Online and Linear-Time Attention by Enforcing Monotonic Alignments

A. Algorithms

Below are algorithms for the hard monotonic decoding process we used at test time (algorithm 1) and the approach for
computing its expected output that we used to train the network (algorithm 2). Terminology matches the main text, except
we use 0 to signify a vector of zeros.

Algorithm 1 Hard Monotonic Attention Process

Input: memory h of length T’
State: so = 0,10 = 1,7 = 1, yo = StartOfSequence
while y;_; # EndOfSequence do // Produce output tokens until end-of-sequence token is produced
finished = 0 // Keep track of whether we chose a memory entry or not
forj =t,_1 toT do // Start inspecting memory entries h; left-to-right from where we left off
ei,j = a(si—1,h;) // Compute attention energy for h;
pij =ol(e; ;) // Compute probability of choosing h;
z;j ~ Bernoulli(p; ;) // Sample whether to ingest another memory entry or output new symbol
ifz, j = 1then // Ifwe sample 1, we stop scanning the memory
¢, = h;]/ Set the context vector to the chosen memory entry
t; =37 |/ Remember where we left off for the next output timestep
finished =1 // Keep track of the fact that we chose a memory entry
break // Stop scanning the memory
end if
end for
if finished = 0 then
;=0 // If we scanned the entire memory without selecting anything, set ¢; to a vector of zeros
end if
8; = f(si—1,Yi—1,¢;) // Update the state based on the new context vector using the RNN f
Y = g(si,¢i) // Output a new symbol using the softmax layer g
1=1+1
end while

Algorithm 2 Soft Monotonic Attention Decoder
Input: memory h of length T, target outputs § = {StartOfSequence, §1, ¥, . . ., EndOfSequence}
State: sy = 6,1 = 1,040’]‘ = 5]‘ for j € {1,...,T}
while ;1 # EndOfSequence do // Produce output tokens until end of the target sequence
pio =0,gi0 =0 // Special cases so that the recurrence relation matches eq. (9)
for j =1toT do // Inspect all memory entries h;
eij = a(si—1,h;) |/ Compute attention energy for h; using eq. (16)
ei;j =e€i; +N(0,1) // Add pre-sigmoid noise to encourage p; j =~ 0 or p; ; ~ 1
pij =ol(e; ;) // Compute probability of choosing h
gi; = (1 —pij-1)qij-1+ai_1; [/ Iterate recurrence relation derived in eq. (10)
055 =Pijg; [/ Compute the probability that ¢; = h;
end for
ci = E};l o h; /] Compute weighted combination of memory for context vector
8; = f(8i—1,%i—1,¢i) // Update the state based on the new context vector using the RNN f
yi = 9(84,¢;) |/ Compute predicted output for timestep i using the softmax layer g
1=1+1
end while

Online and Linear-Time Attention by Enforcing Monotonic Alignments

B. Figures

Below are example hard monotonic and softmax attention alignments for each of the different tasks we included in our
experiments. Attention matrices are displayed so that black corresponds to 1 and white corresponds to 0.

Hard Monotonic Attention Hard Monotonic Attention

Output sequence index i
o
f”f

Softmax Attention Softmax Attention

Output sequence index i

Input Features
IR ESRT

Memory index j Memory index j

Figure 4. Attention alignments from hard monotonic attention and softmax-based attention models for a two example speech utterances.
From top to bottom, we show the hard monotonic alignment, the softmax-attention alignment, and the utterance feature sequence.
Differences in the alignments are highlighted with dashed red circles. Gaps in the alignment paths correspond to effectively ignoring
silences and pauses in the speech utterances.

