1.1. Proof of Theorem 1

We prove a more general result:

Theorem 1. Consider vectors $x_i \in \mathbb{R}^m$ for i = 1, 2, ..., n and their partitions $V_1, V_2, ..., V_K$ with sizes $n_1, n_2, ..., n_K$. Take the SON optimization:

$$\min_{\{u_i \in \mathbb{R}^m\}} \frac{1}{2} \sum_{i=1}^n \|x_i - u_i\|_2^2 + \lambda \sum_{i \neq j} \|u_i - u_j\|_2 \quad (1)$$

and its associated centroid optimization:

$$\min_{\{v_{\alpha} \in \mathbb{R}^{m}\}} \frac{1}{2} \sum_{i=1}^{K} \|v_{\alpha} - c_{\alpha}\|_{2}^{2} n_{\alpha} + \lambda \sum_{\alpha \neq \beta} n_{\alpha} n_{\beta} \|c_{\alpha} - c_{\alpha}\|_{2} \tag{2}$$

where

$$c_{\alpha} = \frac{\sum_{i \in V_{\alpha}} x_i}{n_{\alpha}}$$

1. Suppose that for every $\alpha \in [K]$,

$$\frac{\max_{i,j\in V_{\alpha}}\|x_i - x_j\|}{n_{\alpha}} \le \lambda.$$

Then, $u_i = v_{\alpha}$ for $i \in V_{\alpha}$ is a global solution of the SON clustering.

- 2. If all $c_{\alpha}s$ are distinct and $\frac{d}{2n\sqrt{K}} \geq \lambda$ where $d = \min_{\alpha \neq \beta} \|c_{\alpha} c_{\beta}\|$, then all centroids v_{α} are distinct.
- 3. If $\max_{\alpha} \frac{\|c_{\alpha} c\|}{n n_{\alpha}} \ge \lambda$ where $c = \sum_{i=1}^{n} x_i/n$, then at least two centroids v_{α} are distinct.

Proof. Notice that the solution of the centroid optimization satisfies

$$c_{\alpha} - v_{\alpha} = \lambda \sum_{\beta} n_{\beta} z_{\alpha,\beta}$$

where $\|z_{\alpha,\beta}\| \leq 1$, $z_{\alpha,\beta} = -z_{\beta,\alpha}$ and whenever $v_{\alpha} \neq v_{\beta}$, the relation $z_{\alpha,\beta} = \frac{v_{\alpha} - v_{\beta}}{\|v_{\alpha} - v_{\beta}\|_2}$ holds. Now, for the solution $u_i = v_{\alpha}$ for $i \in V_{\alpha}$, define

$$z'_{ij} = \left\{ \begin{array}{ll} z_{\alpha,\beta} & \alpha \neq \beta \\ \frac{x_i - x_j}{\lambda n_z} & \alpha = \beta \end{array} \right.,$$

where $i \in V_{\alpha}, j \in V_{\beta}$. It is easy to see that $\|z'_{ij}\|_2 \leq 1$, $z'_{ij} = -z'_{ji}$ and whenever $u_i \neq u_j$, we have that $z'_{ij} = \frac{u_i - u_j}{\|u_i - u_j\|_2}$. Further for each i,

$$\lambda \sum_{j} z'_{i,j} = \lambda \sum_{\beta} z_{\alpha,\beta} n_{\beta} + \sum_{j \in V_{\alpha}} \frac{x_i - x_j}{n_{\alpha}}$$

$$= c_{\alpha} - v_{\alpha} + x_i - c_{\alpha} = x_i - v_{\alpha} = x_i - u_i$$

This shows that the local optimality conditions for the SON optimization holds and proves part a.

For part b, denote the solution of the centroid optimization by $v_{\alpha}(\lambda)$ and notice that the solution of SON consists of distinct elements $v_{\alpha}=c_{\alpha}$ and is continuous at $\lambda=0$. Hence, v_{α} s remain distinct in an interval $\lambda\in[0,\,\lambda_1)$. Take λ_0 as the supremum of all possible λ_1 s. Hence, the solution in $\lambda\in[0,\,\lambda_0)$ contains distinct element and at $\lambda=\lambda_0$ contains two equal elements (otherwise, one can extend $[0,\,\lambda_0)$ to some $[0,\,\lambda_0+\epsilon)$, which is against λ being supremum). Now, notice that for $\lambda\in[0,\lambda_0)$ the objective function is smooth at the optimal point. Hence, $v_{\alpha}(\lambda)$ is differentiable and satisfies

