
A. Proofs
Sketch of the proof for Theorem 1. We need to the show
that for every Q̃ ∈ O(n), there exits a tuple of vec-
tors (u1, . . . ,un) ∈ R × · · · × Rn such that Q̃ =
M1(u1, . . . ,un). Algorithm 1 shows how a QR decompo-
sition can be performed using the matrices {Hk(uk)}nk=1

while ensuring that the upper triangular matrix R has pos-
itive diagonal elements. If we apply this algorithm to an
orthogonal matrix Q̃, we get a tuple (u1, . . . ,un) which
satisfies

QR = Hn(un) . . .H1(u1)R = Q̃.

Note that the matrixRmust be orthogonal sinceR = Q′Q̃.
Therefore, R = I , since the only upper triangular ma-
trix with positive diagonal elements is the identity matrix.
Hence, we have

M1(u1, . . . ,un) = Hn(un) . . .H1(u1) = Q̃.

Algorithm 1 QR decomposition using the mappings {Hk}.
For a matrix B ∈ Rn×n, {Bk,k}1≤k≤n denote its diagonal
elements, and Bk..n,k = (Bk,k, . . . , Bn,k)

′ ∈ Rn−k+1.

Require: A ∈ Rn×n is a full-rank matrix.
Ensure: Q and R where Q = Hn(un) . . .H1(u1) and R

is upper triangular with positive diagonal elements such
that A = QR
R← A
Q← I {Initialise Q to the identity matrix}
for k = 1 to n− 1 do

if Rk,k == ‖Rk..n,k‖ then
un−k+1 = (0, . . . , 0, 1)′ ∈ Rn−k+1

else
un−k+1 ← Rk..n,k − ‖Rk..n,k‖ (1, 0, . . . , 0)′
un−k+1 ← un−k+1/ ‖un−k+1‖

end if
R← Hn−k+1(un−k+1)R
Q← QHn−k+1(un−k+1)

end for
u1 = sgn(Rn,n) ∈ R
R← H1(u1)R
Q← QH1(u1)

Lemma 1. (Giles, 2008) Let A, B, and C be real or com-
plex matrices, such that C = f(A,B) where f is some dif-
ferentiable mapping. Let L be some scalar quantity which
depends on C. Then we have the following identity

Tr(C
′
dC) = Tr(A

′
dA) + Tr(B

′
dB),

where dA, dB, and dC represent infinitesimal perturba-
tions and

C :=
∂L
∂C

, A :=

[
∂C

∂A

]′
∂L
∂C

, B :=

[
∂C

∂B

]′
∂L
∂C

.

Proof of Theorem 2. Let C = h − UT−1U ′h where
(U, h) ∈ Rn×m×Rn and T = striu(U ′U) + 1

2diag(U ′U).
Notice that the matrix T can be written using the Hadamard
product as follows

T = B ◦ (U ′U), (1)

where B = striu(Jm) + 1
2Im and Jm is the m×m matrix

of all ones.

Calculating the infinitesimal perturbations of C gives

dC =(I − UT−1U ′)dh
− dUT−1U ′h− UT−1dU ′h
+ UT−1dTT−1U ′h.

Using Equation (1) we can write

dT = B ◦ (dU ′U + U ′dU).

By substituting this back into the expression of dC, multi-
plying the left and right-hand sides by C

′
, and applying the

trace we get

Tr(C
′
dC) = Tr(C

′
(I − UT−1U ′)dh)

− Tr(C
′
dUT−1U ′h)− Tr(C

′
UT−1dU ′h)

+ Tr(C
′
UT−1(B ◦ (dU ′U + U ′dU))T−1U ′h).

Now using the identity Tr(AB) = Tr(BA), where the sec-
ond dimension of A agrees with the first dimension of B,
we can rearrange the expression of Tr(C

′
dC) as follows

Tr(C
′
dC) = Tr(C

′
(I − UT−1U ′)dh)

− Tr(T−1U ′hC
′
dU)− Tr(hC

′
UT−1dU ′)

+ Tr(T−1U ′hC
′
UT−1(B ◦ (dU ′U + U ′dU))).

To simplify the expression, we will use the short notations

C̃ = (T ′)−1U ′C,

h̃ = T−1U ′h,

Tr(C
′
dC) becomes

Tr(C
′
dC) = Tr((C

′ − C̃ ′U ′)dh)

− Tr(h̃C
′
dU)− Tr(hC̃ ′dU ′)

+ Tr(h̃C̃ ′(B ◦ (dU ′U + U ′dU))).

Now using the two following identities of the trace

Tr(A′) = Tr(A),
Tr(A(B ◦ C)) = Tr((A ◦B′)C)),

we can rewrite Tr(C
′
dC) as follows

Tr(C
′
dC) =Tr((C

′ − C̃ ′U ′)dh)

− Tr(h̃C
′
dU)− Tr(hC̃ ′dU ′)

+ Tr((h̃C̃ ′ ◦B′)dU ′U)

+ Tr((h̃C̃ ′ ◦B′)U ′dU).

By rearranging and taking the transpose of the third and
fourth term of the right-hand side we obtain

Tr(C
′
dC) =Tr((C

′ − C̃ ′U ′)dh)

− Tr(h̃C
′
dU)− Tr(C̃h′dU)

+ Tr(((C̃h̃′) ◦B)U ′dU)

+ Tr(((h̃C̃ ′) ◦B′)U ′dU).

