
Tight Bounds for Approximate Caratheodory and Beyond

Tight Bounds for Approximate Carathéodory and Beyond:
Supplementary Material

A. Overview of Convex Analysis
We give a brief overview on the theory of convex functions. For a detailed exposition we refer readers to (Nesterov, 2004).

Subgradients. A function f : Q ✓ Rd ! R defined on a convex domain Q is said to be convex if every point x 2 Q
has a non-empty subgradient @f(x) = {g 2 Rd

; f(y) � f(x) + g>(y � x), 8y 2 Q}. Geometrically, this means that a
function is convex iff it is the maximum of all its supporting hyperplanes, i.e. f(x) = max

x0,g2@f(x0) f(x0) + g>(x� x0).
When there is a unique element in @f(x) we call it the gradient and denote it by rf(x). We will sometimes abuse notation
and refer to rf(x) as an arbitrary element of @f(x) even when it is not unique.

Strong convexity and smoothness. We say that a function f : Q ✓ Rd ! R is µ-strongly convex with respect to norm
k·k if for all x, y 2 Q and all subgradients g 2 @f(x):

f(y)� f(x)� g>(y � x) � 1

2

µ ky � xk2

A function is said to be �-smooth with respect to the k·k if for all x, y 2 Q and g 2 @f(x):

f(y)� f(x)� g>(y � x)  1

2

� ky � xk2

Bregman divergence and the Hessian. Every continuously differentiable f induces a concept of ‘distance’ known as the
Bregman-divergence: given x, y 2 Q, we define D

f

(ykx) := f(y) � f(x) �rf(x)>(y � x) as the second order error
when computing f(y) using the linear approximation of f around x. The fact that f is convex guarantees D

f

(ykx) � 0.

If the subgradient of f is unique everywhere, we can define µ-strong convexity and �-smoothness with respect to the
Bregman divergence, as D

f

(ykx) � 1
2� kx� yk2 and D

f

(ykx)  1
2µ kx� yk2. If f is also twice-differentiable, a simple

way to compute its strong convexity and smoothness parameters is by bounding the k·k-eigenvalues of the Hessian. If
µ · kwk2  w>r2f(x)w  � · kwk2 for all x 2 Q and w 6= 0, then f is µ-strongly convex and �-smooth. This is because:

D
f

(ykx) =
Z 1

0
[rf(x+ (y � x)t)�rf(x)]>(y � x)dt

=

Z 1

0

Z
s

0
(y � x)>r2f(x+ (y � x)s)(y � x)dsdt

Lipschitz constant. We say that a convex function is ⇢-Lipschitz with respect to norm k·k if krf(x)k⇤  ⇢. Note that
⇢-Lipschitz continuity requires a bound on the dual norm, since

|f(y)� f(x)| =
����
Z 1

0
rf(x+ t(y � x))>(y � x)dt

����


Z 1

0

��rf(x+ t(y � x))>(y � x)
�� dt


Z 1

0
krf(x+ t(y � x))k⇤ · ky � xk dt

 ⇢ · ky � xk

Tight Bounds for Approximate Caratheodory and Beyond

Fenchel duality. It is useful to write a convex function as the maximum of its supporting hyperplanes. One way to do that
is using the Fenchel transform. When defining Fenchel transforms, it is convenient to identify a function f : Q ! R to its
extension ˜f : Rd ! R[{1} such that ˜f(x) = f(x) for x 2 Q and ˜f(x) = 1 otherwise. Given that identification, we can
define the Fenchel transform of a function f as the function f⇤

: Rd ! R[{1} given by f⇤
(z) = sup

x2Rd z>x�f(x). If
f is convex, the Fenchel transformation is self-invertible, i.e., (f⇤

)

⇤
= f or equivalently: f(x) = max

z

z>x�f⇤
(z). Notice

that the previous expression is a way to write any convex function as a maximum over linear functions in x parametrized by
z. The Fenchel inequality f(x) + f⇤

(z) � z>x follows directly from the definition of the Fenchel transform.

Envelope Theorem. When writing a convex function f = max

i

f
i

as a maximum of other convex function (typically linear
functions), the Envelope Theorem gives a way to compute derivatives. Its statement is quite intuitive: since gradients are
local objects, the gradient of f at a certain point is the gradient of the function f

i

being maximized at that point. Formally, if
f(x) = max

z

g(x, z) where g(x, z) is convex in x for every fixed z, then if f(x0) = g(x0, z0), then @
x

g(x0, z0) ✓ @f(x0).
A direct application of this theorem is in computing the gradients of the Fenchel dual: rf⇤

(z) = argmin

x

{z>x� f(x)}
and f⇤

(z) = z>rf⇤
(z)� f(rf⇤

(z)).

Smoothness and strong convexity duality. Finally, we will use the following duality theorem:

Theorem A.1. The function f : Q ! R is a (1/�)-strongly convex function with respect to k·k if and only if its Fenchel
dual f⇤

: Rd ! R is a �-smooth with respect to k·k⇤.

Proof. Here we prove that �-strong convexity of a function implies (1/�)-smoothness of its dual, since this is the direction
we will use. We refer to (Kakade et al., 2012; Shalev-Shwartz, 2007) for a proof of the converse.

Fix z1, z2 2 Rd and let y
i

2 @f⇤
(z

i

) = argmax

y2Q

z>
i

y � f(y). Since f is strongly convex, there in an unique
maximum, so we can write y

i

= rf⇤
(z

i

). Also, f⇤
(z

i

) = z>
i

y
i

� f(y
i

). Since the Fenchel transform is self-dual,
f(y

i

) = max

z

y>
i

z � f⇤
(z) = z>

i

y
i

� f⇤
(z

i

). In particular, this means that z
i

2 @f(y
i

).

