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Abstract

In multi-task learning, a learner is given a col-
lection of prediction tasks and needs to solve all
of them. In contrast to previous work, which re-
quired that annotated training data is available for
all tasks, we consider a new setting, in which for
some tasks, potentially most of them, only un-
labeled training data is provided. Consequently,
to solve all tasks, information must be trans-
ferred between tasks with labels and tasks with-
out labels. Focusing on an instance-based trans-
fer method we analyze two variants of this set-
ting: when the set of labeled tasks is fixed, and
when it can be actively selected by the learner.
We state and prove a generalization bound that
covers both scenarios and derive from it an al-
gorithm for making the choice of labeled tasks
(in the active case) and for transferring informa-
tion between the tasks in a principled way. We
also illustrate the effectiveness of the algorithm
by experiments on synthetic and real data.

1. Introduction

In the multi-task learning setting (Caruana, 1997) a learner
is given a collection of prediction tasks that all need to be
solved. The hope is that the overall prediction quality can
be improved by processing the tasks jointly and sharing in-
formation between them. Indeed, theoretical as well as ex-
perimental studies have shown that information transfer can
reduce the amount of annotated examples per task needed
to achieve good performance under various assumptions on
how the learning tasks are related.

All existing multi-task learning approaches have in com-
mon, however, that they need at least some labeled training
data for every task of interest. In this paper, we study a
new and more challenging setting, in which for a subset of
the tasks (typically the large majority) only unlabeled data
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is available. In practice, it is highly desirable to be able to
handle this situation for problems with a very large number
of tasks, such as sentiment analysis for market studies: for
different products different attributes matter and, thus, each
product should be have its own predictor and forms its own
learning task. At the same time annotating data for each
such task is prohibitive, especially when new products are
constantly added to the market. Another example are pre-
diction problems, for which the fixed cost of obtaining any
labels for a task can be high, even when the variable cost
per label are reasonable. This is a well-known issue when
using crowd sourcing for data annotation: recruiting and
training annotators first imposes a large overhead, and only
afterwards many labels can be obtained within a short time
and at a low cost.

A distinctive feature of the setting we study is that it re-
quires two types of information transfer: between the la-
beled tasks and from labeled to unlabeled ones. While the
first type is common in multi-task learning, none of the ex-
isting multi-task methods is able to handle the second type.
In contrast, information transfer from labeled to unlabeled
tasks is commonly studied in domain adaptation research,
where, however, transfer of the first type is typically not
considered. Thus, the setting of multi-task learning with
labeled and unlabeled tasks can be seen as a blend of tra-
ditional multi-task learning and domain adaptation.

In this work we focus on a transfer method that learns a
predictor for every task of interest by minimizing a task-
specific convex combination of training errors on the la-
beled tasks (Ben-David et al., 2007; Mansour et al., 2009).
We choose this method because it allows us to capture both
types of information transfer — between the labeled tasks
and from labeled to unlabeled ones — in a unified fashion.
Clearly, the success of this approach depends on the choice
of the weights in the convex combinations. Moreover, one
can expect it also to depend on the subset of labeled tasks
as well, because some subsets of tasks might be more in-
formative and representative than the others. This suggests
that it will be beneficial if the labeled subset is not arbitrary
but if it can be chosen in a data-dependent way. We refer
to this learning scenario, where initially every task is repre-
sented only by a set of unlabeled examples and the learner
can choose for which tasks to request some labels, as active
task selection.
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Our main result is a generalization bound that quantifies
both of the aforementioned effects: it relates the total multi-
task error to quantities that depend on the subset of labeled
tasks and on the task-specific weights used for information
transfer. Using the computable quantities in the bound as
an objective function and minimizing it numerically, we
obtain a principled algorithm for selecting which tasks to
have labeled (in the active task selection scenario) and for
choosing task-specific weights and predictors for all tasks,
labeled as well as unlabeled. We highlight the practical use-
fulness of the derived method by experiments on synthetic
and real data.

