A. Proofs

Sketch of the proof for Theorem 1. We need to the show
that for every Q € O(n), there exits a tuple of vec-
tors (ug,...,u,) € R x --- x R™ such that Q =
Mji(uy,...,u,). Algorithm 1 shows how a QR decompo-
sition can be performed using the matrices {Hy(ux)}y_;
while ensuring that the upper triangular matrix R has pos-
itive diagonal elements. If we apply this algorithm to an
orthogonal matrix Q, we get a tuple (uy,...,u,) which
satisfies

QR = Hn(un) N ’Hl(ul)R = Q

Note that the matrix R must be orthogonal since R = Q’ Q
Therefore, R = 1, since the only upper triangular ma-
trix with positive diagonal elements is the identity matrix.
Hence, we have

Ml(ul, .. .,un) = Hn(un) .. .Hl(ul) = Q

O

Algorithm 1 QR decomposition using the mappings {H }.
For a matrix B € R™"*", { B, ;. }1<k<n denote its diagonal
elements, and By x = (B ks -+ -, Bn i)' € RPFFL

Require: A € R™*" is a full-rank matrix.

Ensure: @ and R where Q = H,(u,)...H1(u1) and R
is upper triangular with positive diagonal elements such
that A = QR
R+ A
@ < I {Initialise Q to the identity matrix }
fork=1ton—1do

if Rk,k == ||Rk..n,k|| then
W, g1 = (0,...,0,1) € RnF+1

else
Wy—kt1 — Bpomk — ||Rk.4n,k:|| (1,0,...,0)
Up—k41 < un—k-‘rl/ ||un—k:+1||

end if

R« ankJrl(unfk#»l)R
Q<+ QHpnrr1(Wn—p41)
end for
u = sgn(R,) €R
R+ 7‘[1(111)R
Q + QHi(m)

Lemma 1. (Giles, 2008) Let A, B, and C be real or com-
plex matrices, such that C = f(A, B) where f is some dif-
ferentiable mapping. Let L be some scalar quantity which
depends on C. Then we have the following identity

T(CdC) = Tr(A dA) + Tr(B'dB),

where dA, dB, and dC' represent infinitesimal perturba-
tions and

G 0L g, [oC) oL o [oc] oL
o T 10A| oC’ 0B| 0C’

ac’

Proof of Theorem 2. Let C = h — UT~'U’h where
(U,h) € R™*™ x R™ and T = striu(U'U) + 3diag(U'U).
Notice that the matrix 7' can be written using the Hadamard
product as follows

T =Bo (U'U), (1)
where B = striu(J,,) + %Im and J,,, is the m x m matrix
of all ones.

Calculating the infinitesimal perturbations of C' gives
dC =(I —UT~'U")dh
—dUT~'U'h —UT'dU’h
+UT ' dTT 'U'h.
Using Equation (1) we can write

dT = B o (dU'U + U'dU).

By substituting this back into the expression of dC', multi-
plying the left and right-hand sides by 6/, and applying the
trace we get
Te(C'dC) = Te(C (I — UT~'U")dh)
—Te(C'dUT~'U'h) — Te(C'UT~'dU"h)
+Tr(C'UT (B o (dU'U + U'dU))T~'U'h).
Now using the identity Tr(AB) = Tr(BA), where the sec-
ond dimension of A agrees with the first dimension of B,
we can rearrange the expression of Tr(éldC) as follows
Tr(C'dC) = Tr(C' (I — UT'U")dh)
— Te(T~'U'hC dU) — Te(hC UT 1 dU")
+ THT U'RC'UT Y (B o (dU'U + U'dU))).

To simplify the expression, we will use the short notations
C = (1T")"U'C,
h=T"'U'h,
Tr(C'dC) becomes
Tr(C'dC) = Te((C' — C'U")dh)
— Te(hC'dU) — Tr(hC'dU")
+ Tr(hC' (B o (dU'U + U'dU))).

Now using the two following identities of the trace

Tr(A’) = Tr(A),
Tr(A(Bo C)) = Tr((Ao B')C)),

we can rewrite Tr(é/dC) as follows
Tr(C'dC) =Tr((C' — C'U')dh)
— Tr(hC'dU) — Te(hC'dU")
+ Tr((hC" o BdU'U)
+ Tr((RC’ o BYU'dU).

By rearranging and taking the transpose of the third and
fourth term of the right-hand side we obtain

Tr(C'dC) =Tr((C' — C'U")dh)
— Tr(hC'dU) — Te(CH/dU)
+ Tr(((Ch) o B)U'dU)
+ Tr(((hC") o BHYU'dU).

Factorising by dU inside the Tr we get
Tr(C' dC) = Tr((C' — C'U”)dh)—

Te(hC' + Ch' — [(éf}') o B+ (hC") o B’} U")dU).
Using lemma 1 we conclude that

U

U [(Eé’) o B' + (C') o B} _Ch — hC",

-UC.

=
I
Ql

O

Sketch of the proof for Corollary 1. For any nonzero com-
plex valued vector = € C", if we chose u = x + €% ||z|| e;
and H = —e (I — 2%, where § € R is such that

flul®

T = ei9|x1|, we have (Mezzadri, 2006)
Hzx = ||z||e 2)

Taking this fact into account, a similar argument to that
used in the proof of Theorem 1 can be used here. O

B. Algorithm Explanation

Let U = (v J)}g ;Tl” . Then the element of the matrix
T = striu(U'U) + 3diag(U'U) can be expressed as

n . .
Zk,:j Vk,iVk,j

ti; =i <Jjl T3
2,7

)

where J; ; is the Kronecker delta and [-] is the Iversion
bracket (i.e. [[p] = 1 if p is true and [p] = O otherwise).

