Enumerating Distinct Decision Trees

Salvatore Ruggieri !

Abstract

The search space for the feature selection prob-
lem in decision tree learning is the lattice of sub-
sets of the available features. We provide an
exact enumeration procedure of the subsets that
lead to all and only the distinct decision trees.
The procedure can be adopted to prune the search
space of complete and heuristics search methods
in wrapper models for feature selection. Based
on this, we design a computational optimization
of the sequential backward elimination heuristics
with a performance improvement of up to 100x.

1. Introduction

Feature selection in machine learning classification is an
extremely relevant and widely studied topic. Wrapper
models for feature selection have shown superior perfor-
mance in many contexts (Doak, 1992). They explore the
lattice of feature subsets. For a given subset, a classifier
is built over the features in the subset and an optimality
condition is tested. However, complete search of the lat-
tice of feature subsets is know to be NP hard (Amaldi &
Kann, 1998). For this reason, heuristics searches are typi-
cally adopted in practice. Nevertheless, complete strategies
have not to be exhaustive in order to find an optimal subset.
In particular, feature subsets that lead to duplicate decision
trees can be pruned from the search space. Such a pruning
would be useful not only for complete searches, but also
in the case of heuristics searches. A naive approach that
stores all distinct trees found during the search is, however,
unfeasible, since there may be an exponential number of
such trees. Our contribution is a non-trivial enumeration
algorithm of all distinct decision trees built using subsets
of the available features. The procedure requires the stor-
age of a linear number of decision trees in the worst case.
The starting point is a recursive procedure for the visit of
the lattice of all subsets of features. The key idea is that

"University of Pisa and ISTI-CNR, Pisa, Italy. Correspon-
dence to: Salvatore Ruggieri <ruggieri@di.unipi.it>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a subset of features is denoted by the union R U S of two
sets, where elements in R must necessarily be used as split
attributes, and elements in .S may be used or not. Pruning
of the search space is driven by the observation that if a fea-
ture ¢ € S is not used as split attribute by a decision tree
built on R U S, then the feature subset R U S \ {a} leads
to the same decision tree. Duplicate decision trees that still
pass such a (necessary but not sufficient) pruning condi-
tion can be identified through a test on whether they use
all attributes in R. Coupled with the tremendous compu-
tational optimization of decision tree induction algorithms,
our approach makes it possible to increase the limit of prac-
tical applicability of theoretically hard complete searches.
It also allows to optimize the sequential backward elimina-
tion (SBE) search heuristics when specifically designed for
decision tree learning, with a speedup of up to 100x com-
pared to a black-box approach. This paper is organized as
follows. First, we recall related work in Section 2. The
visit of the lattice of feature subsets is based on a general-
ization of binary counting enumeration devised in Sect. 3.
Next, Sect. 4 introduces a procedure for the enumeration
of distinct decision trees as a pruning of the feature subset
lattice. A white-box optimization of SBE is described in
Sect. 5. Experimental results are shown in Sect. 5. Finally,
we summarize the contribution of the paper.

2. Related Work

(Blum & Langley, 1997; Dash & Liu, 1997; Guyon & Elis-
seeff, 2003; Liu & Yu, 2005; Bolén-Canedo et al., 2013)
provide a categorization of approaches of feature subset
selection along the orthogonal axes of the evaluation cri-
teria, the search strategies, and the machine learning tasks.
Common evaluation criteria include filter models, embed-
ded and wrappers approaches. Filters are pre-processing
algorithms that select a subset of features by looking at the
data distribution, independently from the induction algo-
rithm (Cover, 1977). Embedded approaches perform fea-
ture selection in the process of training and are specific to
the learning algorithm. Wrappers approaches optimize in-
duction algorithm performances as part of feature selection
(Kohavi & John, 1997). In particular, training data is split
into a building set and a search set, and the space of feature
subsets is explored. For each feature subset considered,
the building set is used to train a classifier, which is then

Enumerating Distinct Decision Trees

evaluated on the search set. For a dataset with n features,
the search space consists of 2™ possible subsets. Search
space exploration strategies include (see (Doak, 1992)):
hill-climbing search (forward selection, backward elimina-
tion, bidirectional selection, beam search, genetic search),
random search (random start hill-climbing, simulated an-
nealing, Las Vegas), and complete search. The aim of com-
plete search is to find an optimal feature subset according
to an evaluation metric. Typical objectives include mini-
mizing the size of the feature subset provided that the clas-
sifier built from it has a minimal accuracy (dimensional-
ity reduction), or minimizing the misclassification error of
the classifier (performance maximization). Finally, feature
subset selection has been considered both for classification
and clustering tasks. Machine learning models and algo-
rithms can be either treated as black-boxes or, instead, fea-
ture selection methods can be specific of the model and/or
algorithm at hand (white-box). White-box approaches are
less general, but can exploit assumptions on the model or
algorithm to direct and speed up the feature subset search.

