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Supplementary Material

S1. Adaptive Decoding
Limited training data in practical settings can limit the inferential accuracy of the learned autoencoder model, and we
may have x0 ‰ DpEpx0qq for a given to-be-revised sequence x0 (particularly if p

X

px0q is low). In this case, even when
z˚ “ Epx0q solves our latent-factor optimization, our REVISE procedure can return a different sequence than x0 (despite
not expecting any associated outcome-improvement).

To ensure that our methods simply return the initial x0 when no superior revision can be identified, we replace our decoder
model p

D

px | zq with an adaptive variant p
D

x0
px | zq that is efficiently defined once x0 “

´
s

px0q
1 , . . . , s

px0q
T

x0

¯
is specified

at test time. Like before, we write D
x0pzq to denote the (beam-search approximated) most-likely decoding with respect to

p
D

x0
. Recall from our definition in (4), ⇡

t

is the vector of symbol-probabilities output by our decoder RNN D to compute
p
D

. Using the indexing notation ⇡
t

rs
t

s to denote the decoder RNN’s approximation of pps
t

, | s1 . . . , st´1q, we let ⇡px0q
t

denote particular conditional-probability values output by D when the initial hidden state is z “ Epx0q.

For any x “ ps1, . . . , sT q P X , we define:

p
D

x0
px | zq “

Tπ

t“1

r⇡
t

rs
t

s where for t “ 1, . . . , T, s P S : r⇡
t

rss “
#
⇡
t

rss ` �
px0q
t

if s “ s
px0q
t

⇡
t

rss ´ 1
|S|�

px0q
t

otherwise
(15)

and �
px0q
t

“ max

sPS
⇡

px0q
t

rss ´ ⇡
px0q
t

rspx0q
t

s • 0 for t “ 1, . . . , T
x0

At each time step, the �px0q
t

measure any probability gap between the most likely symbol under p
D

and the actual sequence
x0 when our decoder model D is applied to Epx0q. Thus, the definition in (15) ensures D

x0pEpx0qq “ x0. When revising
sequences using this adaptive decoding procedure, we compute all �px0q

t

by first decoding from Epx0q before beginning
the latent z-optimization in the REVISE procedure. These values are stored so that we can subsequently decode from the
optimal latent-configuration z˚ with respect to p

D

x0
rather than p

D

.

According to our adaptive decoding definition, x0 is more likely than any other sequence under p
D

x0
px | Epx0qq, and p

D

x0

is very easy to derive from p
D

(no additional model besides our original D is needed). Furthermore, the (beam-search)
maximizer of p

D

x0
can be used to decode from any latent z values, resulting in a mapping that is slightly more biased

toward x0 than decoding with respect to p
D

. Finally, we note that if x˚ is produced by D
x0 rather than D, Theorem 3

continues to hold if we replace D with D
x0 in assumption (A6). Theorems 1 and 2 remain valid without any change, since:

p
D

x0
px˚ | z˚q • p

D

x0
px0 | z˚q and p

D

x0
px0 |z˚q ´ p

D

px0 |z˚q • p
D

x0
px˚ |z˚q ´ p

D

px˚ |z˚q

together imply that p
D

px˚ | z˚q • p
D

px0 | z˚q, as required for expression (16) in our original proofs.
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S2. Experiment Details and Additional Results
Automatic differentiation in TensorFlow is used to obtain gradients for both our revision procedure and the (stochastic)
learning of neural network parameters. Throughout our applications, the GRU input is a vector-representation of each
symbol in the sequence, taken from a dictionary of embeddings that is learned jointly with the neural network parameters
via the Adam optimization algorithm of Kingma & Ba (2015). To ensure the decoder can actually generate variable-length
sequences, a special †End° symbol is always included in S and appended at the end of each sequence in the training data.
Note that all ↵-values stated in the text were actually first rescaled by p2⇡q´d{2 before the REVISE procedure (to avoid
confounding from the choice of latent-dimensionality d in the relationship between the listed ↵ and characteristics of the
resulting revisions).

S2.1. Simulation Study

When sampling a sequence for this simulation, we first draw its length uniformly from the range [10,20], and subsequently
draw the symbols at each position following the probabilistic grammar of Table S1. Before its quality is evaluated, any
proposed sequence whose length violates the [10,20] range is either truncated or extended via repeated duplication of the
last symbol. In all models we apply, the encoder/decoder GRUs operate on input-embeddings of size 8, and the outcome-
prediction model F is a feedforward network with one tanh hidden layer of size 128.