The success of any information transfer approach, regard-
less whether it is applied in the multi-task or the domain
adaptation scenario, depends on the relatedness between
tasks of interest. Indeed, one cannot expect to benefit from
information transfer between the labeled tasks or to be able
to obtain solutions of reasonable quality for the unlabeled
ones if the given tasks are completely unrelated. An ad-
vantage of the method we propose is that from the associ-
ated generalization bound we can read off explicitly under
which conditions the algorithm can be expected to succeed.
In particular, it suggests that the proposed method is likely
to succeed if the given set of tasks satisfies the following
assumption of task smoothness: if two tasks are similar in
their marginal distributions, then their optimal prediction
functions are also likely to be similar. A more formal def-
inition will be given in Section 3. The task smoothness
assumption resembles the classical smoothness assumption
of semi-supervised learning (Chapelle et al., 2006). It can
be expected to hold in many real-world settings with a large
number of tasks, for example in the aforementioned case
of sentiment analysis: if two products are described us-
ing similar words, these words would likely have similar
connotation for both products. Note, also, that a similar
assumption appears implicitly in (Blanchard et al., 2011).

1.1. Related Work

Most existing multi-task learning methods work in the
fully supervised setting and aim at improving the over-
all prediction quality by sharing information between the
tasks. For this they employ different types of transfer:
instance-transfer methods re-use training samples from
different tasks (Crammer & Mansour, 2012), parameter-
transfer methods assume that the predictors for all tasks
are similar to each other in some norm and exploit this fact
through specific regularizers (Evgeniou & Pontil, 2004),
representation-transfer approaches assume that the predic-
tors for all tasks share a common (low-dimensional) rep-
resentation that can be learned from the data (Argyriou
et al., 2007; 2008). Follow-up works extended and gen-
eralized these concepts, e.g. by learning the relatedness of
tasks (Saha et al., 2011; Kang et al., 2011) or sharing only

between subgroups of tasks (Xue et al., 2007; Kumar &
Daumé III, 2012; Barzilai & Crammer, 2015). However,
all of the above methods require at least some labeled data
for each task.

To our knowledge, the only existing multi-task method
that can be applied in the considered setting where for
some tasks only unlabeled data is available is (Khosla
et al., 2012). Motivated by the problem of dataset bias,
this method relies on the assumption that different tasks
are minor modifications (i.e. biased versions) of the same,
true prediction problem. Similarly to (Evgeniou & Pontil,
2004), it uses specific regularizers and trains predictors for
all tasks jointly as small perturbations of a common pre-
dictor, which corresponds to the hypothetical unbiased task
and can potentially be applied to unseen problems. Thus,
applied in the considered setting, this method provides one
predictor for all unlabeled tasks and treats the labeled ones
as slight variations of them.

Information transfer from labeled to unlabeled tasks is
the question typically studied in domain adaptation re-
search. In fact, if the set of labeled tasks is fixed,
any domain adaptation technique might be used to ob-
tain solutions for unlabeled tasks, in particular those based
on source reweighting (Shimodaira, 2000), representation
learning (Pan et al., 2011; Glorot et al., 2011), or semi-
supervised transfer (Xing et al., 2007). However, by design
all domain adaptation methods aim at finding the best pre-
dictor on a single target task given a fixed set of source
tasks. Therefore none of them can readily be applied in the
active task selection setting, where the learner needs to se-
lect the labeled tasks that would lead to good performance
across all tasks.

A second related setting is zero-shot learning (Larochelle
et al., 2008; Lampert et al., 2013; Palatucci et al., 2009),
where contextual, usually semantic, information is used to
solve a learning task for which no training data is avail-
able. The situation we are interested in is more specific than
this, though, as we assume that unlabeled data of the tasks
is available, not context in an arbitrary form. As we will
show, this allows us to derive formal performance guaran-
tees that zero-shot learning methods typically lack.

The active task selection scenario is directly related to the
question of identifying a representative set of source tasks
in domain adaptation, a question that has previously been
raised in the context of sentiment analysis (Blitzer et al.,
2007). It also shares some features with active learning,
where the learner is given a set of unlabeled samples and
can choose a subset to obtain labels for. A fundamental dif-
ference is, however, that in active learning the learner needs
to find a single prediction function for all labeled and unla-
beled data while in the multi-task setting each task, includ-
ing unlabeled ones, potentially requires its own predictor.
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In the multi-task or zero-shot setting, active learning has so
far not found widespread use. Exemplary works in this di-
rection are (Reichart et al., 2008; Saha et al., 2010; Gavves
et al., 2015), which, however, use active learning on the
level of training examples, not tasks. The idea of choos-
ing tasks was used in active curriculum selection (Ruvolo
& Eaton, 2013; Pentina et al., 2015), where the learner can
influence the order in which tasks are processed. However
these methods nevertheless require annotated examples for
all tasks of interest.