This paper falls in the category of complete search using a
white-box wrapper model, tailored to decision tree classi-
fiers, for performance maximization. A feature subset is
optimal if it leads to a decision tree with minimal error
on the search set. Only complete space exploration can
provide the guarantee of finding optimal subsets, whilst
heuristics approaches can lead to results arbitrarily worse
than the optimal (Murthy, 1998). Complete search is know
to be NP hard (Amaldi & Kann, 1998). However, com-
plete strategies do not need to be exhaustive in order to find
an optimal subset. For instance, filter models can rely on
monotonic evaluation metrics to support Branch and Bound
search (Liu et al., 1998). Regarding wrapper approaches,
evaluation metrics such as misclassification error, lack of
the monotonicity property that would allow for pruning the
search space in a complete search. Approximate Mono-
tonicity with Branch and Bound (AMB&B) (Foroutan &
Sklansky, 1987) tries and tackles this limitation, but it pro-
vides no formal guarantee that an optimal feature subset
is found. Another form of search space pruning in wrap-
per approaches for decision trees has been pointed out by
(Caruana & Freitag, 1994), which examines five hillclimb-
ing procedures. They adopt a caching approach to prevent
re-building duplicate decision trees. The basic property
they observe is reported in a generalized form in this pa-
per as Remark 4.3. While caching improves efficiency of
a limited search, in the case of a complete search, it re-
quires an exponential number of decision trees to be stored
in cache, while our approach requires a linear number of
them. We will also observe that Remark 4.3 may still leave
duplicate trees in the search space, i.e., it is a necessary but
not sufficient condition for enumerating distinct decision
trees, while we will provide an exact enumeration.

3. Enumerating Subsets

Let S = {ay,...,a,} be a set of n elements, with n > 0.
The powerset of S is the set of its subsets: Pow(S) =
{§" | S € S}. There are 2" subsets of S, and, for
0 < k < n, there are (}) subsets of size k. Fig. 1 (top)
shows the lattice (w.r.t. set inclusion) of subsets for n = 3.
The order of visit of the lattice, or, equivalently, the order
of enumeration of elements in Pow(.S), can be of primary
importance for problems that explore the lattice as search
space. Well-known algorithms for subset generation pro-
duce lexicographic ordering, Grey code ordering, and bi-
nary counting ordering (Skiena, 2008). Binary counting
maps each subset into a binary number with n bits by set-
ting the #*" bit to 1 iff a; belongs to the subset, and gen-
erating subsets by counting from 0 to 2" — 1. Subsets for
n = 3 are generated as {}, {as}, {az}, {az2,a3}, {a1},
{a1,as}, {a1,a2}, {a1,a2,a3}. In this section, we intro-
duce a recursive algorithm for a generalization of reverse
binary counting (namely, counting from 2" — 1 down to 0)
that will be the building block for solving the problems of
generating distinct decision trees. Let us start by introduc-
ing the notation R X P = Ugep{R U S} to denote sets
obtained by the union of R with elements of P. In particu-
lar:
R X Pow(S) =Ugcs{RUS"}

consists of the subsets of R U S which necessarily include
R. This generalization of powersets will be crucial later
on when we have to distinguish predictive attributes that
must be used in a decision tree from those that may be
used. A key observation of binary counting is that subsets
can be partitioned between those including the value a; and
those not including it. For example, Pow({a1, as,as}) =
({al} X Pow({ag,ag})) @] (@ X PO’U}({(IQ,(Ig})). We can
iterate the observation for the leftmost occurrence of a» and
obtain:

Pow({a1,as,a3}) = ({a1,a2} X Pow({as})) U
({a1} X Pow({as})) U (0 X Pow({az, as}))

By iterating again for the leftmost occurrence of a3, we
conclude:

Pow({a1,az,a3}) = ({a1,a2,a3} X Pow(D)) U
({a1,a2} X Pow(0)) U ({a1} X Pow({as})) U
(0 X Pow({as,as}))

Since R X Pow(0) = {R}, the leftmost set in the above
union is {{a1,az2,as}}. In general, the following recur-
rence relation holds.

Lemma 3.1 Let S = {a4, ..
R ™ Pow(S) ={RUS}U
U (RU{al,...,ai,l})NPow({ai+1,...7an})

i=n,...,1

.y Gn }. We have:

Enumerating Distinct Decision Trees

{a1,az,a3}

{a1,a2} o {az, a3}

{a1} © o {as}

0™ Pow({a1,az2,as})

{a1, a2} X Pow(f) {a1} X Pow({as}) 0™ Pow({as. as})

{a1} M Pow (D) {az} X Pow() 0™ Pow({as})

0% Pow(0)

Figure 1. Lattice of subsets and reverse binary counting.

This result can be readily translated into a procedure
subset(R, S) for the enumeration of elements in R X
Pow(S). In particular, since § X Pow(S) = Pow(S),
subset((), S) generates all subsets of S. The procedure
is shown as Alg. 1. The search space of the procedure is
the tree of the recursive calls of the procedure. The search
space for n = 3 is reported in Fig. 1 (bottom). According
to line 1 of Alg. 1, the subset outputted at a node labelled
as R X Pow(S) is R U S. Hence, the output is the re-
verse counting ordering: {a1,as,as}, {a1,as}, {a1,as},
{a1}, {az, a3}, {az}, {as}, {}. Two key properties of the
recursive procedure Alg. 1 will be relevant for the rest of
the paper.