Rule Probability
s
t

“ A | s
t´1 “ C 0.50

s
t

“ B | s
t´1 “ A 0.95

s
t

“ D | s
t´3 “ D 0.95

s
t

“ E | s
t´5 “ E 0.95

s
t

“ J | s
t´2 “ H, s

t´1 “ I 0.95
s
t

“ I | s
t´2 “ I, s

t´1 “ H 0.95
s
t

“ B | s
t´3 “ B, s

t´2 “ C 0.95
s
t

“ F | s
t´1 “ F, t • 11 0.95

s7 “ G | s6 “ F 0.95
s8 “ G | s7 “ F 0.50
s5 “ C 0.50
s10 “ C 0.50
s15 “ C 0.50
s20 “ C 0.50

Table S1. Probabilistic grammar used to generate sequences ps1, . . . , sT q in our simulation. All events not listed here are assumed to
occur randomly (uniformly among the remaining probability mass). When one or more conditioning statements are valid at a given t,
we renormalize the probabilities for st | s1, . . . , st´1 before sampling the next character.

In the SEARCH procedure, evaluating 100 candidates took similar computation time as a typical run of our REVISE al-
gorithm. Note that in this small scale simulation study, SEARCH is able to examine a nontrivial subset of the possible
sequences around x0. However, exponentially more randomly generated revisions would be needed to retain the perfor-
mance of this SEARCH approach under longer sequences with larger vocabularies, whereas the computational complexity
of our REVISE procedure scales linearly with such increases. Whereas the SEARCH method changes nearly every given
initial sequence by a relatively similar amount, our REVISE procedure tends to either make larger changes or no change
at all. As is desirable, our approach (particularly with adaptive decoding) tends to favor no change for x0 where the cor-
responding latent posterior has high uncertainty, both because the VAE training objective urges all decodings in a large
region around Epx0q to heavily favor x0 and the invariance term Linv encourages F to be more flat in such regions.

S2.2. Improving Sentence Positivity

For simplicity, our analysis of the beer reviews only considers sentences that are short (§ 30 words) and entirely composed
of words that appear in • 100 other sentences. This restricts the size of the vocabulary to |S| « 5, 500. In this analysis,
the SEARCH procedure is allowed to score 1000 candidate sequences, which is now far slower than our REVISE algorithm.
In our models, GRUs E and D employ an embedding layer of size 128, the latent representations (and GRU hidden states
h
t

) have d “ 256 dimensions, and F is feedforward network with one hidden layer of the same size (and tanh activations)
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Figure S1. Behavior of the REVISE procedure in our simulation study. (A) Relationship between ↵ and properties of revised sequence
(averaged over same 1000 initial sequences x0 „ pX , with units rescaled so that all curves share the same range): outcome improvement
(black), edit distance (blue), marginal log-likelihood (red). (B) Likelihood of each original sequences vs. its revised version, when
log↵ “ ´10000. The diagonal red line depicts the identity relationship y “ x. (C) Boxplot of ||z˚ ´ Epx0q||2 values for each
resulting value of dpx0, x

˚q observed when log↵ “ ´10000. Note there were very few revisions where dpx0, x
˚q ° 8.

followed by a sigmoid output layer. The language model L shares the same GRU architecture as our decoder network D .

Examining the REVISE output, we find that punctuation patterns are quite often perfectly preserved in revisions (this is
interesting since all punctuation characters are simply treated as elements of the vocabulary in the sequences). There exist
many initialization-points where if unconstrained gradient ascent is run for a vast number of iterations with a large step-size,
the resulting decoding produces the sentence: “excellent excellent excellent excellent excellent excellent excellent.”, which
is has near-optimal VADER sentiment but low marginal likelihood. Starting from other z-initializations, the decoding
which results from a massive shift in the latent space often reverts to repetitions of a safe choice where each decoded word
has high marginal likelihood, such as: “the the a the the the a the” or “tasting tasting tasting tasting tasting tasting tasting ”.

