1. Appendix

Here we present a more detailed proof of Theorem 1 and 2.

1.1. Proof of Theorem 1

We prove a more general result:

Theorem 1. Consider vectors x; € R™ for i =
1,2,...,n and their partitions Vi, Vs, ..., Vi with sizes
ni,No,...,Nk. Take the SON optimization:

min lefrz will3 + A fui =gl (D
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and its associated centroid optimization:

min E llva — Ca”?”@ + A E nanBHCa — call2
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1. Suppose that for every a € [K],
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Then, u; = v, for i € V,, is a global solution of the
SON clustering.
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2. If all c, VR 2
Hirﬁl llca — cal|, then all centroids v,, are distinct.
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3. Ifm(iix i X where ¢ = 21 x;/n, then at least
i=
two centroids v,, are distinct.

Proof. Notice that the solution of the centroid optimization
satisfies
o — Vo = )\Z?’nga”g
B

where ||zq,g]| < 1, 2a,8 = —28,o and whenever v, # vg,
the relation zo 5 = = holds. Now, for the solution
u; = v, fore € V,, define
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o = { Za,B
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where i € Vo, j € Vg. Itis easy to see that ||z, ||2 <1,
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zi; = —z;; and whenever u; # uj, we have that z =
i Further for each i,
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This shows that the local optimality conditions for the SON
optimization holds and proves part a.

For part b, denote the solution of the centroid optimization
by v, (A) and notice that the solution of SON consists of
distinct elements v, = ¢, and is continuous at A = 0.
Hence, v,s remain distinct in an interval A € [0, A;). Take
Ao as the supremum of all possible A;s. Hence, the solution
in A € [0, A\o) contains distinct element and at A = Ao con-
tains two equal elements (otherwise, one can extend [0, Ao)
to some [0, Ao + €), which is against A being supremum).
Now, notice that for A € [0 \g) the objective function is
smooth at the optimal point. Hence, v, () is differentiable
and satisfies
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where [. ], and [. |4, denote block vectors and block ma-
trices respectively. Moreover, H and g are the Hessian and
the gradient of the objective function at the optimal point.
In other words,
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Simple calculations show that ||§|o < nv/K. Hence,
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This yields for A < Ag to
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Since at A = X, we have that v, = vg for some a # 3, we
get that d — 2n VK < 0or Ny > d/2n\/R. this proves
part b.

For part c, Take a value of A\, where v; = vy = ... = vg.
It is simple to see that in this case v, = c. The optimality
condition leads to

C—Cqy = A Z Zo,8NB
B#a

Hence, ||c — ¢a|l2 < A(n — ng). This proves part c. O

1.2. Proof of Theorem 2

Denote by Uy, a matrix where the i column is the value of
u; at the k™M iteration. Define

VY (U) =E(Upy1 | Up =U, g = ) , €]

which by simple manipulations leads to

ZZ)#(U) =

U+ % D (L (0 () = Ly (i, )
(%)

i<j

where u; denotes the i column of U and L;j(x,y) is a
matrix where the i column is z, the j® column is y and
the rest are zero. Also, denote

o5 (U) = Var (Upy1 | Uy = U, g, = p)

=& ([Uknl3 | Up = U, s = 1) = 6 (V)13
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We prove a more detailed theorem:

Theorem 2. Starting from Uy = Uy (the initializa-
tion of the algorithm), define the characteristic sequence
{UL}2, by the following iteration:

Ijk-‘rl = qzzj,uk (Ijk)

1. We have that

- oo > /Ji
Pr (Sl;p Uk = Okllp + ) uf > /\> < k_(;\
’ =k
(6)

2. Define U as the unique optimal solution of the
SON optimization and suppose that {u} is a non-
increasing sequence.

(a) There exists a positive sequence h, = O(%),

where n is the number of data points, such that

o1 2 k—1 lﬁk
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where
1 - .
R(U,p) = 5[0 - Ul +u (2(U) - o(0)) ,
(b) There exists a universal constant a such that
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3. Assume that {p,} is non-increasing > pp, = oo and
0

o0 ~
S ui < oco. Then, the sequence Uy, converges to U

0
in the following strong probability sense:
Ve > 0; lim Pr <sup U, - U3 > e) =0 (8)
k—o0 1>k

4. Take pi, = 5% for k = 1,2,...and% < a < 1. For
sufficiently small values of € > 0 the relation

1

10: = Ol}t = Ol )

holds with probability 1.