Remark 3.2 A set S” generated at a non-root node of the
search tree of Alg. 1 is obtained by removing an element
from the set S’ generated at the father node, i.e., S"” =
S\ {v} for some v € S’.

The invariant |[R’ U S’| = |R U S| readily holds for the
loop at lines 4-8 of Alg. 1. Before the recursive call at line
6, an element is removed from R’, hence the set R’ U S’
outputted at a child node has one element less than the set
R U S outputted at its father node.

Remark 3.3 The selection order of a; € S at line 4 of
Alg. 1 is irrelevant.

The procedure does not rely on any specific order of se-
lecting members of .S, which is a form of don’t care non-
determinism in the visit of the lattice. Any choice generates
all elements in R X Pow(S). In case of an apriori po-
sitional order of attributes, namely line 4 is “for a; € S
order by ¢ desc do”, Alg. 1 produces precisely the re-
versed binary counting order. However, if the selection
order varies from one recursive call to another, then the
output is still an enumeration of subsets.

Algorithm 1 subset(R, S) enumerates R X Pow(S)
1: output RU S
2: R+ RUS
38«0
4: fora; € S do
R+ R'\{a;}
subset(R’, S")
S+ 8" U{a;}
end for

4. Generating All Distinct Decision Trees

We build on the subset generation procedure to devise an
algorithm for the enumeration of all distinct decision trees
built on subsets of the predictive features.

4.1. On Top-Down Decision Tree Induction

Let us first introduce some notation and assumptions. Let
S = {ai,...,a,} be the set of predictive features. We
write T = DT(S) to denote the decision tree built from
predictive features .S on a fixed training set. Throughout
the paper, we make the following assumption on the node
split criterion in top-down decision tree induction with uni-
variate split conditions.

Assumption 4.1 Ler T = DT(S). A split attribute at a
decision node of T is chosen as argmaz ,c g f(a, C), where
) is a quality measure and C' are the cases of the training
set reaching the node.

Our results will hold for any quality measure f() as far as
the split attribute is chosen as the one that maximizes f().
Examples of quality measures used in this way include In-
formation Gain (IG), Gain Ratio! (GR), and the Gini in-
dex, used in C4.5 (Quinlan, 1993) and CART algorithms
(Breiman et al., 1984). A second assumption regards the
stopping criterion in top-down decision tree construction.
Let stop(S, C') be the boolean result of the stopping crite-
rion at a node with cases C' and predictive features S.

Assumption 4.2 [f stop(S, C) = true then stop(S’,C) =
true for every S’ C S.

The assumption states that either: (1) the stopping criterion

!Gain Ratio normalizes Information Gain over the Split In-
formation (SI) of an attribute, i.e., GR = IG/SI. This definition
does not work well for attributes which are (almost) constants
over the cases C, i.e., when SI ~ 0. (Quinlan, 1986) proposed
the heuristics of restricting the evaluation of GR only to attributes
with above average 1G. The heuristics is implemented in the C4.5
system (Quinlan, 1993). It clearly breaks Assumption 4.1, mak-
ing the selection of the split attribute dependent on the set S. An
heuristics that satisfies Assumption 4.1 consists of restricting the
evaluation of GR only for attributes with IG higher than a mini-
mum threshold.

Enumerating Distinct Decision Trees

Algorithm 2 DTdistinct(R, S) enumerates distinct deci-
sion trees necessarily using R and possibly using .S as split
features
1: build tree T'= DT(RU S)

U < unused features in T'
if RNU = () then

output 7’
end if
R' <~ RU(S\U)
S+ SnNU
for a; € S\ U order by frontier(T, a;) do

R+ R'\{a;}

DTdistinct(R’, S")

S+ S"U{a;}
: end for

Rl e R AN D

_—
N =2

does not depend on S or, if it does, then (2) stopping is
monotonic with regard to the set of predictive features. (1)
is a fairly general assumption, since typical stopping cri-
teria are based on the size of cases C' at a node and/or on
the purity of the class attribute in C'. (2) applies to criteria
which require minimum quality of features for splitting a
node. E.g., the C4.5 criterion of stopping if IG of all fea-
tures is below a minimum threshold satisfies the assump-
tion. The following remark, which is part of the decision
tree folklore (see e.g., (Caruana & Freitag, 1994)), states a
useful consequence of Assumptions 4.1 and 4.2.

Remark 4.3 Let T = DT(S), and S be the set of split
features used in T. For every S’ such that S 2 8’ O S, we
have DT (S") =T.

If the decision tree 7" built from S uses only features from
S, then argmaz e g f(a,C) = argmaz s f(a,C) at any
decision node of 7. Hence, any unused attribute in S\ S
will not change the result of maximizing the quality mea-
sure and then, by Assumption 4.1, the split attribute at a
decision node. Moreover, by Assumption 4.2, a leaf node
in T will remain a leaf node for any S’ C S.