S2.3. Revising Modern Text in the Language of Shakespeare

Sentences used in this analysis were taken either from the concatenated works of Shakespeare (Karpathy, 2015) or from
various more contemporary texts (non-Shakespeare-authored works from the Brown, Reuters, Gutenberg, and FrameNet
corpora in Python’s NLTK library (Bird et al., 2009)). Here, we use the same architecture for networks F ,E ,D as in the
previous beer-reviews application.
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Model Sentence �

Y

px˚q �

L

px˚q dpx˚, x0q
x0 caramel, fruit, sweetness, and a soft floral bitterness. - - -
log↵ “ ´10000 caramel, fresh, sweetness, quite soft and a good bitterness. +1.88 -5.1 6
ADAPTIVE caramel, fresh, sweetness, quite soft and a good bitterness. +1.88 -5.1 6
log↵ “ ´1 caramel, fruit sweetness, and a soft floral nose. +1.17 +0.2 1
�inv “ �pri “ 0 caramel, fruit sweetness, and a soft floral and tangy nose. +1.17 -16.4 3
SEARCH caramel, fruit sweetness, and a soft floral, cocoa. + 1.17 -7.0 2

x0 i like to support san diego beers. - - -
log↵ “ ´10000 i love to support craft beers! +0.5 +1.6 4
ADAPTIVE i like to support san diego beers. 0 0 0
log↵ “ ´1 i like to support craft beers! +0.1 +2.6 3
�inv “ �pri “ 0 i like to support you know. 0 +3.7 3
SEARCH i like to super support san diego. +0.7 -2.9 2

x0 good carbonation makes for a smooth drinking experience. - - -
log↵ “ ´10000 good carbonation makes a great smooth drinking stuff. +1.1 -1.1 3
ADAPTIVE good carbonation makes a great smooth drinking stuff. +1.1 -1.1 3
log↵ “ ´1 good carbonation makes for great smooth drinking. + 1.1 +3.0 2
�inv “ �pri “ 0 good carbonation makes for a smooth drinking like experience. +0.7 -9.2 1
SEARCH good carbonation makes for a drinking nice experience! +0.9 -4.1 3

x0 i’m not sure how old the bottle is. - - -
log↵ “ ´10000 i definitely enjoy how old is the bottle is. +3.0 -3.6 4
ADAPTIVE i definitely enjoy how old is the bottle is. +3.0 -3.6 4
log↵ “ ´1 i’m sure not sure how old the bottle is. +2.5 -6.8 1
�inv “ �pri “ 0 i’m sure better is the highlights when cheers. +3.3 -9.2 6
SEARCH i ’m not sure how the bottle is love. +2.3 -3.3 2

x0 what a great afternoon! - - -
log↵ “ ´10000 what a great afternoon! 0 0 0
ADAPTIVE what a great afternoon! 0 0 0
log↵ “ ´1 what a great afternoon! 0 0 0
�inv “ �pri “ 0 what a great afternoon lace! 0 -8.2 1
SEARCH what a solid great! +0.19 -7.1 2

x0 the finish is a nice hoppy bitter, with ample spice. - - -
log↵ “ ´10000 the finish is a nice hoppy plant, with ample spice and great mouthfeel. +2.5 -6.4 4
ADAPTIVE the finish is a nice hoppy plant, with ample spice. +1.3 -0.8 1
log↵ “ ´1 the finish is a nice hoppy plant, with ample spice. +1.3 -0.8 1
�inv “ �pri “ 0 the finish is a nice hoppy bitter, with ample spice. 0 0 0
SEARCH the finish is a nice hoppy bitter best, with ample spice. +2.0 -7.9 1

Table S2. Additional examples of held-out beer reviews x0 (in bold) revised to improve their VADER sentiment. Under-
neath each sentence, we show the revision produced by each different method along with the true outcome improvement
�Y px˚q “ ErY | X “ x

˚s ´ ErY | X “ x0s (rescaled by the standard deviation of outcomes in the training data), estimated change
in marginal likelihood �Lpx˚q “ logLpx˚q ´ logLpx0q, and Levenshtein (edit) distance dpx˚

, x0q.
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# Steps Sentence

x0 you find the evidence of that in the chart on this page.
100 you find the evidence of that in the chart on this page.
1000 you find the chart of action in this page.
5000 you find the chart of the chart that page of action in this page.
10000 find you in this page of the way of your highness.
x˚ you speak of the chart in this page of the lord.