Online and Linear-Time Attention by Enforcing Monotonic Alignments

Hard Monotonic Attention Hard Monotonic Attention
Va - Mot
toi
dang vu
trén nan
san B
khau doi
nay 16n
bdi
vi o
toi Bac
1a)
mot Triéu
ngudi Tién
mau
Softmax Attention Softmax Attention
Va Mot
toi su
dang N
Py xam
trén nhap
san vé
khau nan
nay ..
vi doi
toi khéng
moét ,
; o
k =
hinh sunk>
T H 1= C (%] () Qo H t=] c <C (0] (] + e © c Q [%] .
C © o ~ b0 wn © [} bo [! + (0] o= = o
<C © S e > o < [[+ <))
+ © o c = o o [e)}
wn (8] e © = N —
(] Y- 1
o) ©
-
£

Figure 5. English sentences, predicted Vietnamese sentences, and input-output alignments for our proposed hard monotonic alignment
model and the baseline model of (Luong & Manning, 2015). The Vietnamese model outputs for the left example can be translated back
to English as “And I on this stage because I am a model.” (monotonic) and “And I am on this stage because [am a structure.” (softmax).
The input word “model” can mean either a person or a thing; the monotonic alignment model correctly chose the former while the
softmax alignment model chose the latter. The monotonic alignment model erroneously skipped the first verb in the sentence. For the
right example, translations of the model outputs back to English are “A large famine in North Korea.” (monotonic) and “An invasion
of a huge famine in <unk>.” (softmax). The monotonic alignment model managed to translate the proper noun North Korea, while
the softmax alignment model produced <unk>. Both models skipped the phrase “mid-1990s”; this type of error is common in neural
machine translation systems.

Online and Linear-Time Attention by Enforcing Monotonic Alignments

Hard Monotonic Attention

china -
attacks
us ||
over
human
rights
criticism -
Softmax Attention

china [
attacks
us

over
human [|
rights
abuses

of
human
in
of

the
united
for
its
and
high
us
child
murder
and
child

turn
suicide

china
attacked
states
criticism
rights
abuses
abroad
wednesday
highlighted
rates

Figure 6. Additional example sentence-summary pair and attention alignment matrices for our hard monotonic model and the softmax-
based attention model of (Liu & Pan, 2016). The ground-truth summary is “china attacks us human rights”.

C. Monotonic Attention Distribution

Recall that our goal is to compute the expected value of ¢; under the stochastic process defined by egs. (6) to (8). To achieve

this, we will derive an expression for the probability that ¢; = h; for j € {1,..., T}, which in accordance with eq. (2) we
denote «; ;. For ¢ = 1, oy ; is the probability that memory element j was chosen (p; ;) multiplied by the probability that
memory elements k € {1,2,...,j — 1} were not chosen ((1 — p; 1)), giving
j—1
ar; =pu; [[(1—pre) (18)
k=1
For i > 0, in order for ¢; = h; we must have that ¢;_1 = hy, for some k € {1,...,j} (which occurs with probability
a;—1,%) and that none of Ay, ..., h;_; were chosen. Summing over possible values of k, we have
J Jj—1
Qij = Pij Z (ai—l,k H(1 - pu)) 19)
k=1 1=k

where for convenience we define H::L z = 1 when n > m. We provide a schematic and explanation of eq. (19) in fig. 7.
Note that we can recover eq. (18) from eq. (19) by defining the special case oy ; = J; (i.e. 2,1 = 1 and ag; = O for

j €{2,...,T}). Expanding eq. (19) reveals we can compute «; ; directly given a; 1 ; and v; j_1:
j—1 j—1
Q5 = Pij (Z (Oéi—l,k H(lpi,l)> +Oli—1,j> (20)
k=1 1=k
j—1 j—2
= Dij ((1 —Pij-1) Z <ai1,k H(l - pm)) + ail,j) (21
k=1 1=k
QG 5—
= Di; ((1 —pijo1) L ail,j) (22)
Pi,j—1

Defining ¢; ; = o ;/p;,; produces eqs. (13) and (14). Equation (22) also has an intuitive interpretation: The expression
(1 — pij—1) j—1/pij—1 represents the probability that the model attended to memory item j — 1 at output timestep ¢,
adjusted for the fact that memory item j — 1 was not chosen by multiplying (1 — p; ;—1) and dividing p; ;_1. Adding
a—1,; reflects the additional possibility that the model attended to memory item j at the previous output timestep, and
multiplying by p; ; enforces that memory item j was chosen at the current output timestep ¢.