4.2. Enumerating Distinct Decision Trees

Let S = {ai,...,ax} be the set of features used in split
nodes of the decision tree T = DT(S) built from S,
and S\ S = {agy1,...,a,} the set of features never
selected as split features. By Remark 4.3, the decision
tree T is equal to the one built starting from features
ai,...,a plus any subset of ag1, ..., a,. In symbols, all
the decision trees for attribute subsets in {a1,...,a;} X
Pow({ak+1,...,an}) do coincide with T. We will use
this observation to remove from the recurrence relation of
Lemma 3.1 those sets in R X Pow(.S) which lead to dupli-
cate decision trees. Formally, when searching for feature
subsets that lead to distinct decision trees, the recurrence

DT ({a1,az,a3})

DT({ay,as5})

DT({a1,a2}) = DT ({a2})
DT ({az})

DT({ar}) = DT(0)

DT({az, as})

DT({as})

DT(9)

DT ({ay,az,a3})

DT({a1,as})

DT({L:%})/5

DT({as})

DT ({a1.a2}) = DT ({az})

DT(0)

Figure 2. Search spaces of Alg. 2 for different selection orders.

relation can be modified as:

R X Pow(S)={RUS}U

U (R U {al, ey ai_l}) X Pow({ai_H, N ,an})
i=k,...,1

since the missing union:

U (RU{CH,..

i=n,...,k+1

.,ai,l}) X Pow({aHh .

Syan})

contains sets of features leading to the same decision tree as
DT(RUS). The simplified recurrence relation prunes from
the the search space features subsets that lead to duplicated
decision trees. However, we will show in Ex. 4.4 that such a
pruning alone is not sufficient to generate distinct decision
trees only, i.e., duplicate trees may still exists.

Alg. 2 provides an enumeration of all and only the distinct
decision trees. It builds on the generalized subset gener-
ation procedure. Line 1 constructs a tree T' from features
R U S. Feature in the set U of unused features in 7" are not
iterated over in the loop at lines 8—12, since those iterations
would yield the same tree as 7. This is formally justified
by the modified recurrence relation above. The tree T is
outputted at line 4 only if R N U = (), namely features
required to be used (i.e., R) are actually used in decision
splits. This prevents from outputting more than once a de-
cision tree that can be obtained from multiple paths of the
search tree.

Example 4.4 Let S = {aj,a2,a3}. Assume that ay has
no discriminatory power unless data has been split by as.
More formally, DT(S") = DT(S'\ {a1}) ifag & 5.
The visit of feature subsets of Fig. 1 (bottom) gives rise
to the trees built by DTdistinct((), S) as shown in Fig. 2
(top). For instance, the subset {ay1,as} visited at the node

Enumerating Distinct Decision Trees

labelled {ay, a2} X () in Fig. 1 (bottom), produces the de-
cision tree DT ({a1,a2}). By assumption, such a tree is
equal to DT ({as}), which is a duplicate tree produced in
another node — underlined in Fig. 2 (top) — corresponding
fo the feature set visited at the node labelled {as} ™ .
Another example regarding DT ({a1}) = DT() is shown
in Fig. 2 (top), together with its underlined duplicate tree.
Unigque trees for two or more duplicates can be character-
ized by the fact that features appearing to the left of X must
necessarily be used as split features by the constructed de-
cision tree. In the two previous example cases, the node
underlined will output their decision trees, while the other
duplicates will not pass the test at line 3 of Alg. 2.

Remark 3.3 states that the selection order in the recursive
calls of subset() is not relevant. Alg. 2 adopts a specific
order that, while not affecting the result (any order would
produce the enumeration of distinct decision trees), impacts
on the effectiveness of pruning the search space. We define
the frontier frontier(T, a;) of an attribute a; in a decision
tree 1" as the sum of the number of cases of the training set
that reach a node in T" where a; is the split attribute. The
smaller the frontier is the smaller is the impact of removing
sub-trees of 1" rooted at nodes with a; as split attribute.

Example 4.5 (Ctd.) The order of selection of a;’s in the
visit of Fig. 2 (top) is by descending i’s. This order does
not take into account the fact that as has more discrimi-
natory power than ai, i.e., its presence gives rise to more
distinct decision trees. As a consequence, it would be bet-
ter to have as removed in the rightmost child of a node,
which has the largest search sub-space, and hence the best
possibilities of pruning. The ordering based on ascend-
ing frontier estimates the discriminatory power of a; by the
amount of cases in the training set discriminated by splits
using a;. In our example, such an order would likely be a.,
a9, and as. The search space of DTdistinct((), S) is then re-
ported in Fig. 2 (bottom). Notice that there is no duplicate
tree here. Also notice that the size of the search space is
smaller than in the previous example. In fact, the node la-
belled as DT ({a1,a2}) = DT ({as}) corresponds to the
exploration of) X {ay,as2}. The a; attribute is unused
and hence is pruned at line 8 of Alg. 2. The sub-space to
be searched consists then of only the subset of {a, }, not all
subsets of {a1,az2}.

The following non-trivial result holds.

Theorem 4.6 DTdistinct(R, S) outputs the distinct deci-
sion trees built on sets of features in R X Pow(S).