$$\delta = \left[\frac{\mathrm{d}v_{\alpha}}{\mathrm{d}\lambda} \right]_{\alpha} = H^{-1} \frac{\partial g}{\partial \lambda} \tag{3}$$

where $[.]_{\alpha}$ and $[.]_{\alpha,\beta}$ denote block vectors and block matrices respectively. Moreover, H and g are the Hessian and the gradient of the objective function at the optimal point. In other words,

$$H = \left[n_{\alpha} \delta_{\alpha,\beta} I + \frac{I \|v_{\alpha} - v_{\beta}\|_{2}^{2} - (v_{\alpha} - v_{\beta})(v_{\alpha} - v_{\beta})^{\top}}{\|v_{\alpha} - v_{\beta}\|_{2}^{3}} \lambda n_{\alpha} n_{\beta} \right]_{\alpha,\beta}$$

and

$$rac{\partial g}{\partial \lambda} = \left[\sum_{eta} z_{lpha,eta} n_{lpha} n_{eta}
ight]_{G}$$

Hence,

$$\begin{bmatrix}
\delta - & & \\
\delta_{\alpha,\beta}I + \frac{I\|v_{\alpha} - v_{\beta}\|_{2}^{2} - (v_{\alpha} - v_{\beta})(v_{\alpha} - v_{\beta})^{\top}}{\|v_{\alpha} - v_{\beta}\|_{2}^{3}} \lambda n_{\beta} \end{bmatrix}_{\alpha,\beta}^{-1} \\
\times \left[\sum_{\beta} z_{\alpha,\beta} n_{\beta} \right]_{\alpha}$$

Simple calculations show that $\|\delta\|_2 \leq n\sqrt{K}$. Hence,

$$\left\| \frac{\mathrm{d}v_{\alpha}}{\mathrm{d}\lambda} \right\|_{2} \le \|\delta\|_{2} \le \sqrt{K}n$$

This yields for $\lambda < \lambda_0$ to

$$||v_{\alpha}(\lambda) - v_{\beta}(\lambda)||_{2} = ||c_{\alpha} - c_{\beta} + \int_{0}^{\lambda} \left(\frac{dv_{\alpha}}{d\lambda} - \frac{dv_{\beta}}{d\lambda}\right) d\lambda||_{2}$$
$$\geq ||c_{\alpha} - c_{\beta}||_{2} - \int_{0}^{\lambda} \left||\frac{dv_{\alpha}}{d\lambda} - \frac{dv_{\beta}}{d\lambda}\right||_{2} d\lambda$$

$$> d - 2n\lambda\sqrt{K}$$

Since at $\lambda=\lambda_0$, we have that $v_\alpha=v_\beta$ for some $\alpha\neq\beta$, we get that $d-2n\lambda_0\sqrt{K}\leq 0$ or $\lambda_0\geq d/2n\sqrt{K}$. this proves part b.

For part c, Take a value of λ , where $v_1=v_2=\ldots=v_K$. It is simple to see that in this case $v_\alpha=c$. The optimality condition leads to

$$c - c_{\alpha} = \lambda \sum_{\beta \neq \alpha} z_{\alpha,\beta} n_{\beta}$$

Hence, $||c - c_{\alpha}||_2 \le \lambda(n - n_{\alpha})$. This proves part c. \square

1.2. Proof of Theorem 2

Denote by U_k a matrix where the i^{th} column is the value of u_i at the k^{th} iteration. Define

$$\psi_{\mu}(\mathbf{U}) = \mathcal{E}\left(\mathbf{U}_{k+1} \mid \mathbf{U}_k = \mathbf{U}, \mu_k = \mu\right), \tag{4}$$

which by simple manipulations leads to

$$\psi_{\mu}(\mathbf{U}) =$$

$$\mathbf{U} + \frac{1}{\binom{n}{2}} \sum_{i < j} \left(\mathbf{L}_{ij} (\Pi_{ij}^{(\mu)}(u_i, u_j)) - \mathbf{L}_{ij}(u_i, u_j) \right)$$

where u_i denotes the i^{th} column of **U** and $\mathbf{L}_{ij}(x,y)$ is a matrix where the i^{th} column is x, the j^{th} column is y and the rest are zero. Also, denote

$$\sigma_{\mu}^{2}(\mathbf{U}) = \operatorname{Var}\left(\mathbf{U}_{k+1} \mid \mathbf{U}_{k} = \mathbf{U}, \mu_{k} = \mu\right)$$
$$= \mathcal{E}\left(\left\|\mathbf{U}_{k+1}\right\|_{2}^{2} \mid \mathbf{U}_{k} = \mathbf{U}, \mu_{k} = \mu\right) - \left\|\phi_{\mu}(\mathbf{U})\right\|_{2}^{2}$$
(5)