Online and Linear-Time Attention by Enforcing Monotonic Alignments

OO0O0O0O0O000O OOOO0O0O0O0O OOOOOOO0O OOOOOOO0O
%OOOOOOO O0@OOO0O0O00O OOeOO0O0O0O COOeOOOO »

0000 O 0000 OO OO000O OO0 OOOO%
OO00O00000 OO0O0O0O0O0O0O OOO0O0O0O0O0O OO0O0O0O0OOO°
OO00O00000 OO0O0O0O0O0O0O OOOO0O0O0O0O OO0O0O0O0O0O0O

<—— Memory h ——

Figure 7. Visualization of eq. (19). In this example, we are showing the computation of a3 4. Each grid shows each of the four terms
in the summation, corresponding to the possibilities that we attended to memory item & = 1,2, 3,4 at the previous output timestep
i — 1 = 2. Gray nodes with curved arrows represent the probability of not selecting to the /th memory entry (1 — p; ;). The black nodes
represent the possibility of attending to memory item j at timestep .

C.1. Recurrence Relation Solution

While eqgs. (10) and (22) allow us to compute «; ; directly from o;_1 ; and o ;_1, the dependence on «y; ;1 means that
we must compute the terms o 1, 2, ..., a; 7 sequentially. This is in contrast to softmax attention, where these terms
can be computed in parallel because they are independent. Fortunately, there is a solution to the recurrence relation of
eq. (10) which allows the terms of «; to be computed directly via parallelizable cumulative sum and cumulative product
operations. Using eq. (13) which substitutes ¢; ; = ¢ j/p; j, we have

Gij =1 —pij—1)qij—1+ -1 (23)
Gij— (1= pij—1)qij—1 = i1 24
i I —pij—1)qi,;- i—1,j
; qv] _ (. p 5] 1)q ,J—1 — - o 1,5 (25)
=i =pig—1) Il =pig-1) Tl (I = pig-1)
qi,j i,j—1 Qi-1,j (26)

Q - ._1 = .
be1(I=pik—1) T =pir—1) IT—1 (1 —pig—1)

J J
Z (Hl : qi,l _ _ qi,l—1) _ Z Q1,1 @7
k=1

7 7
1—pik—1) kzll(l — Pik—1) =1 e (= pig—1)

=1

4i,j : Qi—1,1
1,7 1—1,

- — Qo= 7 (28)

e=1 (1= pig—1) lz:; [Tz (1= pig—1)
J J
1,1
Qij = H(l _pi,k—1)> <Z ; :) (29)
(k—l =1 [lea (= pi—1)
Q1
= q; = d(l —p; 30
¢; = cumprod(l — p;)cumsum <cumprod(1 — pz)) (30)

where cumprod(z) = [1,z1, 2122, . .., [[* "] and cumsum(z) = [21, 21 + 2, ..., >.1* 2;]. Note that we use the
“exclusive” variant of cumprod®* in keeping with our defined special case pi,0 = 0. Unlike the recurrence relation of
eq. (10), these operations can be computed efficiently in parallel (Ladner & Fischer, 1980). The primary disadvantage
of this approach is that the product in the denominator of eq. (29) can cause numerical instabilities; we address this in
appendix G.

“This can be computed e.g. in Tensorflow via t £ . cumprod (x, exclusive=True)

Online and Linear-Time Attention by Enforcing Monotonic Alignments

D. Experiment Details

In this section, we give further details into the models and
training procedures used in section 4. Any further ques-
tions about implementation details should be directed to the
corresponding author. All models were implemented with
TensorFlow (Abadi et al., 2016).

D.1. Speech Recognition
D.1.1. TIMIT

Mel filterbank features were standardized to have zero
mean and unit variance across feature dimensions accord-
ing to their training set statistics and were fed directly into
an RNN encoder with three unidirectional LSTM layers,
each with 512 hidden units. After the first and second
LSTM layers, we downsampled hidden state sequences by
skipping every other state before feeding into the subse-
quent layer. For the decoder, we used a single unidirec-
tional LSTM layer with 256 units, fed directly into the out-
put softmax layer. All weight matrices were initialized uni-
formly from [—0.075,0.075]. The output tokens were em-
bedded via a learned embedding matrix with dimensional-
ity 30, initialized uniformly from [—+/3/30, 1/3/30]. Our
decoder attention energy function used a hidden dimen-
sionality of 512, with the scalar bias r initialized to -1.
The model was regularized by adding weight noise with
a standard deviation of 0.5 after 2,000 training updates.
L2 weight regularization was also applied with a weight
of 1076.