Using the strong-convexity of f , we can write:

f(y2)� f(y1)� z>1 (y2 � y1) � 1

2�
ky1 � y2k2

f(y1)� f(y2)� z>2 (y1 � y2) � 1

2�
ky1 � y2k2

Summing the expressions above and applying Holder’s inequality, we get:

1

�
ky1 � y2k2  (z2 � z1)

>
(y2 � y1)  kz1 � z2k⇤ · ky1 � y2k

Therefore:
� · kz1 � z2k⇤ � ky1 � y2k = krf⇤

(z1)�rf⇤
(z2)k

which implies the smoothness bound:

D
f

⇤
(z2kz1)

=

Z 1

0
[rf⇤

(z1 + t(z2 � z1))�rf⇤
(z1)]

>
(z2 � z1)dt

 1

2

� kz1 � z2k2⇤

B. A primer on Mirror Descent
For the sake of completeness, we will present here an elementary exposition of the Mirror Descent Framework, which is
used in our proof. For a complete exposition we refer to Nemirovskii (Ben-Tal & Nemirovski, 2001) or Bubeck (Bubeck,
2014).

Tight Bounds for Approximate Caratheodory and Beyond

The goal of Mirror Descent is to minimize a convex function f : Q ✓ Rd ! R with Lipschitz constant ⇢ with respect to
norm k·k. To motivate Mirror Descent, it is useful to think of dot products y>x as a product of vectors in two different
vector spaces, which can be thought as vectors vs linear forms or column vectors vs row vectors. In the spirit of Hölder’s
inequality, we can think of x as living in the Rd space equipped with k·k norm while y lives in Rd equipped with the dual
norm k·k⇤. When we approximate f(y) � f(x) ⇡ rf(x)>(y � x), the second term is a dot-product of a vector in the
domain y � x, which we call the primal space and measure using k·k norm and a gradient vector, which we call the dual
space and measure with dual norm k·k⇤.

Keeping the discussion in the previous paragraph in mind, we can revisit the most intuitive method to minimize convex
functions: gradient descent. The gradient descent method consists in following the directions of steepest descent, which is
the direction opposite to the gradient. This leads to an iteration of the type: y

t+1 = y
t

� ⌘ ·rf(y
t

). In the view of primal
space and dual space, this iteration suddenly looks strange, because one is summing a primal vector y

t

with a dual vector
rf(y

t

) which live in different spaces. In some sense, the gradient descent for Lipschitz convex functions only makes sense
in the `2 norm, in which k·k = k·k⇤ (see the subgradient descent method in (Nesterov, 2004)).

This motivated the idea of a map M : Rd ! Q connecting the primal and the dual space. The idea in the mirror descent
algorithm is to keep two vectors (y

t

, z
t

) one in the primal space and one in the dual space. In each iteration we compute
rf(y

t

), obtaining a dual vector and update:

z
t+1 = z

t

� ⌘rf(y
t

) y
t+1 = M(z

t+1)

It is convenient in the analysis to think of this map as the gradient of a convex function M = r!⇤. In the usual setup, we
define the mirror map, which is a convex function ! : Q ! R, ��1-strongly convex with respect to k·k. Let !⇤

: Rd ! R
be the Fenchel-dual !⇤

(z) = sup

y2Q

z>y � !(y) which is a �-smooth convex function with respect to k·k⇤ by Theorem
A.1.

Notice that !⇤ is defined as a maximum over linear functions of z indexed by y. The result known as the envelope theorem
states that r!⇤

(z0) is the gradient of the linear function maximized at z0. Therefore: r!⇤
(z0) = y 2 argmax

y

{z>0 y �
!(y)}. This in particular implies that r!⇤

(z) 2 Q since !(y) = 1 for y /2 Q.

Using the definition of ! and !⇤ we can define the Mirror Descent iteration as:

z
t+1 = z

t

� ⌘rf(y
t

) y
t+1 = r!⇤

(z
t+1)

Now, we are ready to prove Theorem 2.1. We restate it:
Theorem B.1 (Restatement of Theorem 2.1). In the setup described above with D = max

z2Q

D
!

(zkz0), ⌘ = ✏/�⇢2 then
in T � 2D�⇢2/✏2 iterations, it holds that 1

T

P
t

rf(y
t

)

>
(y

t

� y)  ✏, 8y 2 Q.

Proof. The idea of the proof is to bound the growth of !⇤
(z

t

) using smoothness property of !⇤:

!⇤
(z

t

)  !⇤
(z0) +

T�1X

t=0

r!⇤
(z

t

)

>
(z

t+1 � z
t

) +

�

2

kz
t+1 � z

t

k2⇤

= !⇤
(0)�

T�1X

t=0

⌘ry>
t

rf(y
t

) +

�

2

⌘2 krf(y
t

)k2⇤

By the Fenchel inequality !⇤
(z

t

) � z>
t

y � !(y) = (z0 �
P

t

⌘rf(y
t

))

>y � !(y⇤) for all y 2 Q. Combining with the
previous inequality and re-arranging the terms, we get:

⌘
X

t

rf(y
t

)

>
(y

t

� y)  !(y) + !⇤
(z0)�r!(y0)

>y +
�

2

⌘2⇢2T

The gradient of !⇤
(z0) = sup

y

z>0 y � !(y) corresponds by the envelope theorem to y maximizing z>0 y � !(y). Therefore,
since y0 = r!⇤

(z0), !⇤
(z0) = z>0 y0 � !(y0). Substituting !⇤

(z0) in the above expression and using the definition of
Bregman divergence, we get:

⌘
X

t

rf(y
t

)

>
(y

t

� y)  D
!

(yky0) + �

2

⌘2⇢2T

Tight Bounds for Approximate Caratheodory and Beyond

Rearranging the terms and using that D
!

(yky0)  D, we obtain:

1

T

X

t

rf(y
t

)

>
(y

t

� y)  D

⌘T
+

�⌘⇢2

2

=

r
2D�⇢2

T
for ⌘ =

s
2D

T�⇢2

So for T � 2�D⇢

2

✏

2 , 1
T

P
t

rf(y
t

)

>
(y

t

� y)  ✏.

Corollary B.2. In the conditions of the previous theorem, for ȳ
t

=

1
T

P
T

t=1 yt, f(ȳt)� f⇤  ✏, where f⇤
= min

y2Q

f(y)

Proof. Let y⇤ = argmin

y2Q

f(y). Applying the previous theorem with y = y⇤ we get:

f(ȳ
t

)� f(y⇤)  1

T

X

t

f(y
t

)� f(y⇤)  1

T

X

t

rf(y
t

)

>
(y

t

� y⇤)  ✏

where both inequalities follow from convexity of f .