Proof. The search space of DTdistinct() is a pruning of
the search space of subset(). Every tree built at a node
and outputted is then constructed from a subset in R X
Pow(S). By Remark 3.3, the order of selection of a; €

S\ U at line 8 is irrelevant, since any order will lead to the
same space R X Pow(S).

Let us first show that decision trees in output are all
distinct. The key observation here is that, by line 4,
all features in R are used as split features in the out-
putted decision tree. The proof proceed by induction

on the size of S. If |S| = 0, then there is at most
one decision tree in output, hence the conclusion. As-
sume now |S| > 0, and let S = {ay,...,a,}. By

Lemma 3.1, any two recursive calls at line 10 have pa-
rameters (R U {a1,...,a;-1},{@it1,...,a,}) and (R U
{a1,...,a;-1},{ajt1,...,a,}), for some ¢ < j. By in-
ductive hypothesis, a; is missing as a predictive attribute
in the trees in output from the first call, while it must be
a split attribute in the trees in output by the second call.
Hence, the trees in output from recursive calls are all dis-
tinct among them. Moreover, they are all different from 7',
if it is outputted at line 4. In fact, 7" has |[R U S \ U] split
features, whilst recursive calls construct decision trees with
atmost [RU S\ U| — 1 features.

Let us now show that trees pruned at line 7 or at line 4
are already outputted elsewhere, which implies that every
distinct decision tree is outputted at least once. First, by
Remark 4.3, the trees of the pruned iterations S N U at line
7 are the same of the tree of 1" at line 1. Second, if the tree T’
is not outputted at line 4, because RN U # (), we have that
it is outputted at another node of the search tree. The proof
is by induction on |R|. For |R| = 0 it s trivial. Let R =
{a1,...,a,}, withn > 0, and let R’ = {ay,...,a;_1} be
such that a; € U and R'NU = (). There is a sibling node in
the search tree corresponding to a call with parameters R’
and S’ = {ai41,...,a,} US. By inductive hypothesis on
|R'| < |R|, the distinct decision trees with features in R’ X
Pow(S”) are all outputted, including 7" because T has split
features in RU S\ {a;} which belongs to R’ X Pow(S").
a

Let us now point out some properties of DTdistinct().

Property 1: linear space complexity. Alg. 2 is computation-
ally linear (per number of trees built) in space in the number
of predictive features. An exhaustive search would instead
keep in memory the distinct decision trees built in order to
check whether a new decision trees is a duplicate. Sim-
ilarly will do approaches based on complete search with
some forms of caching of duplicates (Caruana & Freitag,
1994). Those approaches would require exponential space,
as shown in the next example.

Example 4.7 Let us consider the well-known Adult
dataset® (Lichman, 2013), consisting of 48842 cases, 14
predictive features, and a binary class attribute. Fig. 3

2See Sect. 5 for the experimental settings.

Enumerating Distinct Decision Trees

Adult, IG Adult, IG Adult, IG
3500 o 24 = 250
@ 3000 3 45 —
¢ 2500 5 8 200
b 2 2 3
£ 2000 3 18 2 150
2 1500 S 16 =
S 1000 3 14 g 100
S 2 12 <3
Z 500 I & 50
0 S i 1 » w
0123456 7 8 9101112131415 0 16 32 48 64 80 96 112 128
Subset size m 0 16 32 48 64 80 96 112 128
m
binomial —— m=32 ot DTdistinct —— reverse s
m=8 m=128 @ fixed exhaustive & exhaustive —+— DTdistinct

Figure 3. Left: distribution of distinct decision trees. Center: ratio built/distinct decision trees. Right: elapsed times.

(left) shows, for the IG split criterion, the distribution of
distinct decision trees w.r.t. the size of attribute subset. The
distributions are plotted for various values of the stopping
parameter m which halts tree construction if the number of
cases of the training set reaching the current node is lower
than a minimum threshold m (formally, stop(S, C) is true
iff IC| < m).

Property 2: reduced overhead. Our procedure may con-
struct duplicate decision trees at line 1, which, however,
are not outputted thanks to the test at line 3. We measure
such an overhead of Alg. 2 as the ratio of all decision trees
constructed at line 1 over the number of distinct decision
trees. An ideal ratio of 1 means that no duplicate decision
tree is constructed at all. The overhead can be controlled
by the attribute selection ordering at line 8.

Example 4.8 (Ctd.) Fig. 3 (center) shows the overhead at
the variation of m for three possible orderings of selection
at line 8 of Alg. 2. One is the the ordering stated by DT-
distinct(), based on ascending frontier. The second one is
the reversed order, namely descending frontier. The third
one is based on assigning a fixed index 1 to features a;’s,
and then ordering over i. The DTdistinct() ordering is im-
pressively effective, with an overhead close to 1 — i.e., the
search space is precisely the set of distinct decision trees.

Fig. 3 (center) also reports the ratio of the number of trees
in an exhaustive search (2" for n features) over the number
of distinct trees. Smaller m’s lead to a smaller ratio. Thus,
for small m values, pruning duplicate trees does not guar-
antee alone an enumeration more efficient than exhaustive
search. The next property will help.