We trained the network using Adam (Kingma & Ba, 2014),
with 81 = 0.9, B2 = 0.999, and ¢ = 1076, Utter-
ances were fed to the network with a minibatch size of
4. Our initial learning rate was 10~%, which we halved
after 40,000 training steps. We clipped gradients when
their global norm exceeded 2. We used three training repli-
cas. Beam search decoding was used to produce output
sequences with a beam width of 10.

D.1.2. WALL STREET JOURNAL

The input 80 mel filterbank / delta / delta-delta features
were organized as a T x 80 x 3 tensor, i.e. raw features,
deltas, and delta-deltas are concatenated along the “depth”
dimension. This was passed into a stack of two convolu-
tional layers with ReLU activations, each consisting of 32
3 x 3x depth kernels in time X frequency. These were both
strided by 2 x 2 in order to downsample the sequence in
time, minimizing the computation performed in the follow-
ing layers. Batch normalization (Ioffe & Szegedy, 2015)
was applied prior to the ReLLU activation in each layer. All
encoder weight matrices and filters were initialized via a
truncated Gaussian with zero mean and a standard devia-
tion of 0.1.

This downsampled feature sequence was then passed into a
single unidirectional convolutional LSTM layer using 1x3
filter (i.e. only convolving across the frequency dimension
within each timestep). Finally, this was passed into a stack
of three unidirectional LSTM layers of size 256, inter-
leaved with a 256 dimensional linear projection, following
by batch normalization, and a ReLU activation. Decoder
weight matrices were initialized uniformly at random from
[-0.1,0.1].

The decoder input is created by concatenating a 64 dimen-
sional embedding corresponding to the symbol emitted at
the previous timestep, and the 256 dimensional attention
context vector. The embedding was initialized uniformly
from [—1,1]. This was passed into a single unidirectional
LSTM layer with 256 units. We used an attention energy
function hidden dimensionality of 128 and initialized the
bias scalar r to -4. Finally the concatenation of the atten-
tion context and LSTM output is passed into the softmax
output layer.

We applied label smoothing (Chorowski & Jaitly, 2017),
replacing ¢, the target at time ¢, with (0.015¢;_o +
0.0359:—1 + 9 + 0.0357:+1 + 0.0153;42)/1.1. We used
beam search decoding at test time with rank pruning at 8
hypotheses and a pruning threshold of 3.

The network was trained using teacher forcing on mini-
batches of 8 input utterances, optimized using Adam
(Kingma & Ba, 2014) with 8; = 0.9, S = 0.999, and
e = 1075, Gradients were clipped to a maximum global
norm of 1. We set the initial learning rate to 0.0002 and
decayed by a factor of 10 after 700,000, 1,000,000, and
1,300,000 training steps. L2 weight decay is used with a
weight of 10~°, and, beginning from step 20,000, Gaussian
weight noise with standard deviation of 0.075 was added to
weights for all LSTM layers and decoder embeddings. We
trained using 16 replicas.

D.2. Sentence Summarization

For data preparation, we used the same Gigaword data pro-
cessing scripts provided in (Rush et al., 2015) and tok-
enized into words by splitting on spaces. The vocabulary
was determined by selecting the most frequent 200,000 to-
kens. Only the tokens of the first sentence of the article
were used as input to the model. An embedding layer was
used to embed tokens into a 200 dimensional space; em-
beddings were initialized using random normal distribution
with mean 0 and standard deviation 104,

We used a 4-layer bidirectional LSTM encoder with 4 lay-
ers and a single-layer unidirectional LSTM decoder. All
LSTMs, and the attention energy function, had a hidden di-
mensionality of 256. The decoder LSTM was fed directly
into the softmax output layer. All weights were initialized

Online and Linear-Time Attention by Enforcing Monotonic Alignments

uniform-randomly between —0.1 and 0.1. In our mono-
tonic alignment decoder, we initialized r to -4. At test time,
we used a beam search over possible label sequences with
a beam width of 4.