x0 somewhere, somebody is bound to love us.
100 somewhere, somebody is bound to love us.
1000 courage, honey, somebody is bound to love us!
5000 courage man; ’tis love that is lost to us.
10000 thou, within courage to brush and such us brush.
x˚ courage man; somebody is bound to love us.

x0 the story of the fatal crash is not fully known
100 the story of the injured is not known.
1000 the story of our virtue is not yet known.
5000 the story of our virtue is not given me yet.
10000 the virtue of our story is not yet.
x˚ the story of our virtue is not yet known.

x0 this is the root issue for which the united states should stand.
100 this is the root issue which is an issue on the united states.
1000 the root issue is that the dialogue itself should stand provided.
5000 the general is for the root chief held for which is thy tale.
10000 this the shallow is sworn thee. shallow for thee.
x˚ the root issue is the national dialogue from thine.

x0 there is no such magic in man-made laws.
100 there is no such magic of man in such magic.
1000 there is no magic of man in such magic.
5000 there is no magic question with such a man in man.
10000 there is no magic in revolution and made no such india.
x˚ there is no magic in such noble birth;

x0 check the quality of the water.
100 check the quality of the water.
1000 check the quality of thy water.
5000 check the quality of thy quality.
10000 check the king of gloucester.
x˚ check the quality of thy water.

x0 what are you doing here?
100 what are you doing here?
1000 what are you doing here?
5000 cardinal what does thou live here?
10000 cardinal what does thou live here?
x˚ does thou live here?

Table S3. Adaptive decoding from various latent Z configurations encountered at the indicated number of (unconstrained) gradient steps
from Epx0q, for the model trained to distinguish sentences from Shakespeare vs. contemporary authors. Shown first and last are the
initial sequence x0 and the revision x

˚ returned by our REVISION procedure (constrained with log↵ “ ´10000).
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S3. Proofs and Auxiliary Lemmas
Proof of Theorem 1.

By the definition of x˚, we have:

p
D

px˚ | z˚q • p
D

px0 | z˚q (16)

ùñ p
X

px˚q • ppz˚ | x0q
ppz˚ | x˚q ¨ p

X

px0q by Bayes’ rule

• �q
E

pz˚ | x0q
ppz˚ | x˚q ¨ p

X

px0q with probability • 1 ´ �

by assumptions (A1) and (A2) combined via the union bound. Finally, from the definitions in REVISE, we have that
z˚ P C

x0 , which implies q
E

pz˚ | x˚q • ↵.

Lemma 1. If (A1) holds, then for z˚
defined in REVISE: z˚ P B

R

p0q with probability • 1 ´ �

2 (over x0 „ p
X

).

Proof. Recall that B
R

p0q is defined as the Euclidean ball of radius R centered around 0. We show:

||z˚ ´ Epx0q|| § 1

2

R (17)

and with probability • 1 ´ �

2 :

||Epx0q|| § 1

2

R (18)

Subsequently, the triangle inequality completes the proof.
To prove (17), we recall that from our definition in (3): q

E

pz | x0q is a Gaussian distribution with mean Epx0q and diagonal
covariance ⌃

z|x where each entry is § 1. Furthermore, the definitions in REVISE ensure z˚ P C

x0 ùñ qpz˚ | x0q • ↵.
Defining K “ ´2 logrp2⇡qd{2|⌃

z|x|1{2↵s which specifies the level-↵ isocontour of the Np0,⌃
z|xq density, we have:

qpz˚ | Epx0q • ↵

ùñ pz˚ ´ Epx0qqT⌃´1
z|xpz˚ ´ Epx0qq § K

ùñ ||z˚ ´ Epx0q|| §
b
K ¨ �maxp⌃

z|xq § 1

2

R1

where �maxp⌃
z|xq is the largest eigenvalue of ⌃

z|x and �maxp⌃
z|xq § 1, |⌃

z|x|1{2 § 1 for our q
E

pz | xq.