Property 3: feature-incremental tree building. The con-
struction of each single decision tree at line 1 of Alg. 2 can
be speed up by Remark 3.2. The decision tree 7" at a child
node of the search tree differs from the decision tree 7" built
at the father node by one missing attribute. The construc-
tion of 7" can then benefit from this observation. We first
recursively clone 7" and then re-build only sub-trees rooted
at node where the split attribute is a;.

Example 4.9 (Ctd.) Fig. 3 (right) contrasts the elapsed
times of exhaustive search and DTdistinct(). For smaller
values of m, there is an exponential number of duplicated
decision trees, but the running time of DTdistinct() is still
much better than the exhaustive search due to the incre-
mental building of decision trees.

5. PSBE: A White-Box Optimization of SBE

In wrapper models, the training set is divided into a build-
ing set and a search set. A decision tree is built on the
building set and its the accuracy is evaluated on the search
set. Our enumeration procedure DTdistinct() has a direct
application, which consists of running a complete wrap-
per search looking for the feature subset that leads to the
most accurate decision tree on the search set. On the prac-
tical side, however, using DTdistinct() to look for the op-
timal feature subset is computationally feasible only when
the number of predictive features is moderate. Moreover,
optimality on the search set may be obtained at the cost
of overfitting (Doak, 1992; Reunanen, 2003) and instabil-
ity (Nogueira & Brown, 2016). The ideas underlying our
approach, however, can impact also on the efficiency of
heuristics searches.

In particular, we consider here the widely used sequential
backward elimination (SBE) heuristics. SBE starts build-
ing a decision tree 7" using the set S of all features. We call
T the top tree. For every a; € S, a decision tree T; is built
using features in S \ {a;}. If no 7}’s has a smaller error
on the search set than 7, the algorithm stops returning S as
the subset of selected features. Otherwise, the procedure is
repeated removing ay from S, where T is the tree with the
smallest error. In summary, features are eliminated one at
a time in a greedy way.

SBE is a black-box approach. The procedure applies to any
type of classifier, not only to decision trees. A white-box
optimization can be devised for decision tree classifiers that
satisfy the assumptions of Section 4.1. The optimization
relies on Remark 4.3. Let U be the set of features not used
in the current decision tree 1'. For a; € U, it turns out that

Enumerating Distinct Decision Trees

Table 1. Experimental results. IG and m=2.

dataset elapsed time (secs) cross-validation error (%)
name inst. feat. PSBE SBE ratio top (P)SBE optimal
Adult 48,842 15 2318 3.311 0.700 1574 £ 042 14.64+046 14.31 +0.39
Letter 20,000 17 1.221 1.717 0.711 1269 £0.75 1249 +0.75 12.37 £0.71
Hypo Thyroid 3,772 31 0.029 0.100 0.290 039 +0.28 042+0.32 046+0.34
Ionosphere 351 35 0.005 0.065 0.077 11.74 +£5.72 10.25 +4.61 10.72 +5.40
Soybean 683 36 0.067 0212 0.316 13.26 +4.19 1271 £4.09 10.62 + 3.67
Anneal 898 39 0.004 0.025 0.160 0.91 + 0.97 1.14 +1.39 1454+ 1.26
Sonar 208 61 0.006 0.222 0.027 28.57 +£8.95 27.01 £8.78 25.69 +9.12
Coil2000 9,822 86 3.647 19.578 0.186 9.01 £0.61 8.75 + 0.71 -
Cleanl 476 166 0.053 5.381 0.010 19.50 +5.98 19.28 + 7.04 -
Clean2 6,598 166 1.585 79.465 0.020 320+£0.73 3.02 +0.83 -
Madelon 2,600 500 2.647 >1h - 2528 +3.61 22.67 + 3.28 -
Gisette 7,000 5,000 11.738 >1h - 6.27 +£0.81 6.11 + 0.92 -
p53Mutants 31,420 5,408 150.518 >1h - 0.60 £0.12 0.54 +0.10 -

T; = T. Thus, only trees built from S \ {a;} fora; ¢ U
need to be considered for backward elimination. This saves
the construction of |SNU| decision trees at each step of the
procedure. We call this optimization PSBE (Pruned SBE).

6. Experiments
6.1. Datasets and Experimental Settings

Table 1 reports the number of instances and of features
for small and large standard benchmarks datasets publicly
available from (Lichman, 2013). Following (Reunanen,
2003), we adopt 5-repeated stratified 10-fold cross valida-
tion in experimenting with wrapper models. For each hold-
out fold, feature selection is performed by splitting the 9-
fold training set into 70% building set and 30% search set
using stratified random sampling. Information Gain (IG)
is used as quality measure in node splitting. No form of
tree simplification (e.g., error-based pruning) is used. The
search error is the average misclassification error on the
search set. The cross-validation error is the average mis-
classification error on the hold-out folds for the tree built on
the training set using the selected feature subset. Misclas-
sification errors are computed using the C4.5’s distribution
imputation method (Saar-Tsechansky & Provost, 2007).