2. MTL with Labeled and Unlabeled Tasks

In the multi-task setting the learner observes a collec-
tion of prediction tasks and its goal is to learn all of
them. Formally, we assume that there is a set of T tasks
{(D1, f1,...,{(Dr, fr)}, where each task ¢ is defined by
a marginal distribution D, over the input space X and a de-
terministic labeling function f; : X — ). The goal of the
learner is to find 7" predictors hq, ..., hr in a hypothesis
set H C {h : X — Y} that would minimize the average
expected risk:

er(hl,...7hT) =

1 T
7 2 enilhe), ()
t=1

where ers(h;) = xNIEDtE(ht(x), fi(x)).

In this work we concentrate on the case of binary classifi-
cation tasks, Y = {—1,1}, and 0/1-loss, £(y1,y2) = 0 if
y1 = y2, and £(y1, y2) = 1 otherwise.

In the fully-supervised setting the learner is given a train-
ing set of annotated examples for every task of interest. In
contrast, we consider the scenario where every task ¢ is rep-
resented by a set S; = {z,..., !} of n unlabeled exam-
ples sampled i.i.d. according to the marginal distribution
D;. For a subset of k tasks {i1,...,1i}, which are either
predefined or, in the active scenario, can be selected based
on the unlabeled data, the learner is given labels for a ran-
dom subset S;; C S;, of m points.

To obtain a predictor for any task, labeled or unlabeled,
we consider a method that minimizes a convex combina-
tion of training errors of the labeled tasks. This choice al-
lows us to capture, in a unified fashion, both types of in-
formation transfer — between the labeled tasks and from
labeled to unlabeled ones. Formally, for a set of tasks

I={i,...,i} C{1,...,T} we define:
T
AI:{aE[O,l]T:Zaizl; suppagl} ()
i=1

forsuppa = {i € {1,...,T} : a; # 0}. Given a weight
vector o € A, the a-weighted empirical error of a hypoth-

esis h € H is defined as follows:

o (h) =) aiéii(h), 3)
iel
where ér;(h) = Z L(h 4
(z,y)€S:

In order to obtain a solution for any task ¢ the learner min-
imizes ét,¢(h) for some o' € A!, where I is the set of
labeled tasks, potentially in combination with some regu-
larization.

The success of this approach depends on the subset I of
tasks that are labeled and on the weights o', ..., a”. The
following theorem quantifies both of these effects and will
later be used to chose o!,...,a” and potentially I in a
principled way.

Theorem 1. Let d be the VC dimension of the hypothe-
sis set H, k be the number of labeled tasks, S1,...,ST be

T sets of size n each, where S; * 2 “D;,and Sy,...,S7
be their random subsets of size m each, for which labels
would be provided if the corresponding task is selected
as labeled. Then for any § > 0 with probability at least

1 —6overSy,...,St and Sy,...,St uniformly for all
choices of labeled tasks 1 = {iy,...,ip} and weights
al,....aT € Al provided that they are fully determined

by the unlabeled data only, and for all possible choices of
hi,...,hr € H the following inequality holds:

Zert (hy) < Zeraf (he)+ ZZOL disc(St, S;

t liel

A B
+ T||a||2,1 +f| iy (5)

t=1 icl
where

disc(Sy, S;) = max, lers, (h,h') — érg, (h, h')|

with ¢érg, (h,h') = + Z? L(h(@h), W (2%)) is the empiri-

cal discrepancy berween unlabeled samples St and S;, and

Nij = min(ers(h) + ex; (1)

|21 = Z > ()2, Jalhz =

t=1 el
= 2d10g(ekm/d) ’
o \/8 logT+dlog(enT/d)) \/
D—3 2dlog(2n) + 21og(T') + log(4/5).