C. Mirror Map
Proposition C.1. For 1 < q  2, the function ! : B

q

(1) ! R, !(y) = 1
2 kyk2q is (q � 1)-strongly convex with respect to

the `
q

norm and max

y2Bq(1) D!

(yk0) = 1
2 .

While a similar statement is shown to hold in (Shalev-Shwartz, 2007), we provide a proof here for completeness.

Proof. We want to bound !(y)� !(x)� g>(y � x) for all g 2 @!(x). For all x in the interior of the ball B
q

(1) there is a
unique subgradient which we represent by r!(x). In the border of B

q

(1), however, there are multiple subgradients. First
we claim that we need only to bound !(y)� !(x)�r!(x)>(y � x) where r!(x) denotes the gradient of the function
1
2 kyk2q . In order to see that, notice that if g is a subgradient in a point x and y 2 B

q

(1) then:

!(x+ t(y � x))� !(x)� g>(y � x) � 0

by the definition of subgradient. Dividing the expression by t and taking the limit when t ! 0+, we get: r!(x)>(y�x) �
g>(y � x), so in particular: !(y)� !(x)� g>(y � x) � !(y)� !(x)�r!(x)>(y � x).

This observation allows us to bound the strong convexity parameter of ! by looking at the k·k
q

-eigenvalues of the Hessian
of !. In particular, we will show that for all w 2 Rd, w>r2!(y)w � (q � 1) kwk2

q

.

To make the notation simpler, we define POW : Rd⇥R ! Rd as POW(y, p) = (|y
i

|p · sgn(y
i

))

i

. This allows us to represent
rkyk

q

in a succinct form: since

@
i

kyk
q

=

1

q
(kykq

q

)

1
q�1xq

i

q · sgn(x
i

) = kyk1�q

q

xq�1
i

sgn(y
i

)

so we can write rkyk
q

= kyk1�q

q

· POW(y, q � 1). Therefore:

r!(y) = r

1

2

kyk2
q

�
= kyk

q

·rkyk
q

= kyk2�q

q

· POW(y, q � 1)

Now, to compute the Hessian, we have:

r2!(y) = (2� q) kyk2�2q
q

· POW(y, q � 1)POW(y, q � 1)

>
+ (q � 1) kyk2�q

q

DIAG(|y
i

|q�2
)

Tight Bounds for Approximate Caratheodory and Beyond

where DIAG(|y
i

|q�2
) is the diagonal matrix with xq�2

i

in the diagonal. Using the fact that 1 < q  2, we can write:

w>r2!(y)w = (2� q) · kyk2�q

q

[POW(y, q � 1)

>w]2 + (q � 1) · kyk2�q

q

X

i

|y|q�2
i

w2
i

� (q � 1)

X

i

|y|q
i

! 2�q
q

·

X

i

|y|q�2
i

w2
i

!

= (q � 1)

2

4

X

i

|y
i

| q(2�q)
2 · 2

2�q

! 2�q
2

·

X

i

(|y
i

| q(q�2)
2 wq

i

)

2
q

! q
2

3

5

2
q

The last equality is a convoluted re-writing of the previous expression, but allows us to apply Hölder’s inequality. Recall that
Hölder’s inequality states that kz1k

a

· kz2k
b

� z>1 z2 whenever 1
a

+

1
b

= 1. Applying this inequality with a =

2
2�q

and
b = 2

q

, we get:

w>r2!(y)w � (q � 1) ·

X

i

|y
i

| q(2�q)
2 · |y

i

| q(q�2)
2 wq

i

! 2
q

= (q � 1) ·

X

i

wq

i

! 2
q

= (q � 1) · kwk2
q

Finally, we need to show how to compute the Fenchel dual !⇤ and the mirror map r!⇤ efficiently:
Proposition C.2. The Fenchel dual of the function ! defined in Proposition C.1 can be computed explicitly:

!⇤
(z) =

(
1
2 kzk2p if kzk

p

 1

kzk
p

� 1
2 if kzk

p

> 1

Also, r!⇤
(z) = �(z) ·min(1, kzk

p

) where �(z) is a vector with `
q

-norm 1 such that z>�(z) = kzk
p

. This function can be
explicitly computed as: �(z)

i

= sgn(z
i

) · |z
i

|p�1 / kzkp�1
p

.

Proof. By the definition of Fenchel duality:

!⇤
(z) = max

y2Bq(1)
z>y � 1

2

kyk2
q

= max

0�1

"
max

ŷ;kŷkq=1
�z>ŷ � 1

2

�2

#
= max

0�1
� kzk

p

� 1

2

�2

where the second equality follows from writting y = �ŷ for 0  �  1 and kŷk
p

= 1. The optimal value of ŷ is �(z). The
expression � kzk

p

� 1
2�

2 is maximized at � = kzk
p

. Since � is restricted to lie between 0 and 1, the optimal � must be
min(1, kzk

p

).

If kzk
p

 1, � = kzk
p

and !⇤
(z) = 1

2 kzk2p. If kzk
p

> 1, then � = 1 and !⇤
(z) = kzk

p

� 1
2 .

By the envelope theorem, r!⇤
(z) = ŷ · � = �(z) ·min(1, kzk

p

). Now, it simple to check that � has the desired properties:

k�(z)kq
q

=

X

i

|z
i

|q(p�1) / kzkq(p�1)
p

=

X

i

|z
i

|p / kzkp
p

= 1

z>�(z) =
X

i

zp
i

/ kzkp�1
p

= kzk
p

Combining the previous results, we obtain:
Theorem C.3. Given n points v1, . . . , vn 2 B

p

(1) ✓ Rd with p � 2 and u 2 conv{v1, . . . , vn}, there is a deterministic
algorithm of running time O(nd · p/✏2) that a outputs a multiset v

i(1), . . . , vi(k) for k = 4(p � 1)/✏2 such that u0
=

1
k

P
k

t=1 vi(t) and ku0 � uk
p

 ✏.