All procedures described in this paper were implemented
by extending the YaDT system (Ruggieri, 2002; 2004; Ald-
inucci et al., 2014). It is a state-of-the-art main-memory
C++ implementation of C4.5 with many algorithmic and
data structure optimizations as well as with multi-core tree
building. The extended YaDT version is publicly down-
loadable from: http://pages.di.unipi.it/ruggieri. Test were
performed on a commodity PC with Intel 4 cores i5-
2410@2.30 GHz, 16 Gb RAM, and Windows 10 OS.

6.2. How Fast is DTdistinct()?

Or, in other words, how much our pruning approach will
make a complete search feasible in practice? Fig. 4 shows
the ratio of the number of built trees over the number of dis-
tinct trees (left) and the total elapsed time of DTdistinct()
(center) for low to medium dimensionality datasets — actu-
ally, those for which DTdistinct() terminates within a time-
out of 1h. The ratio ranges from 1 to 1.35, which show that
the selection order based on ascending frontier size (line 8
of Alg. 2) is effective in practice. The total elapsed time of
the enumeration procedure, shown in Fig. 4 (center), grows
exponentially with the inverse of m, the stopping parame-
ter. This is intuitive, since lower m’s lead to higher num-
bers of distinct decision trees, and, as shown in Fig. 3 (left),
such numbers approach 2™ — where n is the number of fea-
tures. However, the total elapsed time of DTdistinct() re-
mains within a practically admissible bound for datasets
with a moderate number of features. Consider for instance,
the Anneal dataset. An exhaustive enumeration would be
impossible, since it consists of building 23° ~ 5508 trees.
DTdistinct() runs in less than 20 seconds for m = 16,
and less than 270 seconds for m = 8. This is the cou-
pled result of three factors: the pruning approach of Alg. 2,
the feature-incremental tree building optimization, and the
tremendous efficiency of the state-of-the-art tree induction
implementations.

6.3. PSBE vs SBE

Table 1 reports elapsed times that allows for comparing the
efficiency of PSBE vs SBE. The m parameter is set to the
small value 2 for all datasets. The ratio of elapsed times
shows a speedup of up to 100x of PSBE vs SBE. The im-
provement increases with the number of features. For high-

http://pages.di.unipi.it/ruggieri

Enumerating Distinct Decision Trees

IG IG Adult, IG
o 14 1000 15.8
7 T —— —_
e 135F %o 2 400 ® 156
5 13 3 = 154
£ 125 9w 10 8 152
2 12 £ 9 5 \
S 115 o g 15
R 2 o1 2 148
o . 8 c
2 1.05 g oo § 146
5 1 - 3 0.001) 5 14.4
0 48 64 80 96 112 128 0 16 32 48 64 80 96 112 128 o 142
14
m m 0 16 32 48 64 80 96 112 128
Letter —+— Soybean @ Letter —+— Soybean @ m
Hypo Anneal g Hypo Anneal .
lonosphere Sonar @ lonosphere Sonar @ top tree —+— optimal SBE nme
Figure 4. Left: ratio built/distinct trees. Center: elapsed times of DTdistinct(). Right: search errors.
Adult, IG lonosphere, IG Anneal, IG
__ 158 __ 40 _ 25
2 156 B 2
5 5 ® 5 20
S 154 e S
@ @ 30 5}
= 152 p c 15
S S 25]
g ° g g .,
E’ 14.8 § 20 ’(—5
Z',’ 14.6 % 15 8 5
S 144 ° °
© 142 o 10 ° o
"0 16 32 48 64 80 96 112 128 0 16 32 48 80 96 112 128 0 16 32 48 64 80 96 112 128
m m
top tree ——+— optimal SBE e top tree ——+— optimal SBE emi top tree ——+— optimal SBE men

Figure 5. Cross-validation errors.

dimensional datasets, the black-box SBE does not even
terminate within a time-out of 1h. The white-box PSBE,
instead, runs in about 150 seconds for the highly dimen-
sional dataset pS3Mutants. This is a relevant result for ma-
chine learning practitioners, extending the applicability of
the SBE heuristics.

6.4. Complete Search or Heuristics?

Fig. 4 (right) shows the average search error over the Adult
dataset of the decision trees constructed on: (1) all features
(top); (2) the features selected by SBE (same as PSBE);
and (3) the features selected by DTdistinct(), namely those
with the lowest error on the search set (hence, the name
optimal). Obviously, SBE is better than top, and optimal
is better than SBE. Interestingly, SBE is close to the opti-
mal search error, in particular for small m parameter. Does
this generalize to unknown cases? Fig. 5 reports the cross-
validation errors over the Adult, Ionosphere and Anneal
datasets. For Adult, optimal is better than SBE, which in
turn is better than top. For Ionosphere, instead, the optimal
tree has the worst performance, the top tree is the best for
almost all m’s, and SBE is the best for small m’s. For An-
neal, SBE is the worst, and the top tree is better than the
optimal for large m’s. Table 1 reports the cross-validation
errors for m = 2 for all datasets. PSBE, or equivalently
SBE as they select the same subset of features, wins over
top in most cases. But there is no clear evidence of the su-
periority of optimal over SBE. This is consistent with the

conclusions of (Doak, 1992; Reunanen, 2003) that simple
sequential elimination exhibits better generalization perfor-
mances than more exhaustive searches when considering
error on an unseen set of instances.

