A. Proofs

Sketch of the proof for Theorem 1. We need to the show
that for every Q € O(n), there exits a tuple of vec-
tors (ug,...,u,) € R x --- x R™ such that Q =
Mji(uy,...,u,). Algorithm 1 shows how a QR decompo-
sition can be performed using the matrices {Hy(ux)}y_;
while ensuring that the upper triangular matrix R has pos-
itive diagonal elements. If we apply this algorithm to an
orthogonal matrix Q, we get a tuple (uy,...,u,) which
satisfies

QR = Hn(un) N ’Hl(ul)R = Q

Note that the matrix R must be orthogonal since R = Q’ Q
Therefore, R = 1, since the only upper triangular ma-
trix with positive diagonal elements is the identity matrix.
Hence, we have

Ml(ul, .. .,un) = Hn(un) .. .Hl(ul) = Q

O

Algorithm 1 QR decomposition using the mappings {H }.
For a matrix B € R™"*", { B, ;. }1<k<n denote its diagonal
elements, and By x = (B ks -+ -, Bn i)' € RPFFL

Require: A € R™*" is a full-rank matrix.

Ensure: @ and R where Q = H,(u,)...H1(u1) and R
is upper triangular with positive diagonal elements such
that A = QR
R+ A
@ < I {Initialise Q to the identity matrix }
fork=1ton—1do

if Rk,k == ||Rk..n,k|| then
W, g1 = (0,...,0,1) € RnF+1

else
Wy—kt1 — Bpomk — ||Rk.4n,k:|| (1,0,...,0)
Up—k41 < un—k-‘rl/ ||un—k:+1||

end if

R« ankJrl(unfk#»l)R
Q<+ QHpnrr1(Wn—p41)
end for
u = sgn(R, ) €R
R+ 7‘[1(111)R
Q + QHi(m)

Lemma 1. (Giles, 2008) Let A, B, and C be real or com-
plex matrices, such that C = f(A, B) where f is some dif-
ferentiable mapping. Let L be some scalar quantity which
depends on C. Then we have the following identity

T(CdC) = Tr(A dA) + Tr(B'dB),

where dA, dB, and dC' represent infinitesimal perturba-
tions and
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Proof of Theorem 2. Let C = h — UT~'U’h where
(U,h) € R™*™ x R™ and T = striu(U'U) + 3diag(U'U).
Notice that the matrix 7' can be written using the Hadamard
product as follows

T =Bo (U'U), (1)
where B = striu(J,,) + %Im and J,,, is the m x m matrix
of all ones.

Calculating the infinitesimal perturbations of C' gives
dC =(I —UT~'U")dh
—dUT~'U'h —UT'dU’h
+UT ' dTT 'U'h.
Using Equation (1) we can write

dT = B o (dU'U + U'dU).

By substituting this back into the expression of dC', multi-
plying the left and right-hand sides by 6/, and applying the
trace we get
Te(C'dC) = Te(C (I — UT~'U")dh)
—Te(C'dUT~'U'h) — Te(C'UT~'dU"h)
+Tr(C'UT (B o (dU'U + U'dU))T~'U'h).
Now using the identity Tr(AB) = Tr(BA), where the sec-
ond dimension of A agrees with the first dimension of B,
we can rearrange the expression of Tr(éldC) as follows
Tr(C'dC) = Tr(C' (I — UT'U")dh)
— Te(T~'U'hC dU) — Te(hC UT 1 dU")
+ THT U'RC'UT Y (B o (dU'U + U'dU))).

To simplify the expression, we will use the short notations
C = (1T")"U'C,
h=T"'U'h,
Tr(C'dC) becomes
Tr(C'dC) = Te((C' — C'U")dh)
— Te(hC'dU) — Tr(hC'dU")
+ Tr(hC' (B o (dU'U + U'dU))).



Now using the two following identities of the trace

Tr(A’) = Tr(A),
Tr(A(Bo C)) = Tr((Ao B')C)),

we can rewrite Tr(é/dC ) as follows
Tr(C'dC) =Tr((C' — C'U')dh)
— Tr(hC'dU) — Te(hC'dU")
+ Tr((hC" o BdU'U)
+ Tr((RC’ o BYU'dU).

By rearranging and taking the transpose of the third and
fourth term of the right-hand side we obtain

Tr(C'dC) =Tr((C' — C'U")dh)
— Tr(hC'dU) — Te(CH/dU)
+ Tr(((Ch) o B)U'dU)
+ Tr(((hC") o BHYU'dU).