n
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Proof Sketch (the full proof can be found in the supple-
mental material). By Theorem 2 in (Ben-David et al.,
2010), for any two tasks ¢ and ¢ the following inequality
holds for every h € H:

ery(h) < er;(h) + disc(Dy, D;) + Agi- (6)

Thus, we obtain the following bound on the average ex-
pected error over all tasks in terms of the error on the la-
beled tasks:

e e
TZ ery(he) < Tzerat (he) (7)
t=1 t=1

T T
1 t 1: 1 t
+TZ Zai disc(Dy, D;) + T Z Z o A,
t=1 i€l t=1 iel
with erqy:(hy) = ze;af IEEDié(ht(x),fi(x)), and (8)
erp,(h,h') = ED_E(h(x),h’(x)), and )

: N n_ ’
disc(Dy, D;) h%l/aexﬂ\ erp, (h,h")—erp,(h,h")| (10)

is the discrepancy between two distributions (Kifer et al.,
2004; Mansour et al., 2009; Ben-David et al., 2010). In
order to prove the statement of the theorem we need to re-
late the a-weighted expected errors and discrepancies be-
tween the marginal distributions in (7) to their empirical
estimates.

The proof consists of three steps. First, we show that, con-
ditioned on the unlabeled data, % Zle €r,t can be upper

. 1 T A .
bounded in terms of % ) ,_; €T, where:

n
cta(h) =3 acri(h) =Y % 3 (hlat), filxl)).
i€l iel 7 j=1

This quantity can be interpreted as a training error if the
learner would receive the labels for all the samples for the
chosen tasks /. Note that in case of m = n this step is
not needed and we can avoid the corresponding complexity
terms. In the second steprwe relate the average a-weighted
expected errors to % > i—1 €rqt. In the third step we con-
clude the proof by bounding the pairwise discrepancies in
terms of their empirical estimates.

Step 1. Fix the unlabeled sets Si,...,Sp. They fully
determine the choice of labeled tasks I and the weights
al, ..., a”. Therefore, conditioned on the unlabeled data,
these quantities can be considered constant and the bound

has to hold uniformly only with respect to hy, ..., hp.

In order to simplify the notation we assume that I =
{1,...,k} and define:

.»Sk) = sup

T
1
e E érath —éi‘ath .
hiseoshy 1 ( t) ( t)

t=1
1D

Note that one could analyze this quantity using standard
techniques from Rademacher analysis, if the labeled exam-
ples were sampled from the unlabeled sets i.i.d., i.e. with
replacement. However, since we assume that for every
S, is a subset of S, i.e. the labeled examples are sam-
pled randomly without replacement, there are dependen-
cies between the labeled examples. Therefore we utilize
techniques from the literature on transductive learning (El-
Yaniv & Pechyony, 2007) instead. We first apply Doob’s
construction to ¢ in order to obtain a martingale sequence
and then use McDiarmid’s inequality for martingales (Mc-
Diarmid, 1989). As a result we obtain that with probability
at least 1 — §/4 over sampling labeled examples:

Now we need to upper bound E ®. Using results from (Tol-
stikhin et al., 2014) and (Hoeffding, 1963) we observe that:

E  &(S,...

_ . ,Sk), (13)
S1,..,8k S1,---,5k

where S; is a set of m points sampled from .S; i.i.d. with
replacement (in contrast to sampling without replacement
corresponding to .S;). This means that we can upper bound
the expectation of ® over samples with dependencies by the
expectation over independent samples. By doing so, apply-
ing the symmetrization trick, and introducing Rademacher
random variables, we obtain that:

at)2. /2dlog(ekm/d)' (14)
m

A combination of (12) and (14) shows that (conditioned
on the unlabeled data) with probability at least 1 — 6/4
over sampling labeled examples uniformly for all choices

of hy, ..., hp the following holds:
T T
1 - 1 N A B
T;erat(ht) < T;erat(ht)—l—lfﬂa 2)1—}—?HO{H172.
(15)

Step 2. Now we relate L 57| 6toe to £ 307 erge.