We prove a more detailed theorem:

Theorem 2. Starting from $\bar{\mathbf{U}}_0 = \mathbf{U}_0$ (the initialization of the algorithm), define the characteristic sequence $\{\bar{\mathbf{U}}_k\}_{k=0}^{\infty}$ by the following iteration:

$$\bar{\mathbf{U}}_{k+1} = \psi_{\mu_k}(\bar{\mathbf{U}}_k)$$

1. We have that

$$\Pr\left(\sup_{k} \|\mathbf{U}_{k} - \bar{\mathbf{U}}_{k}\|_{\mathrm{F}}^{2} + \sum_{l=k}^{\infty} \mu_{l}^{2} > \lambda\right) \leq \frac{\sum_{k=0}^{\infty} \mu_{k}^{2}}{\lambda}$$
(6)

2. Define $\tilde{\mathbf{U}}$ as the unique optimal solution of the SON optimization and suppose that $\{\mu_k\}$ is a non-increasing sequence.

(a) There exists a positive sequence $h_n = O(\frac{1}{n})$, where n is the number of data points, such that

$$R(\bar{\mathbf{U}}_{k}, \mu_{k}) \leq h_{n} \sum_{l=0}^{k-1} \mu_{l}^{2} e^{-\frac{2}{n^{2}} \sum_{s=l+1}^{k-1} \frac{\mu_{k}}{1+\mu_{k}}} + R(\mathbf{U}_{0}, \mu_{0}) e^{-\frac{2}{n^{2}} \sum_{s=0}^{k-1} \frac{\mu_{k}}{1+\mu_{k}}}$$
(7)

where

$$R(\mathbf{U}, \boldsymbol{\mu}) = \frac{1}{2} \|\tilde{\mathbf{U}} - \mathbf{U}\|_{\mathrm{F}}^2 + \boldsymbol{\mu} \left(\Phi(\mathbf{U}) - \Phi(\tilde{\mathbf{U}})\right),$$

(b) There exists a universal constant a such that

$$\|\bar{\mathbf{U}}_k - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 \le a \sum_{l=0}^{k-1} \mu_l^2 e^{-\frac{2}{n^2} \sum_{s=l+1}^{k-1} \mu_s}$$

$$+\|\mathbf{U}_0 - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 e^{-\frac{2}{n^2} \sum_{s=0}^{k-1} \mu_s}$$

3. Assume that $\{\mu_k\}$ is non-increasing $\sum\limits_{0}^{\infty}\mu_k=\infty$ and $\sum\limits_{0}^{\infty}\mu_k^2<\infty$. Then, the sequence \mathbf{U}_k converges to $\tilde{\mathbf{U}}$ in the following strong probability sense:

$$\forall \epsilon > 0; \lim_{k \to \infty} \Pr\left(\sup_{l > k} \|\mathbf{U}_l - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 > \epsilon\right) = 0 \quad (8)$$

4. Take $\mu_k = \frac{\mu_1}{k^{\alpha}}$ for k = 1, 2, ... and $\frac{2}{3} < \alpha < 1$. For sufficiently small values of $\epsilon > 0$ the relation

$$\|\mathbf{U}_l - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 = O(\frac{1}{l^{3\alpha - 2 - \epsilon}})$$

holds with probability 1.

Proof. Denote by Ω_k the pair (i,j) which is selected in iteration k and $\Omega^k = (\Omega_0, \Omega_1, \dots, \Omega_{k-1})$. Also, denote $\psi_{\mu}(\mathbf{U}, (i,j)) = \mathbf{U} + \mathbf{L}_{ij}(\Pi^{\mu}_{ij}(u_i, u_j)) - \mathbf{L}_{ij}(u_i, u_j)$. Then, the iterations can be written as

$$\mathbf{U}_{k+1} = \psi_{\mu_k}(\mathbf{U}_k, \Omega_k)$$
$$\bar{\mathbf{U}}_{k+1} = \mathcal{E}(\psi_{\mu_k}(\bar{\mathbf{U}}_k, \Omega) \mid \bar{\mathbf{U}}_k)$$
(9)