Now, define R “ tx P X : Epxq ° 1
2Ru, and let rZ „ q

Z

as defined in (10). To prove (18), we note that for all x P R:
q
E

pz | xq is a diagonal Gaussian distribution centered around Epxq which has norm ° R{2. Thus:

�

4

¨ p
X

pRq †�
ÿ

xPR

ª

||z||• 1
2R

q
E

pz | xq dz ppxq “ � ¨ Pr
ˆ

|| rZ|| • 1

2

R

˙

§Pr

ˆ
||Z|| • 1

2

R

˙
by the second condition in (A1)

§Pr

ˆ
||Z|| • 1

2

R2

˙
as we defined R • R2

Since Z „ Np0, Iq under our prior, ||Z||2 „ �2
d

.
Applying the Chernoff bound to the tail of the �2 distribution (Dasgupta & Gupta, 2002), we thus obtain:

Pr

ˆ
||Z||2 • 1

4

R2
2

˙
§

„
1

4

R2
2 ¨ exp

ˆ
1 ´ 1

4

R2
2

˙⇢
d{2

§
„
exp

ˆ
1 ´ 1

16

R2
2

˙⇢
d{2

which implies p
X

pRq † �{2 by our definition of R2.
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Proof of Theorem 2.

For ✏ P p0, 1s, let B
✏

pzq denote the ✏-ball centered at z. We have:

p
X

px˚q “
ª
p
D

px˚ | zqp
Z

pzq dz

•PrpZ P B
✏

pz˚qq rp
D

px˚ | z˚q ´ L✏s
assuming z˚ P B

R

p0q, which occurs with probability • 1 ´ �{2 by Lemma 1
•PrpZ P B

✏

pz˚qq rp
D

px0 | z˚q ´ L✏s by (16)

“PrpZ P B
✏

pz˚qq
„
ppz˚ | x0q
p
Z

pz˚q p
X

px0q ´ L✏

⇢

•PrpZ P B
✏

pz˚qq
„
�
q
E

pz˚ | x0q
p
Z

pz˚q p
X

px0q ´ L✏

⇢

assuming z˚ P B
R

p0q and x0 satisfies the (A1) inequality, which occurs with probability • 1 ´ � by the union bound

•PrpZ P B
✏

pz˚qq
p
Z

pz˚q r�↵p
X

px0q ´ L✏s since p
Z

pz˚q † 1 and z˚ P C

x0 ùñ q
E

pz˚ | x0q • ↵

•
min

||�||“✏

p
Z

pz˚ ` �q

p
Z

pz˚q VolpB
✏

pz˚qq r�↵p
X

px0q ´ L✏s where Volp¨q denotes the Lebesgue measure

• exp

ˆ
´1

2

“
||z˚||✏ ` ✏2

‰˙
VolpB

✏

pz˚qq r�↵p
X

px0q ´ L✏s

by exploiting the fact that p
Z

“ Np0, Iq and subsequent application of the Cauchy-Schwarz inequality

• exp

ˆ
´||z˚|| ` 1

2

˙
¨ VolpB

✏

pz˚qq ¨ r�↵p
X

px0q ´ L✏s for any ✏ P p0, 1s

• exp

ˆ
´R ` 1

2

˙
¨ VolpB

✏

pz˚qq ¨ r�↵p
X

px0q ´ L✏s since we already assumed z˚ P B
R

p0q.

We conclude the proof by selecting ✏ “ �↵pd`1q
Lpd`2q pXpx0q which maximizes the lower bound given above.

Proof of Theorem 3.

Suppose for x0 P R, the corresponding revision x˚ R E . Then:

PrpX P E X Rq § 1 ´ p
X

px˚q ´ PrpX P EzRq
§ 1 ´  ´ PrpX P EzRq

Since (A5) implies PrpX P E

Cq † , we also have:

PrpX P E X Rq “ 1 ´ PrpX P E

Cq ´ PrpX P EzRq
° 1 ´  ´ PrpX P EzRq

which is a contradiction. Thus, we must have x˚ P E if x0 P R, which occurs with probability • 1 ´ �{2.

Lemma 1 ensures that under (A1): z˚ P B
R

p0q with probability • 1´ �{2, implying |F pz˚q ´F pEpDpz˚qqq| § ✏inv with
the same probability. Consequently, we have:

F pz˚qq ´ F pEpx0qq § F pEpDpz˚qq ´ F pEpx0qq ` ✏inv with probability • 1 ´ �

2

§ F pEpx˚qq ´ ErY | X “ x0s ` ✏inv ` ✏mse with probability • 1 ´ �

2 ´  by the union bound

§ ErY | X “ x˚s ´ ErY | X “ x0s ` ✏inv ` 2✏mse with probability • 1 ´ �

2 ´  ´ �

2 by the union bound

The inequality in the other direction is proved via similar reasoning.
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