_{-\frac{\Delta_A}{2}}^{\frac{\Delta_A}{2}} e^{tq_{a_h}d'_{a_h}} dq_{a_h}$$

$$= \frac{2}{td'_{a_h}\Delta_A} \sinh\left(\frac{td'_{a_h}\Delta_A}{2}\right)$$

$$= \frac{\sinh\left(td_{a_h}\right)}{td_{a_h}}$$

where
$$d_{a_h} = \frac{d'_{a_h}\Delta_A}{2}$$
. Similarly, $\mathbb{E}\left[e^{tq_{w_h}d'_{w_h}}\right] = \frac{\sinh\left(td_{w_h}\right)}{td_{w_h}}$ where $d_{w_h} = \frac{d'_{w_h}\Delta_W}{2}$.

Hence.

$$\Pr\left(q_{z_i} - q_{z_j} > v\right) \le e^{-tv} \prod_{h \in \mathcal{A}} \frac{\sinh\left(td_{a,h}\right)}{td_{a,h}} \prod_{h \in \mathcal{W}} \frac{\sinh\left(td_{w,h}\right)}{td_{w,h}}.$$
 (25)

By taking logarithms, the right-hand-side is given by

$$-tv + \sum_{h \in \mathcal{A}} \left(\ln \sinh \left(td_{a,h} \right) - \ln \left(td_{a,h} \right) \right)$$

+
$$\sum_{h \in \mathcal{W}} \left(\ln \sinh \left(td_{w,h} \right) - \ln \left(td_{w,h} \right) \right).$$

This term corresponds to a linear function of t added to a sum of log-moment generating functions. It is hence convex in t. By taking derivative with respective to t and setting to zero,

$$v + \frac{|\mathcal{A}| + |\mathcal{W}|}{t} = \sum_{h \in \mathcal{A}} \frac{d_{a,h}}{\tanh(td_{a,h})} + \sum_{h \in \mathcal{W}} \frac{d_{w,h}}{\tanh(td_{w,h})}.$$

But $\tanh(x) = x - \frac{1}{3}x^3 + \mathbf{o}(x^5)$, so dropping fifth order terms yields:

$$v + \frac{|\mathcal{A}| + |\mathcal{W}|}{t} = \sum_{h \in \mathcal{A}} \frac{1}{t(1 - \frac{(td_{a,h})^2}{3})} + \sum_{h \in \mathcal{W}} \frac{1}{t(1 - \frac{(td_{w,h})^2}{3})}.$$

Note, for the terms inside the summations, we divided numerator and denominator by $d_{a,h}$ and $d_{w,h}$, respectively, then factored the denominator by t. Now, me multiply both sides by t to get:

$$tv + |\mathcal{A}| + |\mathcal{W}| = \sum_{h \in \mathcal{A}} \frac{1}{1 - \frac{(td_{a,h})^2}{3}} + \sum_{h \in \mathcal{W}} \frac{1}{1 - \frac{(td_{w,h})^2}{3}}.$$

Also $\frac{1}{1-x^2} = 1 + x^2 + \mathbf{o}(x^4)$, so we drop fourth order terms:

$$tv + |\mathcal{A}| + |\mathcal{W}|$$

$$= \sum_{h \in \mathcal{A}} \left(1 + \frac{(td_{a,h})^2}{3} \right) + \sum_{h \in \mathcal{W}} \left(1 + \frac{(td_{w,h})^2}{3} \right)$$

which yields:

$$t = \frac{3v}{\sum_{h \in \mathcal{A}} (d_{a,h})^2 + \sum_{h \in \mathcal{W}} (d_{w,h})^2}$$
 (26)

By plugging (25) into (26) and using the similar method of Lemma 1, we can derive (24) of Lemma 2. \Box

Theorem 2 is obtained by plugging (24) of Lemma 2 into (15) and using (16). Of course, $D_{A_h}^{(i,j)}$ is the random variable of $d_{a,h}$ when $\hat{y}_{fx}=i$ and $\hat{y}_{fl}=j$, and the same applies to $D_{w_h}^{(i,j)}$ and $d_{w,h}$. We dropped the superscript (i,j) in the Lemma as it was not needed for the consistency of the definitions.