Define $\Delta_k = \mathbf{U}_k - \bar{\mathbf{U}}_k$ and $\eta_k = \psi_{\mu_k}(\bar{\mathbf{U}}_k, \Omega_k) - \mathcal{E}(\psi_{\mu_k}(\bar{\mathbf{U}}_k, \Omega) \mid \bar{\mathbf{U}}_k)$. Also, denote $\mathcal{U} = \{\bar{\mathbf{U}}_k\}_{k=0}^{\infty}$. Notice that the sequence $\{\eta_k\}_{k=0}^{\infty}$ consists of zero-mean independent elements. Subtracting the two iterations in (9) gives us:

$$\Delta_{k+1} = \psi_{\mu_k}(\mathbf{U}_k, \Omega_k) - \psi_{\mu_k}(\bar{\mathbf{U}}_k, \Omega_k) + \eta_k$$
 (10)

It is simple to see that $\Pi_{ij}^{\mu}(u_i, u_j)$ is a contraction map for any μ, i, j . Then, it is simple to deduce that $\psi_{\mu}(\mathbf{U}, \Omega)$ is

a contraction map for any Ω and μ . As a result, we obtain from (10) that

$$\mathcal{E}\left(\|\boldsymbol{\Delta}_{k+1} - \boldsymbol{\eta}_k\|_{\mathrm{F}}^2 \mid \Omega^k\right) \leq \|\boldsymbol{\Delta}_k\|_{\mathrm{F}}^2,$$

which can also be written as

$$\mathcal{E}\left(\|\mathbf{\Delta}_{k+1}\|_{\mathrm{F}}^{2}\mid\Omega^{k}\right)\leq$$

$$\|\boldsymbol{\Delta}_k\|_{\mathrm{F}}^2 + 2\mathcal{E}\left(\langle \psi_{\mu_k}(\mathbf{U}_k, \Omega_k), \boldsymbol{\eta}_k \rangle \mid \Omega^k\right) - \mathcal{E}\|\boldsymbol{\eta}_k\|_{\mathrm{F}}^2$$

Now, it is simple to see that $\|\psi_{\mu}(\mathbf{U},\Omega) - \mathbf{U}\| \leq \sqrt{2}\mu$. Furthermore, \mathbf{U}_k only depends on $\Omega_0, \Omega_1, \ldots, \Omega_{k-1}$, while η_k is a function of Ω_k . Hence, \mathbf{U}_k and η_k are independent and $\mathcal{E}(\langle \mathbf{U}_k, \eta_k \rangle \mid \Omega^k) = \mathbf{0}$ This leads to

$$\mathcal{E}\left(\|\mathbf{\Delta}_{k+1}\|_{\mathrm{F}}^2\mid\Omega^k\right)\leq$$

$$\|\boldsymbol{\Delta}_{k}\|_{\mathrm{F}}^{2} + 2\mathcal{E}\left(\langle \psi_{\mu_{k}}(\mathbf{U}_{k}, \Omega_{k}) - \mathbf{U}_{k}, \boldsymbol{\eta}_{k} \rangle \mid \Omega^{k}\right) - \mathcal{E}\|\boldsymbol{\eta}_{k}\|_{\mathrm{F}}^{2}$$

$$\leq \|\boldsymbol{\Delta}_{k}\|_{\mathrm{F}}^{2} + 2\sqrt{2}\mu_{k}\sqrt{\mathcal{E}(\|\boldsymbol{\eta}_{k}\|_{2}^{2})} - \mathcal{E}\|\boldsymbol{\eta}_{k}\|_{\mathrm{F}}^{2}$$

Notice that $\mathcal{E}(\|oldsymbol{\eta}_l\|_2^2) = \sigma_{\mu_l}^2(ar{\mathbf{U}}_l)$ and

$$\|\mathbf{U}_{k+1} - \mathbf{U}_k\|_2 = \|\psi_{\mu_k}(U_k, \Omega_k) - \mathbf{U}_k\|_2 \le \sqrt{2}\mu_k$$

which leads to

$$\sigma_{\mu}^2(\mathbf{U}) \le 2\mu^2$$
.

We conclude that

$$\mathcal{E}\left(\|\boldsymbol{\Delta}_{k+1}\|_{\mathrm{F}}^{2}\mid\Omega^{k}\right)\leq\|\boldsymbol{\Delta}_{k}\|_{\mathrm{F}}^{2}+4\mu_{k}^{2}$$

Define $s_k = \sum_{l=k}^{\infty} \mu_l^2$. We observe that $\|\mathbf{\Delta}_k\|_{\mathrm{F}}^2 + s_k$ is a supermartingale. Hence, from the suprmartingale version of the Doob's inequality we obtain that

$$\Pr\left(\sup_{k} \|\boldsymbol{\Delta}_{k}\|_{\mathrm{F}}^{2} + s_{k} > \lambda\right) \leq \frac{\mathcal{E}\|\boldsymbol{\Delta}_{0}\|_{\mathrm{F}}^{2} + s_{0}}{\lambda} = \frac{\sum_{k=0}^{\infty} \mu_{k}^{2}}{\lambda}$$

This proves part (1).