In order to compute the gradients in Equations (14) and
(15). we first need to compute h = T~'U’h and C =
(Th~tu’ %. This is equivalent to solving the triangular
systems of equations T'h = U’h and T'C = U’%.

Solving the triangular system Th = U'h. For 1 < k <
m, we can express the k-th row of this system as

n

m
tk,kilk + Z tkdilj = Zyj’khj’

j=k+1 j=k
n m n
:E vjkh; — E E Ur kr,jhj,
=k p e p—
n n T
:E Up phy — g Uk E vrjhy, (3)
r=k r=k+1 j=k+1
m
/ y
=Ulp(h= Y Usjhy), 4)
j=k+1

where the passage from Equation (3) to (4) is justified be-
cause v, ; = 0 for j > r. Therefore, Z;:k+1 vrih; =

m
Zj=k+1 vr jhy.

By setting H. j1:=h—37"; U. jh;, and noting that

tee = % we get
e — 2 U H (5)
k — Ui,kU*JC *,k *,k+1,
Heop = Hopy1 — hUs . (6)

Equations (5) and (6) explain the lines 8 and 9 in Algo-
rithm 1. Note that H*’l = h — Z;ﬂzl U*,jhj = h —
2?21 U.;j[IT7'U'h); = h — UT~*U'h = Wh. Hence,
when h = A=Y we have H,; = C®, which explains
line 16 in Algorithm 1.

Solving the triangular system 7'C' = U’ %. Similarly to
the previous case, we have for 1 < k <m

_ k—1 ~ n oL
tenCr+ Y t56C5 =Y v [30] ;
j=1 j=k J

- oL
= JZ:; Vj k |:(r“)C':|
n oL n k—1 N
= Zvr,k |:ac,:| - Zvr,k Zvr,jcjv (8)
r=1 T r=1 j=1

k—1 n

=3 veueCy (D

J j=1r=k

oL 2 -
=U,y %_ZU*»jCj)
=1

Operation Flop count Total Flop count
for iteration k for m iteration
277 _
FP L 2n—k)+3 (4n —m+2)m
H, < Hypp1— iUk 2n
hy lU; wHi ki1 2(n —k)+3
G k< hkg CkH* k+1 3n

Table 1. Time complexities of different operations in algorithm 1. It is assumed that the matrix U € R™*™ is defined as in Equation (9).

where the passage from Equation (7) to (8) is justified by
the fact that Y _"'_, v, ;0 ,C; = Y._, vy v,k C; (since
v = 0forr < k).

By setting g = agﬁ) — Zf;ll U*J-C’j, we can write

Cr = ﬁU; g which explains the lines 12 and
Uk %

13 in Algorithm 1. Note also that after m-iterations in
the backward propagation loop 1n Algorithm 1 We have
g= aC<t> Z] 1U.;C5 = acm -UC = This

explains line 17 of Algorithm 1.

ah(r 1) -

Finally, note that from Equation (14), we have for 1 < i <
nand1 <k <m

oLl _ 9L
ov|,, loac],™*

va (((C") 0 B+ ((CH) 0 B

— hiék+

oL - =
== [E)C’Lhk — h;Cp+
- = = [k <J] ~~[[J§k]]>
ii | hiC Cjh)
;é;i)d < J kl-%55k +4 kl%—d%k

>~ iy (RyCulke < g1+ Gyl < #1)
j=1
=Cy i v iy — hy
j=k+1
(& . Joc
+ hy, ;'Ui,jcj [é)C’L

Therefore, when C = C™®) and h = h(*~1) we have
oL ~ ~
[QU(‘?)] » = —CyHy 41 — hiyg,

where g = 2% Zk L CU.
and 18 of Algorithm 1.

. This explains lines 14

C. Time complexity

Table 1 shows the flop count for different operations in the
local backward and forward propagation steps in Algorithm
1.

D. Matlab implementation of Algorithm 1

[n, m] = size (U)
G=zeros(n, m); H = zeros(n, m+l);
N = zeros(m); h_tilde = zeros (m);

H(:,m+1l)=h; g=BPg;

for k =0:m-1
N(m-k) = U(:, m=k)' = U(:, m-k);
h_tilde (m-k)=2 / N(m-k) =*
U(:, m=k)"' *« H(:,m-k+1);
H(:,m-k)=H(:,m-k+1) -
h_tilde (m-k) * U(:,m-k);
end
Cc = H(:Il)
for k=1:m
c_tilde_k = 2+U(:,k)" » g / N(k)
g =g - c_tilde_k % U(:,k);
G(:, k)=-h_tilde(k) *~ g -
c_tilde_k=*H(:,k+1);
end

Figure 1. MATLAB code performmg one-step FP and BP re-
quired to compute c®, ah<f 1y (variable g is the code), and
% (variable G is the code). The required inputs for the FP and

BP are, respectively, the tuples (U, h*=1)) and (U, C?, agﬁ)).

Note that c(t) is variable BPg in the Matlab code.

References

Giles, Mike B. An extended collection of matrix derivative
results for forward and reverse mode automatic differen-
tiation. 2008.

Mezzadri, Francesco. How to generate random matrices
from the classical compact groups. arXiv preprint math-
ph/0609050, 2006.