A batch size of 64 was used and the model was trained
to minimize the sampled-softmax cross-entropy loss with
4096 negative samples. The Adam optimizer (Kingma &
Ba, 2014) was used with 8; = 0.9, 82 = 0.999, and
€ = 1074, and an initial learning rate of 10~3; an expo-
nential decay was applied by multiplying the initial learn-
ing rate by .98"/39000 where n is the current training step.
Gradients were clipped to have a maximum global norm
of 2. Early stopping was used with respect to validation
loss and took about 300,000 steps for the baseline model,
and 180,000 steps for the monotonic model. Training was
conducted on 16 machines with 4 GPUs each. We reported
ROUGE scores computed over the test set of (Rush et al.,
2015).

D.3. Machine Translation

Overall, we followed the model of (Luong & Man-
ning, 2015) closely; our hyperparameters are largely the
same: Words were mapped to 512-dimensional embed-
dings, which were learned during training. We passed sen-
tences to the network in minibatches of size 128. As men-
tioned in the text, we used two unidirectional LSTM lay-
ers in both the encoder and decoder. All LSTM layers,
and the attention energy function, had a hidden dimen-
sionality of 512. We trained with a single replica for 40
epochs using Adam (Kingma & Ba, 2014) with 8; = 0.9,
By = 0.999, and ¢ = 10~8. We performed grid searches
over initial learning rate and decay schedules separately for
models using each of the two energy functions eq. (16) and
eq. (17). For the model using eq. (16), we used an ini-
tial learning rate of 0.0005, and after 10 epochs we mul-
tiplied the learning rate by 0.8 each epoch; for eq. (17)
we started at 0.001 and multiplied by 0.8 each epoch start-
ing at the eighth epoch. Parameters were uniformly initial-
ized in range [—0.1, 0.1]. Gradients were scaled whenever
their norms exceeded 5. We used dropout with probability
0.3 as described in (Pham et al., 2014). Unlike (Luong &
Manning, 2015), we did not reverse source sentences in our
monotonic attention experiments. We set r = —2 for the
attention energy function bias scalar for both eq. (16) and
eq. (17). We used greedy decoding (i.e. no beam search) at
test time.

E. Future Work

We believe there are a variety of promising extensions
of our monotonic attention mechanism, which we outline
briefly below.

e The primary drawback of training in expectation is
that it retains the quadratic complexity during training.
One idea would be to replace the cumulative product
in eq. (9) with the thresholded remainder method of
(Graves, 2016) and (Grefenstette et al., 2015), but in
preliminary experiments we were unable to successfully
learn alignments with this approach. Alternatively, we
could further our investigation into gradient estimators
for discrete decisions (such as REINFORCE or straight-
through) instead of training in expectation (Bengio et al.,
2013).

e As we point out in section 2.4, our method can fail when
the attention energies e; ; are poorly scaled. This primar-
ily stems from the strict enforcement of monotonicity.
One possibility to mitigate this would be to instead reg-
ularize the model with a soft penalty which discourages
non-monotonic alignments, instead of preventing them
outright.

e In some problems, the input-output alignment is non-
monotonic only in small regions. A simple modifica-
tion to our approach which would allow this would be
to subtract a constant integer from t;_; between output
timesteps. Alternatively, utilizing multiple monotonic
attention mechanisms in parallel would allow the model
to attend to disparate memory locations at each output
timestep (effectively allowing for non-monotonic align-
ments) while still maintaining linear-time decoding.

e To facilitate comparison, we sought to modify the stan-
dard softmax-based attention framework as little as pos-
sible. As a result, we have thus far not fully taken advan-
tage of the fact that the decoding process is much more
efficient. Specifically, the attention energy function of
eq. (15) was primarily motivated by the fact that it is
trivially parallelizable so that its repeated application is
inexpensive. We could instead use a recurrent attention
energy function, whose output depends on both the at-
tention energies for prior memory items and those at the
previous output timestep.