Tight Bounds for Approximate Caratheodory and Beyond

Proof. The number of iterations of Mirror Descent (and consequently the sparsity bound) T = 4p/✏2 can be obtained by
substituting D = 1/2 and ��1

= (q � 1)

�1
= p� 1 from Proposition C.1 in Theorem 3.2.

For the running time, notice that the time per iteration is dominated by the computation of the subgradient of f . The most
expensive step is the computation of V >y which takes dn operations, which is the size of matrix V .

D. Missing Proofs from Section 3.1
Proof of Theorem 3.5. Let ApproxCara(u) represent the convex combination x of vertices of P returned by the algorithm
from Theorem C.3, when receiving as input the vertices of P and the point u, and solving for precision r/2. Then let
e0 = u, x

i

= ApproxCara(e
i�1), ei = 2(e

i�1 � V x
i

), for i 2 {1, . . . ,�} where � = log(r/✏). Note that ke
i

k
p

=

2ke
i�1 � V x

i

k
p

 2 · r

2  r, hence e
i

2 P , so the input to ApproxCara is always well defined. Let x =

P
�

i=1
1

2i�1 · x
i

2⇣P
�

i=1 2
�(i�1)

⌘
� =

2���1
2�1�1 ·� = 2(1� ✏/r)�.

Let us bound the error when approximating u with V x:

kV x� uk
p

=

�����V

�X

i=1

1

2

i�1
· x

i

!
� u

�����
p

=

�����

�X

i=1

1

2

i�1
· V x

i

� e0

�����
p

=

�����

�X

i=2

1

2

i�1
V x

i

+ V x1 � e0

�����
p

=

�����

�X

i=2

1

2

i�1
V x

i

� 1

2

e1

�����
p

=

1

2

�����

�X

i=2

1

2

i�2
V x

i

� e1

�����
p

= . . .

=

1

2

��1

������

�X

i=�

1

2

i��

V x
i

� e
��1

������
p

=

1

2

��1
kV x

�

� e
��1k

p

 1

2

��1
· r
2

= r/2� = ✏

Each of the � = log(r/✏) iterations requires a call to ApproxCara for precision r/2, which produces a solution with sparsity
O(p/r2). Hence x will have O

�
p

r

2 log
r

✏

�
nonzero coordinates.

Proof of Corollary 3.6. Let v0
i

= v
i

� u for all i. This corresponds to translating P such that u is placed at the origin. By the
triangle inequality, this at most doubles the radius of the origin-centered `

p

ball circumscribing the polytope. Applying
Theorem 3.5 we obtain a vector x 2 2(1� r/✏)� such that

���
P

i2supp(x) xi

v0
i

���
p

 ✏. Let x0
i

= x
i

/kxk1 2 �. This satisfies
���
P

i2supp(x) x
0
i

v0
i

���
p

 ✏/kxk1. Hence
���
P

i2supp(x) x
0
i

v0
i

���
p

=

���
P

i2supp(x) x
0
i

(v
i

� u)
���
p

=

���
P

i2supp(x) x
0
i

v
i

� u
���
p


✏

2(1�✏/r)  ✏.

E. Analysis via Conditional Gradient Methods
We first show that the Frank Wolfe algorithm described in Section 3.2 provides the same guarantees as the Mirror Descent.
Then we argue that the two algorithms are completely isomorphic. We start by reviewing the Frank-Wolfe algorithm.
Instead of the standard choice of parameters ⌘

t

= 2/(t + 1) we will choose ⌘
t

= 1/t since it has the nice feature that
x
t

=

1
t

P
t

s=1 yt. In various applications discussed by Barman (Barman, 2015) it is crucial that the convex combination is
uniform over (a multi-set of) vertices. For completeness we provide a proof of convergence of the Frank-Wolfe algorithm.
The proof follows the presentation in (Jaggi, 2013) and (Bubeck, 2014) with the small change that we choose ⌘

t

so that we
get an uniform convex combination in the end.

Lemma E.1 (Frank-Wolfe). If f is �-smooth with respect to norm k·k and R = max

x,y2X

kx� yk then the Frank Wolfe
algorithm (described by the iteration FW in Section 3.2) with parameters ⌘

t

= 1/t is such that f(x
t

)�min

x2X

f(x)  ✏

for t = ⌦

⇣
�R

2

✏

⌘
.

Proof. Let x⇤ be the minimizer of f and define �
t

= f(x
t

)� f(x⇤
). Since x

t+1 = x
t

+ ⌘
t

(y
t

� x
t

), then by the definition

Tight Bounds for Approximate Caratheodory and Beyond

of �-smoothness we have:

f(x
t+1)  f(x

t

) + ⌘
t

rf(x
t

)

>
(y

t

� x
t

) +

1

2

�⌘2
t

ky
t

� x
t

k2

By the choice of y
t

we have that y>
t

rf(x
t

)  (x⇤
)

>rf(x
t

) and therefore:

(y
t

� x
t

)

>rf(x
t

)  (x⇤ � x
t

)

>rf(x
t

)  f(x⇤
)� f(x

t

) = ��

t

so:
�

t+1 = f(x
t+1)� f(x⇤

)  �

t

� ⌘
t

�

t

+

1

2

�⌘2
t

R2

which can be re-written as: �
t+1  (1� ⌘

t

)�

t

+

1
2�⌘

2
t

R2. Telescoping this expression we get:

�

t+1 
Y

t

(1� ⌘
t

)�0 +

X

t

1

2

�R2

t2
⌘
t

= O

✓
�R2

t

◆
for ⌘

t

=

1

t

Instantiating the Frank-Wolfe algorithm for our problem gives another optimization solution for the approximate
Caratheodory Theorem:

Theorem E.2. If x
t

, y
t

are iterates of the Frank-Wolfe algorithm for f(x) = kx� uk2
p

then
��� 1

t

P
t

s=1 yt � u
���
p

 ✏ for

t = ⌦

�
p

✏

2

�
.