7. Conclusions

We have introduced an original pruning algorithm of the
search space of feature subsets which allows for enumer-
ating all and only the distinct decision trees. On the theo-
retical side, this makes it possible to run a complete wrap-
per procedure for moderate dimensionality datasets. This
will allow, for instance, for a deeper investigation of old
and new search heuristics by comparing their performances
with those of a complete search. On the practical side, ideas
and results of the paper have been applied to improve the
computational efficiency of the SBE heuristics.

As future work, we will investigate the extension of the
proposed approach in presence of decision tree simplifica-
tion and for ensembles of decision trees (bagging, random
forests). Moreover, we will consider the related problem of
finding an optimal subset of features, which in the present
paper is tackled by simply enumerating all distinct decision
trees. Actually, there is no need to explore a sub-space of
(distinct) decision trees, if a lower bound for the accuracy
of any tree in the sub-space can be computed and such a
lower bound is higher than the best error found so far. This
idea would build upon the enumeration procedure DTdis-
tinct() as a further pruning condition of the search space.

Enumerating Distinct Decision Trees

References

Aldinucci, M., Ruggieri, S., and Torquati, M. Decision tree
building on multi-core using FastFlow. Concurrency and
Computation: Practice and Experience, 26(3):800-820,
2014.

Amaldi, E. and Kann, V. On the approximation of minimiz-
ing non zero variables or unsatisfied relations in linear
systems. Theoretical Computer Science, 209:237-260,
1998.

Blum, A. and Langley, P. Selection of relevant features
and examples in machine learning. Artif. Intell., 97(1-2):
245-271, 1997.

Bolén-Canedo, V., Sanchez-Marono, N., and Alonso-
Betanzos, A. A review of feature selection methods on
synthetic data. Knowledge and Information Systems, 34
(3):483-519, 2013.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. Clas-
sification and Regression Trees. Wadsworth Publishing
Company, 1984.

Caruana, R. and Freitag, D. Greedy attribute selection.
In Proc. of the Int. Conf. on Machine Learning (ICML
1994), pp. 28-36. Morgan Kaufmann, 1994.

Cover, T.M. On the possible ordering on the measurement
selection problem. Trans. Systems, Man, and Cybernet-
ics, 9:657-661, 1977.

Dash, M. and Liu, H. Feature selection for classification.
Intell. Data Anal., 1(1-4):131-156, 1997.

Doak, J. An evaluation of feature selection methodsand
their application to computer security. Technical Report
CSE-92-18, University of California Davis, 1992.

Foroutan, I. and Sklansky, J. Feature selection for auto-
matic classification of non-gaussian data. Trans. Sys-
tems, Man, and Cybernetics, 17(2):187-198, 1987.

Guyon, L. and Elisseeff, A. An introduction to variable
and feature selection. Journal of Machine Learning Re-
search, 3:1157-1182, 2003.

Kohavi, R. and John, G. H. Wrappers for feature subset
selection. Artif. Intell., 97(1-2):273-324, 1997.

Lichman, M. UCI machine learning repository, 2013.
http://archive.ics.uci.edu/ml.

Liu, H. and Yu, L. Toward integrating feature selection
algorithms for classification and clustering. IEEE Trans.
Knowl. Data Eng., 17(4):491-502, 2005.

Liu, H., Motoda, H., and Dash, M. A monotonic measure
for optimal feature selection. In Proc. of the European
Conference on Machine Learning (ECML 1998), volume
1398 of Lecture Notes in Computer Science, pp. 101-
106. Springer, 1998.

Murthy, S. K. Automatic construction of decision trees
from data: A multi-disciplinary survey. Data Mining
and Knowledge Discovery, 2:345-389, 1998.

Nogueira, S. and Brown, G. Measuring the stability of fea-
ture selection. In Proc. of Machine Learning and Knowl-
edge Discovery in Databases (ECML-PKDD 2016) Part
11, volume 9852 of LNCS, pp. 442-457, 2016.

Quinlan, J. R. Induction of decision trees. Machine Learn-
ing, 1:81-106, 1986.

Quinlan, J. R. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, 1993.

Reunanen, J. Overfitting in making comparisons between
variable selection methods. Journal of Machine Learn-
ing Research, 3:1371-1382, 2003.

Ruggieri, S. Efficient C4.5. IEEFE Transactions on Knowl-
edge and Data Engineering, 14:438-444, 2002.

Ruggieri, S. YaDT: Yet another Decision tree Builder. In
Proc. of Int. Conf. on Tools with Artificial Intelligence
(ICTAI 2004), pp. 260-265. IEEE, 2004.

Saar-Tsechansky, M. and Provost, F. Handling missing val-
ues when applying classification models. Journal of Ma-
chine Learning Research, 8:1625-1657, 2007.

Skiena, S. S. The Algorithm Design Manual. Springer, 2
edition, 2008.

http://archive.ics.uci.edu/ml