The choice of the tasks to label, I, the corresponding
weights, «, and the predictors, h, all depend on the un-
labeled data. Therefore, we aim for a bound that is uniform
in all three parameters. We define:

7ST):

%Z S~ al(ers(hy) — éri(he)).

t=1 i=1

(S, ...

sup sup sup
I ol,...,aTeA! hy,...;ht
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The main instrument that we use here is a refined version
of McDiarmid’s inequality, which is due to (Maurer, 2006).
It allows us to use the standard Rademacher analysis, while
taking into account the internal structure of the weights
a',...,aT. As a result we obtain that with probability
at least 1 — /4 simultaneously for all choices of tasks to
be labeled, I, weights o', ..., a” € Al and hypotheses

h17...7hTi

*Zera ht S

+C. (16)

HMH

Step 3. To conclude the proof we bound the pairwise dis-
crepancies in terms of their finite sample estimates. Ac-
cording to Lemma 1 in (Ben-David et al., 2010) for any
pair of tasks 7,7 and any § > 0 with probability at least
1—¢:

2dlog(2n) + 1og(2/5).

n

disc(D;, D;) < disc(S;, Sj)+2\/

We apply this result to every pair of tasks and combine the
results using the uniform bound argument. This yields the
remaining two terms on the right hand side: the weighted
average of the sample-based discrepancies and the constant
D. By combining the result with (15) and (16) we obtain
the statement of the theorem. O

3. Explanation and Interpretation

The left-hand side of inequality (5) is the average expected
error over all T tasks, the quantity of interest that the
learner would like to minimize but cannot directly com-
pute. It is upper-bounded by the sum of two complexity
terms and five task-dependent terms: weighted training er-
rors on the labeled tasks, weighted averages of the distances
to the labeled tasks in terms of the empirical discrepancies,
two mixed norms of the weights o and a weighted average
of A-s.

The complexity terms C' and D behave as
O(y/dlog(nT)/n) and converge to zero when the
number of unlabeled examples per task, n, tends to infinity.
In contrast, £|all21 + Z|all12 in the worst case of
lall2,1 = [|all1,.2 = T behaves as O(y/dlog(km)/m) and
converges to zero when the number of labeled examples
per labeled task, m, tends to infinity. In order for these
terms to be balanced, i.e. for the uncertainty coming
from the estimation of discrepancy to not dominate the
uncertainty from the estimation of the a-weighted risks,
the number of unlabeled examples per task n should be
significantly (for £k < T') larger than m. However, this
is not a strong limitation under the common assumption
that obtaining enough unlabeled examples is significantly
cheaper than annotated ones.

The remaining terms on the right-hand side of (5) depend
on the set of labeled tasks I, the tasks-specific weights a-s
and hypotheses h-s. Thus, by minimizing them with re-
spect to these quantities one can expect to obtain values
for them that are beneficial for solving all tasks of inter-
est based on the given data. For the theorem to hold, the
set of labeled tasks and the weights may not depend on the
labels. The part of the bound that can be estimated based
on the unlabeled data only, and therefore to select I (in the

active scenario) and a! Sal s

% Z Z al disc(Sy, S;)

t=1 i€l

B
||01||21+ ||Oé||12 (17)

The first term in (17) is the average weighted distance from
every task to the labeled ones, as measured by the discrep-
ancy between the corresponding unlabeled training sam-
ples. This term suggests that for every task t the largest
weight, i.e. the highest impact in terms of information
transfer, should be put on a labeled task 7 that has a similar
marginal distribution. Note that the employed “’similarity”,
which is captured by the discrepancy, directly depends on
the considered hypothesis class and loss function and, thus,
is tailored to a particular setting of interest. At the same
time, the mixed-norm terms ||c||1 2 and ||a||2,1 prevent the
learner from putting all weight on the single closest labeled
task and can be seen as some form of regularization. In par-
ticular, they encourage information transfer also between
the labeled tasks, since minimizing just the first term in (17)
for every labeled tasks ¢ € I would result in all weight to
be put on task i itself and nothing on other tasks, because
by definition disc(S;,.5;) =0

The first mixed-norm term, |||2,1 influences every o in-
dependently and encourages the learner to use data from
multiple labeled tasks for adaptation. Thus, it captures the
intuition that sharing from multiple labeled tasks should
improve the performance. In contrast, ||||1,2 connects the
weights for all tasks. This term suggests to label tasks that
all would be equally useful, thus preventing spending re-
sources on tasks that would be informative for only a few of
the remaining ones. Also, it prevents the learner from hav-
ing super-influential labeled tasks that share with too many
others. Such cases would be very unstable in the worst case
scenario: mistakes on such tasks would propagate and have
a major effect on the overall performance.