Factorising by dU inside the Tr we get
Tr(C' dC) = Tr((C' — C'U”)dh)—

Te(hC' + Ch' — [(éf}') o B+ (hC") o B’} U")dU).
Using lemma 1 we conclude that

U

U [(Eé’) o B' + (C') o B} _Ch — hC",

-UC.
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Sketch of the proof for Corollary 1. For any nonzero com-
plex valued vector = € C", if we chose u = x + €% ||z|| e;
and H = —e (I — 2%, where § € R is such that

flul®

T = ei9|x1|, we have (Mezzadri, 2006)
Hzx = ||z||e 2)

Taking this fact into account, a similar argument to that
used in the proof of Theorem 1 can be used here. O

B. Algorithm Explanation

Let U = (v J)}g ;Tl” . Then the element of the matrix
T = striu(U'U) + 3diag(U'U) can be expressed as

n . .
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where J; ; is the Kronecker delta and [-] is the Iversion
bracket (i.e. [[p] = 1 if p is true and [p] = O otherwise).

In order to compute the gradients in Equations (14) and
(15). we first need to compute h = T~'U’h and C =
(Th~tu’ %. This is equivalent to solving the triangular
systems of equations T'h = U’h and T'C = U’%.

Solving the triangular system Th = U'h. For 1 < k <
m, we can express the k-th row of this system as

n

m
tk,kilk + Z tkdilj = Zyj’khj’
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where the passage from Equation (3) to (4) is justified be-
cause v, ; = 0 for j > r. Therefore, Z;:k+1 vrih; =

m
Zj=k+1 vr jhy.

By setting H. j1:=h—37"; U. jh;, and noting that

tee = % we get
e — 2 U H (5)
k — Ui,kU*JC *,k *,k+1,
Heop = Hopy1 — hUs . (6)

Equations (5) and (6) explain the lines 8 and 9 in Algo-
rithm 1. Note that H*’l = h — Z;ﬂzl U*,jhj = h —
2?21 U.;j[IT7'U'h); = h — UT~*U'h = Wh. Hence,
when h = A=Y we have H,; = C®, which explains
line 16 in Algorithm 1.

Solving the triangular system 7'C' = U’ %. Similarly to
the previous case, we have for 1 < k <m
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tenCr+ Y t56C5 =Y v [30] ;
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- oL
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Operation Flop count Total Flop count
for iteration k for m iteration
277 _
FP L 2n—k)+3 (4n —m+2)m
H, < Hypp1— iUk 2n
hy lU; wHi ki1 2(n —k)+3
G k< hkg CkH* k+1 3n

Table 1. Time complexities of different operations in algorithm 1. It is assumed that the matrix U € R™*™ is defined as in Equation (9).

where the passage from Equation (7) to (8) is justified by
the fact that Y _"'_, v, ;0 ,C; = Y._, vy v,k C; (since
v = 0forr < k).

By setting g = agﬁ) — Zf;ll U*J-C’j, we can write

Cr = ﬁU; g which explains the lines 12 and
Uk %

13 in Algorithm 1. Note also that after m-iterations in
the backward propagation loop 1n Algorithm 1 We have
g= aC<t> Z] 1U.;C5 = acm -UC = This

explains line 17 of Algorithm 1.

ah(r 1) -

Finally, note that from Equation (14), we have for 1 < i <
nand1 <k <m

oLl _ 9L
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— hiék+

oL - =
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>~ iy (RyCulke < g1+ Gyl < #1)
j=1
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Therefore, when C = C™®) and h = h(*~1) we have
oL ~ ~
[QU(‘?)] » = —CyHy 41 — hiyg,

where g = 2% Zk L CU.
and 18 of Algorithm 1.

. This explains lines 14

C. Time complexity

Table 1 shows the flop count for different operations in the
local backward and forward propagation steps in Algorithm
1.

D. Matlab implementation of Algorithm 1

[n, m] = size (U)
G=zeros(n, m); H = zeros(n, m+l);
N = zeros(m); h_tilde = zeros (m);

H(:,m+1l)=h; g=BPg;

for k =0:m-1
N(m-k) = U(:, m=k)' = U(:, m-k);
h_tilde (m-k)=2 / N(m-k) =*
U(:, m=k)"' *« H(:,m-k+1);
H(:,m-k)=H(:,m-k+1) -
h_tilde (m-k) * U(:,m-k);
end
Cc = H(:Il)
for k=1:m
c_tilde_k = 2+U(:,k)" » g / N(k)
g =g - c_tilde_k % U(:,k);
G(:, k)=-h_tilde(k) *~ g -
c_tilde_k=*H(:,k+1);
end

Figure 1. MATLAB code performmg one-step FP and BP re-
quired to compute c®, ah<f 1y (variable g is the code), and
% (variable G is the code). The required inputs for the FP and

BP are, respectively, the tuples (U, h*=1)) and (U, C?, agﬁ) ).

Note that c(t) is variable BPg in the Matlab code.
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