Proof. By combining Theorem A.1, Proposition C.1 and the fact that the Fenchel dual of 1
2 kxk2p is 1

2 kxk2q we obtain that
f(x) is 2(p� 1)-smooth. Observe that since u is a convex combination of vertices of P , then f(x⇤

) = 0. Also, given how
⌘
t

were chosen, x
t

=

1
t

P
t

s=1 yt. This implies that kx
t

� uk2
p

 ✏2 for t = ⌦

⇣
pR

2

✏

2

⌘
.

A remarkable fact, however, is that the algorithm in Theorem E.2 and the one in Theorem 3.2 produce the same iterates.
Next we prove this fact:

Proof of Theorem 3.7. Recall the the Frank-Wolfe iteration is given by:

yFW
t

= argmin

y2P

rf(xFW
t�1)

>y xFW
t

=

✓
1� 1

t

◆
xFW
t�1 +

1

t
· yFW

t

for f(x) = kx� uk2
p

. Next we describe the Mirror Descent iteration. To avoid confusion we re-name the varibles and the
function in the (MD) iteration:

xMD
t+1 = xMD

t

� ⌘rg(zMD
t

) zMD
t+1 = r!⇤

(xMD
t+1)

for g(z) = max

y2P

z>(u� y) and !⇤ is as in Proposition C.2. The vertices output by the Frank Wolfe algorithm are yFW
t

and the vertices output by the Mirror Descent algorithm are yMD
t

= u�rg(zMD
t

).

Let y0 be an arbitrary point of P and let xFW0 = y0 and zMD0 = u� y0. We claim that for all t = 1, 2, . . . we have yMD
t

= yFW
t

and xFW
t

= u+

1
⌘t

xMD
t

=

1
t

P
t

s=1 yt.

The main observation we need to prove this fact is that rf(x) = �1(x) · �(x � u) where �1(x) is a non-negative
real number and �(·) is the function defined in Proposition C.2. Observe that by the same proposition, we can write
r!⇤

(x) = �2(x) · �(x� u). The important fact about � is that it is invariant by rescaling its arguments by a non-negative
function, i.e., �(tx) = �(x) for t � 0.

Now, we can prove the claim by induction, suppose that yMD
s

= yFW
s

for all s < t and that xFW
t

= u+

1
⌘t

xMD
t

=

1
t

P
t

s=1 yt.
Then xMD

t+1 = xMD
t

�⌘(u�yMD
t

) = �⌘(t+1)

P
t

s=1(u�yMD
t

) and yMD
t

= argmin

y2P

r!⇤
(xMD

t

)

>y = argmin

y2P

�(xMD
t

)

>y.
For Frank-Wolfe, yFW

t+1 = argmin

y2P

rf(xFW
t

)

>y = argmin

y2P

�(xFW
t

� u)>y. The lemma follows from the fact that,
by induction hypothesis, xFW

t

� u and xMD
t

are rescaled versions of the same vector.

Tight Bounds for Approximate Caratheodory and Beyond

F. Lower bound proofs
F.1. Proof of Theorem 5.3

Proof. Let x 2 �

n

be k-sparse, i.e. |supp (x)| = k, such that
��� ˜Hx� u

���
p

 ✏. We would like to lower bound the sparsity

k in terms of ✏ and p.

We will use two main ingredients in the proof: the first is the power mean inequality which states that for any vector
x 2 Rn,

�
1
n

P
i

xt

i

�1/t is non-decreasing in t. In particular, this implies that kxk
t

· n�1/t is non-decreasing3. The second
fact we will use is that for every vector kxk21  kxk22 · |supp (x)|. This follows from the Cauchy-Schwarz inequality:

kxk21 =

⇣P
i2supp(x) xi

· 1
⌘2


⇣P

i2supp(x) x
2
i

⌘
·
⇣P

i2supp(x) 1

⌘
= kxk22 · |supp (x)|. Combining both results give us a

bound involving the 2-norm of the error:

✏ �
��� ˜Hx� u

���
p

=

1

n1/p
· kHx� e1k

p

� 1

n1/2
· kHx� e1k2

where the last step follows from the power-mean inequality. Squaring both sides, we get:

✏2 � 1

n
(Hx� e1)

>
(Hx� e1) =

1

n

⇥
x>H>Hx� 2e>1 Hx+ 1

⇤
= kxk22 �

1

n
� kxk21

|supp (x)| �
1

n
=

1

k
� 1

n

We used the fact that e>1 Hx = kxk1 = 1 since the top row of H consists of only 1’s. Hence k � �
✏2 + 1/n

��1 �
1/max

�
✏2, 1/n

�
= min

�
1/✏2, n

�
.

F.2. Proof of Theorem 5.1

Bounding probabilities. All the lemmas and theorems from this of this section are in the conditions of the construction
described in Section 5: A and V are the random matrices previously defined, and S is a fixed subset of x-coordinates of size
k.

Lemma F.1. If the x-player plays the uniform strategy, then E
���V ·~1/n

���
p

�
 p

p/n, and P
���V ·~1/n

���
p

� ✏

�
 p

p

n✏

2

for n � p/✏2.

Proof. The bound on the expectation follows from Khintchine’s inequality, which states that for any given vectors
u1, . . . , um

2 Rn and iid uniform {�1,+1}-variables r
i

E
�����
X

i

r
i

u
i

�����
p

 p
p ·

X

i

ku
i

k2
p

!1/2

We refer to (Wolff et al.) or (Barman, 2015) for a proof. Let v
i

be the columns of V . Since they are iid uniform, v
i

has the
same distribution of r

i

v
i

for some uniform {�1,+1}-variable r
i

. So:

E
����V

✓
1

n
~
1

◆����
p

= E
�����
X

i

r
i

v
i

n

�����
p

 p
p ·

✓
n · 1

n2

◆1/2

=

r
p

n

The second part of the lemma is direct from Markov’s inequality.

For the second part, consider an x-player that is restricted to only use coordinates from S. We want to show that the y-player
has a strategy that that would make all columns in S have a high value in y>V . The idea is that since n is large and k is
small (in fact, a constant independent of n) there should be rows that are very skewed (i.e. have a lot more +1’s than �1’s
in the S columns). If y plays a strategy that only uses such rows, then he can force x to have high value.