The effect of the mixed-norm terms can also be seen
through the lens of the convergence rates. Indeed, as al-
ready mentioned above, in the case of every o having only
one non-zero component, ||a||21 and |la1,2 are equal to
T and thus the convergence rate' is O(1/1/m). However,
in the opposite extreme, if every ! weights all the labeled
tasks equally, i.e. af = 1/k forallt € {1,...,T} and

'O(-) is an analog of O(-) that hides logarithmic factors
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Figure 1. Schematic illustration of active task selection. Left: eight unlabeled tasks need to be solved. Center: the subset of tasks to be
labeled and between-task weights are determined by minimizing (17). Right: annotated data for labeled tasks is obtained, and prediction
functions (black vs. white) for each task are learned using the learned weighted combinations. Sharing can occur between labeled tasks.

T
g vk
rate improves to O(y/1/km), which is the best one can

expect from having a total of km labeled examples.

i € I, then ||aj21 = [|afl1,2 = and the convergence

The only term on the right-hand side of (5) that depends
on the hypotheses hi,...,hr and can be used to make
a favorable choice is the weighted training error on the
labeled tasks. Thus, the generalization bound of Theorem 1
suggest the following algorithm (Figure 1):

Algorithm 1.

1. estimate pairwise discrepancies between the tasks

based on the unlabeled data

choose the tasks I to be labeled (in the active case)

and the weights o', ..., o’ by minimizing (17)

. receive labels for the labeled tasks 1

. for every task ¢ train a classifier by minimizing (3)
using the obtained weights at.

2.

w

Note, that this procedure is justified by Theorem 1: all
choices are done in agreement with the conditions of the
theorem and, because the inequality (5) holds uniformly for
all eligible choices of labeled tasks, weights and predictors,
the guarantees also hold for the resulting solution.

Algorithm 1 is guaranteed to perform well, if the solution it
finds leads to a low value of the right-hand side of (5). By
construction, it minimizes all data-dependent terms in (5),
except for one quantity that cannot be estimated from the
available data:

(18)

1 T

t=1 €l

While discrepancy captures the similarity between
marginal distributions, the A-terms reflect the similarity
between labeling functions: for every pair of task, ¢, and
labeled task, ¢ € I, the corresponding value \¢; is small if
there exists a hypothesis that performs well on both tasks.
Thus, Algorithm 1 can be expected to perform well, if for
any two given tasks ¢ and ¢ that are close to each other in
terms of discrepancy (and thus in the minimization of (17)
the corresponding ! is large), there exists a hypothesis

%

that performs well on both of them (i.e. the corresponding
At; is small). We refer to this property of the set of learning
tasks as task smoothness.

Training predictors for every task of interest using data
from all labeled tasks improves the statistical guarantees
of the learner. However, it results in empirical risk min-
imization on up to km samples for T different weighted
combinations. Since we are most interested in the situation
when T is large, one might be interested in way to reduce
the amount of necessary computation. One way to do so
is to drop the mixed-norm terms from the objective func-
tion (17), in which case it reduces to

T
% Z Z al disc(Sy, S;).

t=1 el

19)

This expression is linear in v and thus minimizing it for
a fixed set I will lead to assigning each task to a single
labeled task that is closest to it in terms of empirical dis-
crepancy. Each labeled task will be assigned to itself. Con-
sequently, the learner must train only k predictors, one for
each labeled task, using only its m samples. The expres-
sion (19) can be seen as the k-medoids clustering objective
with tasks corresponding to points in the space with (semi-
)metric defined by empirical discrepancy and labeled tasks
correspond to the centers of the clusters. Thus, this method
reduces to k-medoids clustering, resembling the suggestion
of Blitzer et al. (2007). Note that, nevertheless, the condi-
tions of Theorem 1 are fulfilled, and thus its guarantees will
hold for the obtained solution. The guarantees will be more
pessimistic, however, than those from Algorithm 1, as the
minimization ignores parts of the bound (5) and will not use
the potentially beneficial transfer between labeled tasks.