Proof. Denote by ) the pair (4,j) which is selected in
iteration k£ and QF = (Q9,Q1,...,Q_1). Also, denote
Yu(U, (4, 7)) = U+Li; (I (us, u;)) — Lij (ui, uy). Then,
the iterations can be written as

Upt1 =, (U, Qi)
Upy1 = EWp, (Ur, Q) | Uy) )

Define Ak = Uk — ﬁk and N — @/Juk(ﬁk,Qk) —
E(Wu (U, Q) | Uy). Also, denote U = {Uj }22,. Notice
that the sequence {n;}7°, consists of zero-mean indepen-
dent elements. Subtracting the two iterations in (9) gives
us:

Api1 =V, (U, Q) = ¢ (Ug, Qi) + 1. (10)

It is simple to see that IT}; (u;, u;) is a contraction map for
any (i, 4, 7. Then, it is simple to deduce that ¥, (U, Q) is



a contraction map for any 2 and p. As a result, we obtain
from (10) that

E(|Aki —mellp | 9F) < [lAk]f%,
which can also be written as
E(lArmlz | 9F) <

IARIE + 28 (Y, (Ui, Q) me) | QF) — Ellmiel|f

Now, it is simple to see that ||1), (U, Q) —U|| < v/2u. Fur-
thermore, U}, only depends on g, 1, ..., Qx_1, while ng
is a function of ;. Hence, U}, and n;, are independent and
E((Ug,mi) | %) = 0 This leads to

E(lAknlF | 9QF) <

E(lIml13)
2 (U;) and

— Ellmwll7
< [|A]IE +2v2hu — Ellml®

Notice that £(||n;|3) =

.U'l
[Uks1 — Ukll2 = ([, (Uk, Q)

which leads to

— Upll2 < V2

op(U) < 24°.
‘We conclude that

E ([l Arsllf | 9F) <A + 43

Define 55, = Z 12, We observe that ||Ag||2 + s is a

supermartmgale Hence from the suprmartingale version
of the Doob’s inequality we obtain that
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k

This proves part (1).

For part (2) from the definition of the proximal opera-
tor, there exists a vector ¢ € 0¢a (v, (U,)) such that
¥,(U, Q) = U — u¢. We conclude that

90 (U) — ¢a(1,(U,Q)) >

%<U — wu(U, Q), U-— '(/);L(U7 Q)> =

1 - -
2 (10 = 0u(U QI ~ 0 - UJ +]/U - (0, 9)1})

Hence,
(U) - ¥ 6a(4u(U, )
> 2420 (€0 - 4,(U, Q) - [0 - UJ}R)

m

> 20 (110 - g, (U - [0 - UJR)

where the last inequality is obtained by Jensen’s inequality.

Notice that
> b (1h,(U,Q) =
Q

Z ¢Q’(¢M(U3 Q)) - Z fole% (¢M(U7Q))

Q.9 Q£Q

20D g, (0) — 3 e (U, 9)

Q£Q
T‘l (2(,(0) - &(0))

= > (6o (¥u(U, Q) — ¢ (U))
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Now, notice that ¢/ (1, (U, Q)) — ¢/ (U) = 0 when Q
and Q' do not overlap. Also, there exists a constant a such
that | (¥, (U, Q)) — ¢or (U)| < ap . We conclude that

> 6o (U, Q) >
Q

>

n(n—1)
= @y (U)) -
Define h,, = 8(n — 2)a/n(n — 1) = O(%). Replacing this
result in (11) and performing straightforward calculations
leads to

®(U)) —2(n — 2)ap

hop? > 2 (@(U) (ﬁ))
+11(2(6,(0) = B(V))
+3 (IO - -I0-UlR) a2
Now, we introduce the recursion to (12). We introduce