For part (2) from the definition of the proximal operator, there exists a vector $\boldsymbol{\zeta} \in \partial \phi_{\Omega}(\psi_{\mu}(\mathbf{U},\Omega))$ such that $\psi_{\mu}(\mathbf{U},\Omega) = \mathbf{U} - \mu \boldsymbol{\zeta}$. We conclude that

$$\phi_{\Omega}(\tilde{\mathbf{U}}) - \phi_{\Omega}(\psi_{\mu}(\mathbf{U}, \Omega)) \geq$$

$$\frac{1}{\mu} \langle \mathbf{U} - \psi_{\mu}(\mathbf{U}, \Omega), \tilde{\mathbf{U}} - \psi_{\mu}(\mathbf{U}, \Omega) \rangle =$$

$$\frac{1}{2\mu} \left(\|\tilde{\mathbf{U}} - \psi_{\mu}(\mathbf{U}, \Omega)\|_{F}^{2} - \|\tilde{\mathbf{U}} - \mathbf{U}\|_{F}^{2} + \|\mathbf{U} - \psi_{\mu}(\mathbf{U}, \Omega)\|_{F}^{2} \right)$$

Hence

$$\Phi(\tilde{\mathbf{U}}) - \sum_{\Omega} \phi_{\Omega}(\psi_{\mu}(\mathbf{U}, \Omega))$$

$$\geq \frac{n(n-1)}{4\mu} \left(\mathcal{E} \|\tilde{\mathbf{U}} - \psi_{\mu}(\mathbf{U}, \Omega)\|_{\mathrm{F}}^{2} - \|\tilde{\mathbf{U}} - \mathbf{U}\|_{\mathrm{F}}^{2} \right)$$

$$\geq \frac{n(n-1)}{4\mu} \left(\|\tilde{\mathbf{U}} - \psi_{\mu}(\mathbf{U})\|_{\mathrm{F}}^{2} - \|\tilde{\mathbf{U}} - \mathbf{U}\|_{\mathrm{F}}^{2} \right) \quad (11)$$

where the last inequality is obtained by Jensen's inequality. Notice that

$$\sum_{\Omega} \phi_{\Omega}(\psi_{\mu}(\mathbf{U}, \Omega)) =$$

$$\sum_{\Omega, \Omega'} \phi_{\Omega'}(\psi_{\mu}(\mathbf{U}, \Omega)) - \sum_{\Omega \neq \Omega'} \phi_{\Omega'}(\psi_{\mu}(\mathbf{U}, \Omega))$$

$$\geq \frac{n(n-1)}{2} \Phi(\psi_{\mu}(\mathbf{U})) - \sum_{\Omega \neq \Omega'} \phi_{\Omega'}(\psi_{\mu}(\mathbf{U}, \Omega))$$

$$= \Phi(\mathbf{U}) + \frac{n(n-1)}{2} \left(\Phi(\psi_{\mu}(\mathbf{U})) - \Phi(\mathbf{U}) \right)$$

$$- \sum_{\Omega \neq \Omega'} \left(\phi_{\Omega'}(\psi_{\mu}(\mathbf{U}, \Omega)) - \phi_{\Omega'}(\mathbf{U}) \right)$$

Now, notice that $\phi_{\Omega'}(\psi_{\mu}(\mathbf{U},\Omega)) - \phi_{\Omega'}(\mathbf{U}) = 0$ when Ω and Ω' do not overlap. Also, there exists a constant a such that $|\phi_{\Omega'}(\psi_{\mu}(\mathbf{U},\Omega)) - \phi_{\Omega'}(\mathbf{U})| < a\mu$. We conclude that

$$\sum_{\Omega} \phi_{\Omega}(\psi_{\mu}(\mathbf{U},\Omega)) \geq$$

$$\Phi(\mathbf{U}) + \frac{n(n-1)}{2} \left(\Phi(\psi_{\mu}(\mathbf{U})) - \Phi(\mathbf{U}) \right) - 2(n-2)a\mu$$