3This can be seen by computing the derivative of Mt(x) =
�
1

n

P
i x

t
i

�
1/t with respect to t and showing it is non-positive.

Tight Bounds for Approximate Caratheodory and Beyond

We call a row of A is good for the y-player if it has more than (1/2 + ✏)k 1’s in the S-coordinates. Next we show that with
high probability there is a large enough number of good rows available for the y-player. For this result, we need to lower
bound the probability in the tail of the binomial distribution, which requires a tight anti-concentration inequality.

Anti-concentration can be derived by carefully plugging the moment generating function into the Paley-Zygmund (Paley &
Zygmund, 1932) inequality, or by sharply estimating a sum of terms involving binomial coefficients. For further information
we refer the reader to Tao’s book (Tao).
Lemma F.2 (Chernoff bound). If 0 < ⇢  1/2, X

i

are iid {0, 1}-random variables with P[X
i

= 1] = ⇢ and �2
= k⇢(1�⇢)

is the variance of X =

P
k

i=1 Xi

, then there exist constants C, c > 0 such that for all �  c�,

P
h���
P

k

i=1Xi

� ⇢ · k
���  ��

i
� c exp

��C�2
�

Lemma F.3 (Anti-concentration for the binomial distribution). In the same conditions as in the previous lemma, there exist
constants ˜C, c̃ > 0 such that for all �  c�,

P
h���
P

k

i=1Xi

� ⇢ · k
��� � ��

i
� c̃ exp

⇣
� ˜C�2

⌘

Lemma F.4. There are r = ⌦(n exp(�O(k✏2)) good rows with probability at least 1� exp(�⌦(n exp(�O(k✏2)))).

Proof. Applying Lemma F.3 with ⇢ = 1/2 and � = 4✏� we obtain that the probability that a row is at least k
�
1
2 + ✏

�
k

+1’s (or �1’s, due to symmetry) is at least exp(�O(k✏2)). So in expectation, there are n exp(�O(k✏2)) good rows, so the
result follows by applying the Chernoff bounds with ⇢ = exp(�O(k✏2)) and � = c�.

With high probability there will be at least r = ⌦(n exp(�O(k✏2)) good rows for the y-player to play. We want to argue
that if the y-player can find r good rows, then he can play y

i

= r�1/q for each good row i, and 0 otherwise, and he will
leave an x-player restricted to choosing only columns from a subset S without any good option to play.
Lemma F.5. Let S be a fixed subset of columns of A, and let A

S

be the matrix whose columns are the columns of A that
belong to S. Conditioning on A

S

having r good rows, with probability at least 1� k exp
��⌦(r✏2)

�
, every column in S

contains at least r(1/2 + ✏/2) +1’s in the r good rows.

Proof. Sample matrix A according to the following procedure: in the first phase, sample each entry of A uniformly and
independently from {�1,+1}. In the second phase, for each row, shuffle the entries in S (i.e. for each row, sample a
random permutation of S and apply to the entries corresponding to those columns). In the first phase we can decide which
rows are good, call those R. Conditioning on the first phase, and fixing a column j 2 S, the entries A

ij

for i 2 R are
independent and uniform from {�1,+1}; the probability of A

ij

being 1 is at least 1
2 + ✏, since this entry is a random

entry from a good row sampled in the first phase. The result follows by applying the Chernoff bound with ⇢ =

1
2 + ✏ and

� = (�✏)/(⇢ · (1� ⇢)).

Now, we combine all the events discussed so far using the union bound:

Lemma F.6. Fix ✏ and k. For sufficiently large n, there is a matrix A such that V = n�1/p ·A satisfies
���V ·~1/n

���
p

 ✏, and

for every subset S of k rows, there is a subset R of r = ⌦(n exp(�O(k✏2))) rows such that for all i 2 S,
P

j2R

A
ij

� ✏r.

Proof. The proof follows from the probabilistic method. For each subset S, with probability at least 1 �
exp(�⌦(n exp(�O(k✏2)))) there are r good rows (Lemma F.4) and with probability 1 � k exp

��⌦(r✏2)
�

=

1 � k exp
��⌦(n✏2 exp(�O(k✏2)))

�
there are at least (

1
2 + ✏)r many +1s in each column corresponding to the

r rows (Lemma F.5), causing
P

j2R

A
ij

� ✏r. The probability that both events occur can be bounded by 1 �
O
�
k exp

��⌦(n✏2 exp(�O(k✏2)))
��

. Applying the union bound over all
�
n

k

�
subsets S, we get:

1�
✓
n

k

◆
O
�
k exp

��⌦(n✏2 exp(�O(k✏2)))
�� � 1� exp

�
k log n�O(✏2n exp(�O(k✏2)))

�

which goes to one as n ! 1 for any fixed k and ✏. Also, as n ! 1 the probability that
���V (

1
n

)

~
1

���
p

 ✏ also goes to 1.

Tight Bounds for Approximate Caratheodory and Beyond

Theorem F.7 (Carathéodory lower bound). There is a matrix V whose columns have unit `
p

norm such that
���V ·~1/n

���
p

 ✏,

and for every x 2 �, |supp (x)|  k = O(p/✏2), kV xk
p

� 2✏.

Proof. Let V be the matrix obtained in Lemma F.6. From there, we have that
���V ·~1/n

���
p

 ✏. Now, fix any x 2 � with

|supp (x)|  k, and let S be the set of columns corresponding to the support of x. Let also R be the set of rows for whichP
j2R

A
ij

� ✏r for all i 2 S. Now, define y 2 B
q

(1) such that y
i

= r1/q uf i 2 R, and y
i

= 0 otherwise:

kV xk
p

� y>V x = n�1/p · (y>A)x � r✏

r1/q · n1/p
= ✏

⇣ r

n

⌘1/p

We want to choose the parameters such that
�
r

n

�1/p � 2. Substituting r = ⌦(n exp(�O(k✏2))):

⇣ r

n

⌘1/p
= exp

✓
�O

✓
k✏2

p

◆◆

If k  C · p

✏

2 for a suitable constant C, we get kV xk
p

� 2✏.