F. How much faster is linear-time decoding?

Throughout this paper, we have emphasized that one ad-
vantage of our approach is that it allows for linear-time de-
coding, i.e. the decoder RNN only makes a single pass over
the memory in the course of producing the output sequence.
However, we have thus far not attempted to quantify how
much of a speedup this incurs in practice. Towards this
end, we conducted an additional experiment to measure the
speed of efficiently-implemented softmax-based and hard
monotonic attention mechanisms. We chose to focus solely
on the speed of the attention mechanisms rather than an en-
tire RNN sequence-to-sequence model because models us-
ing these attention mechanisms are otherwise equivalent.

Online and Linear-Time Attention by Enforcing Monotonic Alignments

Mpnotonic VS. ‘Softmax

Output Sequence Length

8 16 32 64 128
Input Sequence Length

Figure 8. Speedup of hard monotonic attention mechanism com-
pared to softmax attention on a synthetic benchmark.

Measuring the speed of the attention mechanisms alone al-
lows us to isolate the difference in computational cost be-
tween the two approaches.

Specifically, we implemented both attention mechanisms
using the highly-efficient C++ linear algebra package Eigen
(Guennebaud et al., 2010). We set entries of the mem-
ory h and the decoder hidden states s; to random vectors
with entries sampled uniformly in the range [—1,1]. We
then computed context vectors following egs. (2) and (3)
for the softmax attention mechanism and following algo-
rithm 1 for hard monotonic attention. We varied the input
and output sequence lengths and averaged the time to pro-
duce all of the corresponding context vectors over 100 trials
for each setting.

The speedup of the monotonic attention mechanism com-
pared to softmax attention is visualized in fig. 8. We found
monotonic attention to be about 4 — 40X faster depending
on the input and output sequence lengths. The most promi-
nent difference occurred for short input sequences and long
output sequences; in these cases the monotonic attention
mechanism finishes processing the input sequence before
it finishes producing the output sequence and therefore is
able to stop computing context vectors. We emphasize that
these numbers represent the best-case speedup from our
approach; a more general insight is simply that our pro-
posed hard monotonic attention mechanism has the poten-
tial to make decoding significantly more efficient for long
sequences. Additionally, this advantage is distinct from the
fact that our hard monotonic attention mechanism can be
used for online sequence-to-sequence problems. We also

emphasize that at training time, we expect our soft mono-
tonic attention approach to have roughly the computational
cost as standard softmax attention, thanks to the fact that
we can compute the resulting attention distribution in par-
allel as described in appendix C.1. The code used for this
benchmark is available in the repository for this paper.’

G. Practitioner’s Guide

Because we are proposing a novel attention mechanism, we
share here some insights gained from applying it in various
settings in order to help practitioners try it on their own
problems:

e The recursive structure of computing ¢; ; in eq. (9) can
result in exploding gradients. We found it vital to apply
gradient clipping in all of our experiments, as described
in appendix D.

e Many automatic differentiation packages can produce
numerically unstable gradients when using their camula-
tive product function.®’ Our simple solution was to com-
pute the product in log-space, i.e. replacing [[, z, =

exp(Y, log ().

e In addition, the product in the denominator of eq. (29)
can become negligibly small because the terms (1 —
pik—1) all fall in the range [0, 1]. The simplest way to
prevent the resulting numerical instabilities is to clip the
range of the denominator to be within [e, 1] where € is a
small constant (we used e = 107'°). This can result in
incorrect values for «; ; particularly when some p; ; are
close to 1, but we encountered no discernible effect on
our results.

o Alternatively, we found in preliminary experiments that
simply setting the denominator to 1 still produced good
results. This can be explained by the observation that
when all p; ; € {0, 1} (which we encourage during train-
ing), eq. (29) is equivalent to the recurrence relation of
eg. (10) even when the denominator is 1.

e As we mention in the experiment details of the previous
section, we ended up using a small range of values for
the initial energy function scalar bias . In general, per-
formance was not very sensitive to this parameter, but
we found small performance gains from using values in
{-=5,—4, -3, -2, —1} for different problems.