Define $h_n = 8(n-2)a/n(n-1) = O(\frac{1}{n})$. Replacing this result in (11) and performing straightforward calculations leads to

$$h_{n}\mu^{2} \geq \frac{2\mu}{n^{2}} \left(\Phi(\mathbf{U}) - \Phi(\tilde{\mathbf{U}}) \right)$$
$$+\mu \left(\Phi(\psi_{\mu}(\mathbf{U})) - \Phi(\mathbf{U}) \right)$$
$$+\frac{1}{2} \left(\|\tilde{\mathbf{U}} - \psi_{\mu}(\mathbf{U})\|_{F}^{2} - \|\tilde{\mathbf{U}} - \mathbf{U}\|_{F}^{2} \right)$$
(12)

Now, we introduce the recursion to (12). We introduce $R_k = R(\bar{\mathbf{U}}_k, \mu_k)$ and use monotonicity of μ_k to conclude that:

$$h_n \mu_k^2 \ge \frac{2\mu_k}{n^2} \left(\Phi(\bar{\mathbf{U}}_k) - \Phi(\tilde{\mathbf{U}}) \right) + R_{k+1} - R_k$$

Finally, we use the fact that $\Phi(.)$ is a 1-strongly convex function which leads to $\Phi(\mathbf{U}) - \Phi(\tilde{\mathbf{U}}) \geq \frac{1}{2} \|\tilde{\mathbf{U}} - \mathbf{U}\|_F^2$, and conclude that

$$\Phi(\mathbf{U}) - \Phi(\tilde{\mathbf{U}}) \ge \frac{R(\mathbf{U}, \mu)}{1 + \mu}$$

This yields to

$$R_{k+1} - h_n \mu_k^2 \le \left(1 - \frac{\frac{2\mu_k}{n^2}}{1 + \mu_k}\right) R_k \le e^{-\frac{\frac{2\mu_k}{n^2}}{1 + \mu_k}} R_k$$

where the last equality holds because $1-x \le e^{-x}$ for every positive x. It is now simple to see by induction that

$$R_k \le h_n \sum_{l=0}^{k-1} \mu_l^2 e^{-\frac{2}{n^2} \sum_{s=l+1}^{k-1} \frac{\mu_s}{1+\mu_s}} + R_0 e^{-\frac{2}{n^2} \sum_{s=0}^{k-1} \frac{\mu_s}{1+\mu_s}}$$
(13)

which proves part (2a).

For part (2b), we observe from (11) that

$$\Phi(\tilde{\mathbf{U}}) - \Phi(\mathbf{U}) + \frac{n(n-1)}{2}a\mu \ge$$

$$\frac{n(n-1)}{4\mu} \left(\|\tilde{\mathbf{U}} - \psi_{\mu}(\mathbf{U})\|_{\mathrm{F}}^{2} - \|\tilde{\mathbf{U}} - \mathbf{U}\|_{\mathrm{F}}^{2} \right)$$

which with the similar argument to above leads to

$$\frac{1}{2} \|\bar{\mathbf{U}}_{k+1} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} \le \left(1 - \frac{2\mu_{k}}{n^{2}}\right) \frac{1}{2} \|\bar{\mathbf{U}}_{k} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} + a\mu_{k}^{2}$$

$$\le \frac{1}{2} \|\bar{\mathbf{U}}_{k} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} e^{-\frac{2\mu_{k}}{n^{2}}} + a\mu_{k}^{2}$$

We conclude part (2b).

For part (3,4), define $\mathcal{U}^k=\{\bar{\mathbf{U}}_l^k\}_{l=0}^\infty$ as the sequence obtained by starting from $\bar{\mathbf{U}}_0^k=\mathbf{U}_k$ and applying

$$\bar{\mathbf{U}}_{l+1}^k = \psi_{\mu_{l+k}}(\bar{\mathbf{U}}_l^k)$$

Take arbitrary (non-zero) positive numbers ϵ, δ . Take λ such that $\lambda \geq \frac{2}{\delta} \sum_{l=0}^{\infty} \mu_l^2$. Define

$$\Phi_{\max} = \max_{\|\mathbf{U} - \tilde{\mathbf{U}}\| \le \lambda} \Phi(\mathbf{U})$$

Define l_0,k such that $\sum\limits_{l=k}^{\infty}\mu_l^2<\epsilon\delta/8$ and

$$\forall l > l_0; \ h_n \sum_{t=0}^{l-1} \mu_{t+k}^2 e^{-\frac{2}{n^2} \sum_{s=t+1}^{l-1} \frac{\mu_{s+k}}{1+\mu_{s+k}}} +$$

$$(\lambda + \mu_k \Phi_{\max}) e^{-\frac{2}{n^2} \sum_{s=0}^{l-1} \frac{\mu_{s+k}}{1+\mu_{s+k}}} < \frac{\epsilon}{8}$$