G. Applications
The approach presented in the previous sections can be easily generalized or directly applied to a series of applications.
Here we identify three representative applications to illustrate the usefulness of our approach. We note that there are many
other possible applications in combinatorial optimization, game theory and machine learning, where a convex combination
is often maintained as a subroutine of the algorithm.

G.1. Fast rounding in polytopes with linear optimization oracles

The most direct application of our approach is to efficiently round a point in a polytope whenever it admits a fast linear
optimization oracle. An natural such instance is given by the matroid polytope. We denote a n-element matroid by M and
its rank by r.

Proposition G.1. There is an algorithm which, given a fractional point x⇤ contained inside the base polytope of a matroid
M, and a norm parameter p � 2, produces a distribution D over matroid bases supported on O

⇣
p·r2/p

✏

2

⌘
points, such that

kE
x⇠D [x]� x⇤k

p

 ✏. Furthermore the algorithm requires O
�
nr2/pp/✏2

�
calls to M’s independence oracle.

Proof. The result follows from applying Theorem 3.2 for x⇤ in the convex hull of the characteristic vectors for matroid
bases. Note that each of these vectors has sparsity r so their p norm is precisely r1/p. Hence we have the desired sparsity for
the support of D. Each iteration requires maximizing a linear function over the bases of the polytope, which can be done
using the standard greedy algorithm, and requires O(n) calls to the independence oracle.

Of course, there are other nice polytopes where the existence of an efficient linear optimization oracle offers advantages. To
this aspect, we mention the s-t-flow polytope (i.e. the convex hull of all s-t paths), whose oracle is implemented with a single
shortest path computation. This enables us to speed up the path stripping subroutine in the Raghavan-Thompson randomized
rounding algorithm for approximating minimum congestion integral multicommodity flows (Raghavan & Thompson, 1991).
As described in (Raghavan & Thompson, 1991) the algorithm takes O(m2

), which can be improved to near linear time
by carefully using link-cut trees (Kang & Payor, 2015). By contrast, approximate Carathéodory provides a lightweight
algorithm for producing an approximate decomposition into integral paths, without the need of complicated data structures.

Proposition G.2. There is an algorithm which, given a fractional s-t-flow f⇤ routing one unit of demand in G, and a norm
parameter p � 2, produces a distribution D over s�t-paths supported on O

⇣
p·n2/p

✏

2

⌘
points, such that kE

f⇠D [f]� f⇤k
p


✏. Furthermore the algorithm requires O

⇣
p·n2/p

✏

2

⌘
shortest path computations.

In the setting of Raghavan-Thompson, fixing p = ⇥(log n) yields an approximate path stripping routine that runs in time
˜O(m/✏2).

Tight Bounds for Approximate Caratheodory and Beyond

G.2. SVM training

Support vector machines (SVM) are an extremely popular classification method, and have found ample usage in machine
learning, with applications ranging from finance to neuroscience. In the era of big data it is crucial for any such method to be
able to train on huge datasets. While a number of implementations (LIBLINEAR (Fan et al., 2008), P-packSVM (Zhu et al.,
2009), Pegasos (Shalev-Shwartz et al., 2011)) achieve excellent convergence rates in the case of linear SVM’s, handling
arbitrary kernels raises a significantly harder problem. LIBLINEAR and Pegasos achieve O(log(1/✏)), respectively O(1/✏)
convergence rate, but cannot be extended beyond linear kernels. The ✏ dependence for P-packSVM scales as O(1/✏), but it
requires knowing the Cholesky factorization of the kernel matrix in advance. In our case, a simple extension of the method
described in Section 3 gives O(1/✏2) convergence, while only requiring matrix-vector multiplications involving the kernel
matrix. So Cholesky factorization is no longer required, and the matrix does not need to be stored explicitly. In the case of
linear SVM’s, our method runs in nearly linear time.

Our approach is inspired from a reformulation of the training problem of Kitamura, Takeda, and Iwata (Kitamura et al.,
2014), who present a method for SVM training based on Wolfe’s algorithm. Their algorithm relies on a dual formulation
introduced by Schölkopf et al. (Schölkopf et al., 2000) which can be easily reformulated as a convex problem over a
product of two convex sets. More specifically, we are given empirical data (x

i,

y
i

) 2 X ⇥ {±1}, 1  i  n, along with a
function that maps features to a Hilbert space � : X ! H, which determines a kernel function k(x, y) = h�(x),�(y)i. Let
K 2 R

n⇥n

, where K
ij

= k(x
i,

x
j

), E+ = {e
i

: y
i

= +1}, E� = {e
i

: y
i

= �1}.

In (Kitamura et al., 2014), the ⌫-SVM problem is reformulated as:

min (�+ � ��)
> K (�+ � ��)

subject to �+ 2 RCH
⌘

(E+)

�� 2 RCH
⌘

(E�)

where ⌘ =

2
⌫n

and RCH
⌘

(A) :=

�P
a2A

�
a

a|0  �
a

 ⌘,
P

a2A

�
a

= 1

is the restricted convex hull of set A.

Our approach to solve this problem will be to rephrase it as a saddle point problem (similar to what was done for the
approximate Carathéodory problem) and apply Mirror Descent, with a suitable Mirror Map, to solve the dual. Before doing
that, we introduce a few useful definitions and facts:

Definition G.3. Let K be a symmetric positive definite matrix. Then kxk
K

:=

p
x>Kx.

Proposition G.4. The dual norm of kxk
K

is kxk
K

�1 . In other words kxk
K

= max

y:kykK�11 hy, xi.

Proof. This can be verified using Lagrange multipliers: over the unit k·k
K

�1-ball the term y>x attains its maximum at
y = Kx/ kKxk

K

�1 = Kx/
p
x>Kx. We can verify that for this choice of y, y>x =

x

>
Kxp

x

>
Kx

= kxk
K

.

Definition G.5. Let S
⌘

= {�+ � ��|�+ 2 RCH
⌘

(E+),�� 2 RCH
⌘

(E�)}.