e More broadly, while the attention energy function mod-
ifications described in section 2.4 allowed models using
our mechanism to be effectively trained on all tasks we

5https ://github.com/craffel/mad

*https://github.com/tensorflow/
tensorflow/issues/3862

"https://github.com/Theano/Theano/issues/
5197

Online and Linear-Time Attention by Enforcing Monotonic Alignments

tried, they were not always necessary for convergence.
Specifically, in speech recognition experiments the per-
formance of our model was the same using eq. (15) and
eq. (16), but for summarization experiments the mod-
els were unable to learn to utilize attention when using
eq. (15). For ease of implementation, we recommend
starting with the standard attention energy function of
eq. (15) and then applying the modifications of eq. (16)
if the model fails to utilize attention.

e It is occasionally recommended to reverse the input se-
quence prior to feeding it into sequence-to-sequence
models (Sutskever et al., 2014). This violates our as-
sumption that the input should be processed in a left-
to-right manner when computing attention, so should be
avoided.

e Finally, we highly recommend visualizing the attention
alignments «; ; over the course of training. Attention
provides valuable insight into the model’s behavior, and
failure modes can be quickly spotted (e.g. if a; ; = 0 for
all 7 and j).

With the above factors in mind, on all problems we studied,
we were able to replace softmax-based attention with our
novel attention and immediately achieve competitive per-
formance.

References

Abadi, Martin, Barham, Paul, Chen, Jianmin, Chen,
Zhifeng, Davis, Andy, Dean, Jeffrey, Devin, Matthieu,
Ghemawat, Sanjay, Irving, Geoffrey, Isard, Michael,
Kudlur, Manjunath, Levenberg, Josh, Monga, Rajat,
Moore, Sherry, Murray, Derek G., Steiner, Benoit,
Tucker, Paul, Vasudevan, Vijay, Warden, Pete, Wicke,
Martin, Yu, Yuan, and Zheng, Xiaoqiang. TensorFlow:
A system for large-scale machine learning. In Operating
Systems Design and Implementation, 2016.

Bengio, Yoshua, Léonard, Nicholas, and Courville, Aaron.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013.

Chorowski, Jan and Jaitly, Navdeep. Towards better decod-
ing and language model integration in sequence to se-
quence models. arXiv preprint arXiv:1612.02695, 2017.

Adaptive computation time for recurrent
arXiv preprint arXiv:1603.08983,

Graves, Alex.
neural networks.
2016.

Grefenstette, Edward, Hermann, Karl Moritz, Suleyman,
Mustafa, and Blunsom, Phil. Learning to transduce with
unbounded memory. In Advances in Neural Information
Processing Systems, 2015.

Guennebaud, Gaé¢l, Jacob, Benoit, Avery, Philip, Bachrach,
Abraham, Barthelemy, Sebastien, et al. FEigen v3.
http://eigen.tuxfamily.org, 2010.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine
Learning, 2015.

Adam: A
arXiv preprint

Kingma, Diederik and Ba, Jimmy.
method for stochastic optimization.
arXiv:1412.6980, 2014.

Ladner, Richard E. and Fischer, Michael J. Parallel prefix
computation. Journal of the ACM (JACM), 27(4):831-
838, 1980.

Liu, Peter J. and Pan, Xin. Text summarization with Ten-
sorFlow. http://goo.gl/16RNEu, 2016.

Luong, Minh-Thang and Manning, Christopher D. Stan-
ford neural machine translation systems for spoken lan-
guage domain. In International Workshop on Spoken
Language Translation, 2015.

Pham, Vu, Bluche, Théodore, Kermorvant, Christopher,
and Louradour, Jérdme. Dropout improves recurrent
neural networks for handwriting recognition. In Interna-
tional Conference on Frontiers in Handwriting Recogni-
tion, 2014.

Rush, Alexander M., Chopra, Sumit, and Weston, Jason. A
neural attention model for abstractive sentence summa-
rization. In Conference on Empirical Methods in Natural
Language Processing, 2015.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence
to sequence learning with neural networks. In Advances
in neural information processing systems, 2014.