Ry = R(Uy, yy) and use monotonicity of z, to conclude
that:

9 _ N
hnpty > :k (‘b(Uk) - ‘I’(U)> + Riy1 — Ry,

Finally, we use the fact that ®(.) is a 1—strongly convex
function which leads to ®(U) —®(U) > 1||{U-U||%, and
conclude that

1)

R(U )
o(U) - 2(0) >

This yields to

2 2y
n? Rk § e THng Rk
L+ p

Rk+1 - hn/u'i < (1 -

where the last equality holds because 1 —x < e~” for every
positive x. It is now simple to see by induction that
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which proves part (2a).
For part (2b), we observe from (11) that

- n(n—1)

o(U)—o(U) + 5 at >

"2 (16 - vl - 10 - UIR)

which with the similar argument to above leads to

1~ i G\ 1. -
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We conclude part (2b).
For part (3,4), define * = {U}}i2 as the sequence ob-
tained by starting from U = Uy, and applying
Ijﬁrl = ¢#l+k (ﬂf)

Take arbitrary (non-zero) positive numbers €,9. Take A
such that A > 2 l;) 2. Define

3(U)

(pmax = max
U-Ull<A

Define lo, k such that Y u? < €§/8 and
I=k

-1 ' etk

771’ E -
Vi > lo; hy Zﬂfﬂce stpr etk
t=0

5 .
()\ + ,ukq)max)e =0 etk <

It is simple to see that such a choice exists because of the
conditions in part (3). Now, we define two outcomes H;
and Ho:

Hy:VEk>0; U, = Ul <A

_ €
Hy : V1> 0; |0 = Uyl < 1

Notice that from part (1) we have that Pr(H{) and Pr(HS)
are less than ¢/2. Furthermore, under H; N Hs we have
that:

V> Uo; [Up— O[3 < 2([Upir— OF 2+ [ TF - T3

This is because according to part (2),

|OF = U||g < 2R(U}, pusr) <

=1
_ Hs+k

-1 2
2 n? 2 TRy
2h, E PN s=t+1
t=0

-1
2 Hs+k

+2R(Uk,ﬂk)€_ﬁ o TFestk < i
where we used H; to conclude that R(Uy, pup) < A +
D ax . We conclude that

Pr( sup ||U; — U2 > €) < Pr(HS) + Pr(HS) <6
I>lo+k

which proves part (3).
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For part (4), define k, = 77, A, = r—°, where v =
B < ~v(2a — 1) — 1, and the outcomes:

Qr ¢ sup [[Upsg, — U3 > A,
1>0

By part (1), we have that

i Pr(Q,) < cc.
r=1

Hence by Borel-Cantelli lemma, Q. , Q7 11,Q7 12 -
simultaneously hold for some ry with probability 1. For
simplicity and without loss of generality, we assume that
ro = 0 as it does not affect the asymptotic rate. Then for
any r > 0, we have that

2
P A

sup | Uy, — 0"
1>0

In particular,

||Uk %‘ S A’r

r+1

-0y
where [, = k.1 — k,. From part (2b), we conclude that
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where we introduce y; = bn? and A = 4an*b? for sim-
plicity. This leads to
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where L denotes “some suitable constant” which may vary
in difference occurrences. Notice that

Ly Krg1 1
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e < Llog(ky+1) < Llogr - L
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where p is a sufficiently large constant and we use the fact
that yoo > 7(2a — 1) — 1 > /5. Moreover,

kifa - kifa _ T'y(lfa) . (’I"+ 1)7(1*01) < 7LT”Y(17Q)71
We conclude that
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which leads to

rT112
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1 -L > ¢ ~LYt
L § 76 t=s+1 +€ t=0
S

r—1
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< L 7€L(s r ) +67Lr
<i(3)

s=1
With a similar approach to the above, we observe that

Llogr < L

Uk, — Ul < -5 S A

Take k, < 1 < k1. We observe that

10 = Tl < 2(|[Ux, = U3 + [Ty, = UL3)

L L L
<
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By taking 5 = v(2cc — 1) — 1, we obtain part (4). O