Proposition G.6 (Linear optimization over S
⌘

). Linear optimization over S
⌘

can be implemented in ˜O(n) time.

Proof. The implementation of the linear optimization routine is done in near-linear time via a simple greedy algorithm. The
first thing to notice is that the objective is separable, so it is sufficient to optimize separately on E+ and E�. This can be
done easily, since we need to distribute one unit of mass over the coordinates that span E+ and one unit of mass over the
coordinates that span E�, such that no coordinate receives more than ⌘. Therefore adding mass to the coordinates spanning
E+ in increasing order of the weights y, and vice-versa to those spanning E� yields the optimal solution.

With these facts on hand, we can now proceed to describing our equivalent formulation as a saddle-point problem, which
will then be solved using a similar method to the one we employed for the previous applications.

Note that instead of directly using the kernel matrix K in the formulation, we replace it with ˜K = K +

✏

2I . This only
changes the value of the objective by at most ✏/2 and it has the advantage of making ˜K positive semidefinite, since it is now
guaranteed to be non-degenerate. This allows us to write the objective function (�+ � ��)

>
˜K(�+ � ��) as k�+ � ��k2

K̃

.
This formulation can be easily converted to a saddle point problem:

Tight Bounds for Approximate Caratheodory and Beyond

min

�2S
k�k

K̃

= min

�2S⌘

max

y:kykK̃�11
y>� = � min

y:kykK̃�11

✓
� min

�2S⌘

y>�

◆
= � min

y:kykK̃�11
f(y)

for f(y) := �min

�2S⌘ y
>� defined over the k·k

K̃

�1 -ball.

The subgradients of f are easy to compute, since they require a simple linear optimization over S:

@f(y) = � argmin

�2S
y>�

which can be done in time ˜O(n) using the greedy algorithm described in Proposition G.6. The mirror map of choice for the
domain {y : kyk

K̃

�1  1}will be ! : {y : kyk
K̃

�1  1} ! R, !(y) = 1
2kyk2

K̃

�1 , with

!⇤
(z) =

(
1
2kzk2

K̃

if kzk
K̃

 1

kzk
K̃

� 1
2 if kzk

K̃

> 1

.

Also, similarly to Proposition C.2, we have r!⇤
(z) = ˜Kz ·min(1, 1/kzk

K̃

), hence kr!⇤
(Z)k

K̃

�1  1.

The only thing left to do is to analyze the algorithm’s iteration count by bounding the strong convexity of ! and the Lipschitz
constant of f . We will do this with respect to k · k2.

Proposition G.7. ! is min

⇣
✏

2 ,
�kKk+ ✏

2

��1
⌘

-strongly convex with respect to k · k2, where kKk is the spectral norm of
K.

Proof. Writing down the Hessian of the mirror map, we obtain r2!(y) =

˜K�1
=

�
K +

✏

2I
��1 ⌫

min

⇣
✏

2 ,
�kKk+ ✏

2

��1
⌘
I . The reason for using ˜K instead of K in the formulation is now evident: if K is not full

rank, then ! is not strongly convex. Adding a small multiple of the identity forces all the eigenvalues of ˜K to be at least ✏/2,
and avoids the degeneracy where some of them may be zero.

Proposition G.8. f is 2p⌘-Lipschitz with respect to k · k2.

Proof. We simply need to bound the 2-norm of the subgradient. By the construction presented in Proposition G.6 the
subgradient contains 2 ·d1/⌘e nonzero coordinates, 2 ·b1/⌘c of which are precisely ⌘. This enables us to obtain a better upper
bound than one would usually expect on the 2-norm of the subgradient, namely

p
2 · (b1/⌘c · ⌘2 + (1� ⌘ · b1/⌘c)2) p

2 · (2/⌘) · ⌘2 = 2

p
⌘.

Proposition G.9. max

y:kykK̃1
1
2kyk2

K̃

 1
2

Finally we can put everything together:

Theorem G.10. An ✏-approximate solution to ⌫-SVM can be found in O
�
⌘ ·max

�
2
✏

kKk+ ✏

2

�
/✏2

�
=

O
�
max

�
1
✏

kKk� / �⌫n✏2�� iterations.

Proof. Follows from plugging in the parameters � = min

⇣
✏/2, (kKk+ ✏/2)�1

⌘
, L = 2

p
⌘, R = O(1) into the mirror

descent algorithm.

At this point, it makes sense to analyze the performance of our algorithm for the most common choices of SVM kernels,
which only requires bounding the spectral norm of the kernel matrix; for this purpose we will simply use the trace bound.
The results are summarized in the table below. The last column of the table contains the number of iterations required to find
a solution down to a precision of ✏, given that all the vectors x

i

belong to the unit `2 ball.

Tight Bounds for Approximate Caratheodory and Beyond

Kernel type Upper bound on kKk Iteration count
Polynomial (homogeneous):

K
ij

= hx
i

, x
j

id n ·max

i

kx
i

k2d2 O
�
max

�
1

n⌫✏

3 ,
1

⌫✏

2

��

Polynomial (inhomogeneous):
K

ij

= (1 + hx
i

, x
j

i)d n · �1 + max

i

kx
i

k22
�
d O

⇣
max

⇣
1

n⌫✏

3 ,
2d

⌫✏

2

⌘⌘

RBF:
K

ij

= exp(�kx
i

� x
j

k2/2�2
) n O

�
max

�
1

n⌫✏

3 ,
1

⌫✏

2

��

Sigmoid:
K

ij

= tanh(↵ · hx
i

, x
j

i+ c) n O
�
max

�
1

n⌫✏

3 ,
1

⌫✏

2

��

It is worth mentioning that each iteration requires ˜O(n) time for computing the subgradient, and a multiplication of the
kernel matrix with a vector; one advantage is that the kernel matrix does not need to be explicitly stored, as its entries can be
computed on the fly, whenever needed. In the case of linear kernels, this computation is implemented in linear time since
˜Kz = [x1| . . . |xn

]

>
[x1| . . . |xn

] z + ✏

2z, which requires computing a linear combination h =

P
i

x
i

· z
i

of the vectors x,
and n dot products between vectors from the training set and h.