4. Experiments

To illustrate that the proposed algorithm can also be prac-
tically useful, we performed experiments on synthetic and
real data. In both cases we choose 7{ to be the set of all
linear predictors with a bias term on X' = R

Synthetic data. We generate 7' = 1000 binary classifica-
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(d) Product reviews, single-source transfer

Figure 2. Experimental results on synthetic and real data: average test error and standard deviation over 10 repeats.

tion tasks in R2. For each task ¢ its marginal distribution
D, is a unit-variance Gaussian with mean p; chosen uni-
formly at random from the set [—5, 5] x [—5, 5]. The label
+1 is assigned to all points that have angle between 0 and
m with p; (computed counter-clockwise), the other points
are labeled —1. We use n = 1000 unlabeled and m = 100
labeled examples per task.

Real Data. We curate a Multitask dataset of product re-
views? from the corpus of Amazon product data® (McAuley
et al., 2015a;b). We select the products for which there are
at least 300 positive reviews (with scores 4 or 5) and at
least 300 negative reviews (with scores 1 or 2). Each of the
resulting 957 products we treat as a binary classification
task of predicting whether a review is positive or negative.
For every review we extract features by first pre-processing
(removing all non-alphabetical characters, transforming the
rest into lower case and removing stop words) and then ap-
plying the sentence embedding procedure of (Arora et al.,
2017) using 25-dimensional GloVe word embedding (Pen-
nington et al., 2014). We use n = 500 unlabeled samples
per task and label a subset of m = 400 examples for each
of the selected tasks. The remaining data is used for testing.

Methods. We evaluate the proposed method in the case
when the set of labeled tasks is predefined (referred to
as DA) by setting the set I to be a random subset of
tasks and minimizing (17) only with respect to a-s and in
the active task selection scenario where (17) is minimized

2http ://cvml.ist.ac.at/productreviews/
3http ://jmcauley.ucsd.edu/data/amazon/

with respect to both I and a-s (referred to as Active DA).
We compare these methods to a multi-task method based
on (Khosla et al., 2012), also with random labeled tasks
(the same ones as for DA). Specifically, we solve:

. 1 1—~
2 2 T 2
lryn})r})C(Hu}H +%ZH’U!&” )Jr% Z Ew T+b—y)
tel tel,(z,y)ESt
g T T 2
+%Z Z, (w* +vy )+ (b+b)—y)* (20)
tel (z,y)€S+

for v € {0,0.1,...,1} and use (w,b) for making predic-
tions on all unlabeled tasks and (w + v, b + b;) for each
labeled task ¢ € I. For every number of labeled tasks we
report the result for  that has the best test performance av-
eraged over 10 repeats (denoted by Multi-task), as an upper
performance bound on what could be achieved by model
selection.

We also evaluate the discussed simplification of the pro-
posed methods that consists of minimizing (19). We refer
to these as DA-SS (for random predefined labeled tasks) and
as Active DA-SS (in the active task selection scenario). The
SS stands for single source, as in this setting, each task is
solved based on information from only one labeled tasks.

To provide further context for the results we also report
the results of learning independent ridge regressions with
access to labels for all tasks (denoted by Fully Labeled).
However, this baseline has access to many more annotated
examples in total than all other methods. In order to quan-
tify this effect we also consider the setting when the learner


http://cvml.ist.ac.at/productreviews/
http://jmcauley.ucsd.edu/data/amazon/

Multi-task Learning with Labeled and Unlabeled Tasks

has access to labels for all tasks, but fewer of them: namely,
when the number of labeled tasks is k&, the number of la-
bels per task is mk/T, i.e. the total amount of labeled ex-
amples is mk, the same as for all other methods. In this
case we evaluate two methods. The first one learns ridge
regressions for every task independently and thus can be
seen as a reference point for the methods that do not in-
volve information transfer between the labeled tasks, i.e.
DA-SS and Active DA-SS. The second reference method is
based on (Evgeniou & Pontil, 2004) and consists of mini-
mizing (20) with v set to 1 and processing all tasks as la-
beled. This approach transfers information between all the
tasks and therefore we refer to it when evaluating the meth-
ods that involve information transfer between the labeled
tasks, i.e. DA, Active DA and Multi-task.

