Analytical Guarantees on Numerical Precision of Deep Neural Networks

Supplementary Material

The main purpose of this supplementary section is to pro-
vide proofs for Theorems 1 and 2.

Preliminaries

Here we shall give a proof of (1) as well as preliminary
results that will be needed to complete the proofs of Theo-
rems 1 and 2.

Proposition 1. The fixed point error probability pe. f. is
upper bounded as shown in (1).

Proof. From the definitions of pe, f4, pe, 11, and p,,
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Next is a simple result that allows us to replace the prob-
lem of upper bounding p,, by several smaller and easier
problems by virtue of the union bound.

Proposition 2. In a M-class classification problem, the to-
tal mismatch probability can be upper bounded as follows:
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where both inequalities are due to the union bound. O

The next result is also straightforward, but quite useful in
obtaining upper bounds that are fully determined by aver-
ages.

Proposition 3. Given a random variable X and an event
&, we have:

E[X - 1] = E[X|E] Pr(€) (16)
where 1¢ denotes the indicator function of the event £.

Proof. By the law of total expectation,

E[X - 1¢]
—E[X -1 | £]Pr(€) + E[X - L¢ | £ Pr(£°)
—E[X 1] & Pr(€) + E[X -0 | £ Pr(£°)

=E[X|E] Pr(E).
O
Proof of Theorem 1
Let us define p,, ;_,; for i # j as follows.
Pmji = Pr{¥pe =i | Yy = j} (17)

We first prove the following Lemma.
Lemma 1. Given Bx and Bp, if the output of the floating-
point network is Yy = j, then that of the fixed-point net-

work would be Yy, = i with a probability upper bounded
as follows:
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Proof. We can claim that, if i # j:
Pmji < Pr{Zi+ 4z, > Zj +az, | Yu =3} (19)

where the equality holds for M = 2.
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From the law of total probability,

Pm,j—i
< /fx(x) Pr (21 +qx > zj+ ¢z | Vi = j,X> dx,
(20

where x denotes the input of the network, or equivalently
an element from the dataset and fx () is the distribution of

the input data. But for one specific x given Yy, = j, we
have:

1
Pr(zi+q., >z +q,)= §Pr (|gz — az,| > 125 — 2i)

where the % term is due to the symmetry of the distribution
of the quantization noise around zero per output. By (7),
we can claim that
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Note that g, — g., is a zero mean random variable with the
following variance
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By Chebyshev’s inequality, we obtain

Pr (Zz +qz > 25+ QZJ)
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From (20) and (22), we can derive (18). ]

Plugging (18) of Lemma 1 into (15) and using (16),
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which can be simplified into (8) in Theorem 1.

Proof of Theorem 2

We start with the following lemma.

Lemma 2. Given B, and By, pm,j—i is upper bounded
as follows:
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Proof. The setup is similar to that of Lemma 1. Denote

v = z; — z;. By the Chernoff bound,

Pr (qu - QZj > U) S e_tvE |:€t(qzi 7qzj):|

for any ¢ > 0. Because quantizations noise terms are inde-
pendent, by (21),
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Hence,
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By taking logarithms, the right-hand-side is given by

—to + Z (Insinh (tda,n) — In (tda,n))
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This term corresponds to a linear function of ¢ added to a
sum of log-moment generating functions. It is hence con-
vex in ¢t. By taking derivative with respective to ¢ and set-
ting to zero,

|'A| + |W| da h dw h
_|_ _— = Z _— —|— Z _ .
t = tanh(td,, p) S tanh(tdy, n)

But tanh(z) = = — $2® + o (2°), so dropping fifth order
terms yields:
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Note, for the terms inside the summations, we divided nu-
merator and denominator by d, , and d, j, respectively,
then factored the denominator by ¢. Now, me multiply both
sides by ¢ to get:
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Also L5 = 1+ 22 + o(z?), so we drop fourth order

terms:
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= 3v (26)

EhEA (da,h)2 + ZhEW (dw,h)2

By plugging (25) into (26) and using the similar method of
Lemma 1, we can derive (24) of Lemma 2. O]

Theorem 2 is obtained by plugging (24) of Lemma 2 into
(15) and using (16). Of course, ij;j ) is the random vari-
able of d,,;, when s, = i and §j5; = j, and the same ap-
plies to Dg;ﬂ ) and dy,n. We dropped the superscript (4, j)
in the Lemma as it was not needed for the consistency of
the definitions.