It is simple to see that such a choice exists because of the conditions in part (3). Now, we define two outcomes H_1 and H_2 :

$$H_1: \forall k \geq 0; \ \|\mathbf{U}_k - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 \leq \lambda$$

$$H_2: \forall l \geq 0; \|\bar{\mathbf{U}}_l^k - \mathbf{U}_{l+k}\| \leq \frac{\epsilon}{4}$$

Notice that from part (1) we have that $\Pr(H_1^c)$ and $\Pr(H_2^c)$ are less than $\delta/2$. Furthermore, under $H_1 \cap H_2$ we have that:

$$\forall l > l_0; \ \|\mathbf{U}_{l+k} - \tilde{\mathbf{U}}\|_2^2 \le 2(\|\mathbf{U}_{l+k} - \bar{\mathbf{U}}_l^k\|_{\mathrm{F}}^2 + \|\bar{\mathbf{U}}_l^k - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2)$$

 $\leq 2(\frac{\epsilon}{4} + \frac{\epsilon}{4}) = \epsilon$

This is because according to part (2),

$$\|\bar{\mathbf{U}}_l^k - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 \leq 2R(\bar{\mathbf{U}}_l^k, \mu_{l+k}) \leq$$

$$2h_n \sum_{t=0}^{l-1} \mu_{t+k}^2 e^{-\frac{2}{n^2} \sum_{s=t+1}^{l-1} \frac{\mu_{s+k}}{1+\mu_{s+k}}}$$

$$+2R(\mathbf{U}_k,\mu_k)e^{-\frac{2}{n^2}\sum_{s=0}^{l-1}\frac{\mu_{s+k}}{1+\mu_{s+k}}} \le \frac{\epsilon}{4}$$

where we used H_1 to conclude that $R(\mathbf{U}_k, \mu_k) \leq \lambda + \Phi_{\max} \mu_k$. We conclude that

$$\Pr(\sup_{l>l_0+k} \|\mathbf{U}_l - \tilde{\mathbf{U}}\|_2^2 > \epsilon) \le \Pr(H_1^c) + \Pr(H_2^c) \le \delta$$

which proves part (3).

For part (4), define $k_r = r^{\gamma}$, $\lambda_r = r^{-\beta}$, where $\gamma = \frac{1-\frac{\epsilon}{2}}{1-\alpha}$, $\beta < \gamma(2\alpha - 1) - 1$, and the outcomes:

$$Q_r: \sup_{l\geq 0} \|\mathbf{U}_{l+k_r} - \bar{\mathbf{U}}_l^{k_r}\|_{\mathrm{F}}^2 > \lambda_r.$$

By part (1), we have that

$$\sum_{r=1}^{\infty} \Pr(Q_r) < \infty.$$

Hence by Borel-Cantelli lemma, $Q_{r_0}^c, Q_{r_0+1}^c, Q_{r_0+2}^c, \ldots$ simultaneously hold for some r_0 with probability 1. For simplicity and without loss of generality, we assume that $r_0=0$ as it does not affect the asymptotic rate. Then for any r>0, we have that

$$\sup_{l>0} \|\mathbf{U}_{l+k_r} - \bar{\mathbf{U}}_l^{k_r}\|_{\mathrm{F}}^2 \le \lambda_r$$

In particular,

$$\|\mathbf{U}_{k_{r+1}} - \bar{\mathbf{U}}_{l_r}^{k_r}\|_{\mathrm{F}}^2 \le \lambda_r$$

where $l_r = k_{r+1} - k_r$. From part (2b), we conclude that

$$\|\bar{\mathbf{U}}_{l_r}^{k_r} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 \le A \sum_{t=0}^{l_r - 1} \frac{1}{(t + k_r)^{2\alpha}} e^{-2a \sum_{s=t+1}^{l_r - 1} \frac{1}{(s + k_r)^{\alpha}}}$$

$$+\|\mathbf{U}_{k_r} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 e^{-2a\sum\limits_{s=0}^{l_r-1} \frac{1}{(s+k_r)^{\alpha}}}$$

where we introduce $\mu_1=bn^2$ and $A=4an^4b^2$ for simplicity. This leads to

$$\|\mathbf{U}_{k_{r+1}} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} \le 2\lambda_{r} + A \sum_{t=0}^{l_{r}-1} \frac{1}{(t+k_{r})^{2\alpha}} e^{-2b \sum_{s=t+1}^{l_{r}-1} \frac{1}{(s+k_{r})^{\alpha}}}$$