Implementation. We estimate the empirical discrepan-
cies between pairs of tasks by finding a hypothesis in H
that minimizes the squared loss for the binary classification
problem of separating the two sets of instances, as in (Ben-
David et al., 2010). To minimize (17) for a given set of
labeled tasks we use gradient descent. It is also used as
a subroutine when minimizing (17) with respect to both
and a-s, for which we employ the GraSP algorithm (Bah-
mani et al., 2013). Active DA-SS involves the minimiza-
tion of the k-medoid risk (19), which we perform using a
local search as in (Park & Jun, 2009). For both methods
for the active task selection scenario we used the heuristic
from k-means++ (Arthur & Vassilvitskii, 2007) for initial-
ization. To obtain classifiers for the individual tasks in all
scenarios we use least-squares ridge regression. Regular-
ization constants for all methods we selected from the set
{0}U{10717,10716 ... 108} by 5 x 5-fold cross validation.

Results. The results are shown in Figure 4. First, one can
see that the proposed domain adaptation-inspired method
DA outperforms the multi-task method (20). This could
be due to higher flexibility of DA compared to Multi-task
as the latter provides only one predictor for all unlabeled
tasks. Indeed, the difference is most apparent in the ex-
periment with synthetic data, where by design there is no
single predictor that could perform well on a large fraction
of tasks. Results on the product reviews indicate that DA’s
flexibility of learning a specific predictor for every task can
be advantageous in more realistic scenarios as well.

Second, on both datasets both methods for active task se-
lection, i.e. Active DA and Active DA-SS, outperform the
corresponding passive methods, i.e. DA and DA-SS, sys-
tematically across various fractions of the labeled tasks. In
particular, both active task selection methods require sub-
stantially fewer tasks labeled to achieve the same accuracy
as their analogs with randomly chosen tasks. This confirms
the intuition that selecting which tasks to label in a data-
dependent way is beneficial and demonstrates that Theo-

rem 1 is capable of capturing this effect.

Another interesting observation that can be made from the
results in Figure 4 is that both active and passive domain
adaptation-inspired methods clearly outperform the corre-
sponding partially labeled baselines, especially for small
fractions of labeled tasks. This indicates that having more
labels for fewer tasks rather than only few labels for all
tasks could be beneficial not only in terms of annotation
costs, but also in terms of prediction accuracy.

As the number of labeled tasks gets larger, e.g. half of all
tasks, the performance of the active task selection learner
becomes almost identical to the performance of the Fully
Labeled method, even improving over it in the case of
multi-source transfer on synthetic data. This confirms the
intuition that in the case of many related tasks even a frac-
tion of the tasks can contain enough information for solving
all tasks.

5. Conclusion

In this work we introduced and studied a variant of multi-
task learning in which annotated data is available only for
some of the tasks. This setting combines aspects of tradi-
tional multi-task learning, namely the transfer of informa-
tion between labeled tasks, with aspects typical for domain
adaptation problems, namely transferring information from
labeled tasks to solve tasks for which only unlabeled data
is available. The success of the learner in this setting de-
pends on the effectiveness of information transfer and in-
formativeness of the set of labeled tasks. We analyzed two
scenarios: a passive one, in which the set of labeled tasks is
predefined, and the active task selection scenario, in which
the learner decides for which tasks to query labels.

Our main technical contribution is a generalization bound
that quantifies the informativeness of the set of labeled
tasks and the effectiveness of information transfer. We
demonstrated how the bound can be used to make the
choice of labeled tasks (in the active scenario) and to trans-
fer information between the tasks in a principled way. We
also showed how the terms in the bound have intuitive in-
terpretations and provide guidance under which assump-
tion of tasks relatedness the induced algorithm is expected
to work well. Our empirical evaluation demonstrated that
the proposed methods work also well in practice.

For future work we plan to further exploit the idea of ac-
tive learning in the multi-task setting. In particular, we are
interested in identifying whether by allowing the learner
to make its decision on which tasks to label in an iterative
way, rather than forcing it to choose all the tasks at the same
time, one could obtain better learning guarantees as well as
more effective learning methods.
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