$$+2\|\mathbf{U}_{k_{r}} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} e^{-2b\sum_{s=0}^{l_{r}-1} \frac{1}{(s+k_{r})^{\alpha}}} \\ \leq Le^{Lk_{r}^{1-\alpha} - Lk_{r+1}^{1-\alpha}} \|\mathbf{U}_{k_{r}} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^{2} +$$

$$2\lambda_r + A \sum_{r=0}^{l_r} \frac{1}{(t+k_r)^{2\alpha}} e^{L(k_r+t)^{1-\alpha} - Lk_{r+1}^{1-\alpha}}$$

where L denotes "some suitable constant" which may vary in difference occurrences. Notice that

$$\sum_{t=0}^{l_r} \frac{1}{(t+k_r)^{2\alpha}} e^{L(k_r+t)^{1-\alpha} - Lk_{r+1}^{1-\alpha}} = \sum_{t=k_r}^{k_{r+1}} \frac{1}{t^{2\alpha}} e^{Lt^{1-\alpha} - Lk_{r+1}^{1-\alpha}}$$

$$\leq L \sum_{t=k_r}^{k_{r+1} - Lk_{r+1}^{\alpha} (1 + \rho \log(k_{r+1}))} \frac{1}{t^{2\alpha}} e^{-L\rho \log(k_{r+1})}$$

$$+\sum_{t=k_{r+1}-Lk_{r+1}^{\alpha}(1+L\rho\log(k_{r+1}))}^{k_{r+1}}\frac{1}{t^{2\alpha}}$$

$$\leq L \left(\frac{1}{(k_{r+1} - Lk_{r+1}^{\alpha}(1 + \rho \log(k_{r+1})))^{2\alpha - 1}} - \frac{1}{k_{r+1}^{2\alpha - 1}} \right)$$

$$+L\frac{e^{-L\rho\log(k_{r+1})}}{k_r^{2\alpha-1}} \le \frac{L\log(k_{r+1})}{k_{r+1}^{\alpha}} \le \frac{L\log r}{r^{\gamma\alpha}} < \frac{L}{r^{\beta}}$$

where ρ is a sufficiently large constant and we use the fact that $\gamma \alpha > \gamma(2\alpha - 1) - 1 > \beta$. Moreover,

$$k_r^{1-\alpha}-k_r^{1-\alpha}=r^{\gamma(1-\alpha)}-(r+1)^{\gamma(1-\alpha)}\leq -Lr^{\gamma(1-\alpha)-1}$$

We conclude that

$$\|\mathbf{U}_{k_{r+1}} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 \le \frac{L}{r^{\beta}} + Le^{-Lr^{\gamma(1-\alpha)-1}} \|\mathbf{U}_{k_r} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2$$

which leads to

$$\|\mathbf{U}_{k_r} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 \le$$

$$L\left(\sum_{s=1}^{r-1}\frac{1}{s^{\beta}}e^{-L\sum\limits_{t=s+1}^{r-1}t^{\gamma(1-\alpha)-1}}+e^{-L\sum\limits_{t=0}^{r-1}t^{\gamma(1-\alpha)-1}}\right)$$

$$\leq L \left(\sum_{s=1}^{r-1} \frac{1}{s^{\beta}} e^{L\left(s^{\gamma(1-\alpha)} - r^{\gamma(1-\alpha)}\right)} + e^{-Lr^{\gamma(1-\alpha)}} \right)$$

With a similar approach to the above, we observe that

$$\|\mathbf{U}_{k_r} - \tilde{\mathbf{U}}\|_{\mathrm{F}}^2 \le \frac{L \log r}{r^{\beta - \frac{\epsilon}{2}}} \le \frac{L}{r^{\beta - \epsilon}}$$

Take $k_r < l \le k_{r+1}$. We observe that

$$\|\mathbf{U}_l - \tilde{\mathbf{U}}\|_2^2 \le 2(\|\mathbf{U}_{k_r} - \tilde{\mathbf{U}}\|_2^2 + \|\mathbf{U}_{k_r} - \mathbf{U}_l\|_2^2)$$

$$\leq 2\lambda_r + \frac{L}{r^{\beta - \epsilon}} \leq \frac{L}{r^{\beta - \epsilon}} \leq \frac{L}{l^{\frac{\beta - \epsilon}{\gamma}}}$$

By taking
$$\beta = \gamma(2\alpha - 1) - 1$$
, we obtain part (4).