Factorising by dU inside the Tr we get

Tr(C
′
dC) = Tr((C

′ − C̃ ′U ′)dh)−

Tr((h̃C
′
+ C̃h′ −

[
(C̃h̃′) ◦B + (h̃C̃ ′) ◦B′

]
U ′)dU).

Using lemma 1 we conclude that

U =U
[
(h̃C̃ ′) ◦B′ + (C̃h̃′) ◦B

]
− Ch̃′ − hC̃ ′,

h =C − UC̃.

Sketch of the proof for Corollary 1. For any nonzero com-
plex valued vector x ∈ Cn, if we chose u = x+ eiθ ‖x‖ e1
and H = −e−iθ(I − 2 uu

∗

‖u‖2), where θ ∈ R is such that

x1 = eiθ|x1|, we have (Mezzadri, 2006)

Hx = ||x||e1 (2)

Taking this fact into account, a similar argument to that
used in the proof of Theorem 1 can be used here.

B. Algorithm Explanation

Let U := (vi,j)
1≤j≤m
1≤i≤n . Then the element of the matrix

T := striu(U ′U) + 1
2diag(U ′U) can be expressed as

ti,j = Ji ≤ jK
∑n
k=j vk,ivk,j

1 + δi,j
,

where δi,j is the Kronecker delta and J·K is the Iversion
bracket (i.e. JpK = 1 if p is true and JpK = 0 otherwise).

In order to compute the gradients in Equations (14) and
(15). we first need to compute h̃ = T−1U ′h and C̃ =
(T ′)−1U ′ ∂L∂C . This is equivalent to solving the triangular
systems of equations T h̃ = U ′h and T ′C̃ = U ′ ∂L∂C .

Solving the triangular system T h̃ = U ′h. For 1 ≤ k ≤
m, we can express the k-th row of this system as

tk,kh̃k +

m∑
j=k+1

tk,j h̃j =

n∑
j=k

vj,khj ,

=

n∑
j=k

vj,khj −
m∑

j=k+1

n∑
r=j

vr,kvr,j h̃j ,

=

n∑
r=k

vr,khr −
n∑

r=k+1

vr,k

r∑
j=k+1

vr,j h̃j , (3)

= U ′∗,k(h−
m∑

j=k+1

U∗,j h̃j), (4)

where the passage from Equation (3) to (4) is justified be-
cause vr,j = 0 for j > r. Therefore,

∑r
j=k+1 vr,j h̃j =∑m

j=k+1 vr,j h̃j .

By setting H∗,k+1 := h−
∑m
j=k+1 U∗,j h̃j , and noting that

tk,k =
U ′∗,kU∗,k

2 , we get

h̃k =
2

U ′∗,kU∗,k
U ′∗,kH∗,k+1, (5)

H∗,k = H∗,k+1 − h̃kU∗,k. (6)

Equations (5) and (6) explain the lines 8 and 9 in Algo-
rithm 1. Note that H∗,1 = h −

∑m
j=1 U∗,j h̃j = h −∑m

j=1 U∗,j [T
−1U ′h]j = h − UT−1U ′h = Wh. Hence,

when h = h(t−1), we have H∗,1 = C(t), which explains
line 16 in Algorithm 1.

Solving the triangular system T ′C̃ = U ′ ∂L∂C . Similarly to
the previous case, we have for 1 ≤ k ≤ m

tk,kC̃k +

k−1∑
j=1

tj,kC̃j =

n∑
j=k

vj,k

[
∂L
∂C

]
j

,

=

n∑
j=1

vj,k

[
∂L
∂C

]
j

−
k−1∑
j=1

n∑
r=k

vr,jvr,kC̃j , (7)

=

n∑
r=1

vr,k

[
∂L
∂C

]
r

−
n∑
r=1

vr,k

k−1∑
j=1

vr,jC̃j , (8)

= U ′∗,k

 ∂L
∂C
−
k−1∑
j=1

U∗,jC̃j

 ,

Operation Flop count Total Flop count
for iteration k for m iteration

FP h̃k ← 2
Nk
U ′∗,kH∗,k+1 2(n− k) + 3

(4n−m+ 2)m
H∗,k ← H∗,k+1 − h̃kU∗,k 2n

BP
h̃k ← 2

Nk
U ′∗,kH∗,k+1 2(n− k) + 3

(7n− 2m+ 3)mg ← g − C̃kU∗,k 2(n− k + 1)

G∗,k ← −h̃kg − C̃kH∗,k+1 3n

Table 1. Time complexities of different operations in algorithm 1. It is assumed that the matrix U ∈ Rn×m is defined as in Equation (9).

where the passage from Equation (7) to (8) is justified by
the fact that

∑n
r=k vr,jvr,kC̃j =

∑n
r=1 vr,jvr,kC̃j (since

vr,k = 0 for r < k).

By setting g := ∂L
∂C(t) −

∑k−1
j=1 U∗,jC̃j , we can write

C̃k = 2
U ′∗,kU∗,k

U ′∗,kg which explains the lines 12 and
13 in Algorithm 1. Note also that after m-iterations in
the backward propagation loop in Algorithm 1, we have
g = ∂L

∂C(t) −
∑m
j=1 U∗,jC̃j =

∂L
∂C(t) −UC̃ = ∂L

∂h(t−1) . This
explains line 17 of Algorithm 1.

Finally, note that from Equation (14), we have for 1 ≤ i ≤
n and 1 ≤ k ≤ m[
∂L
∂U

]
i,k

=−
[
∂L
∂C

]
i

h̃k − hiC̃k+

m∑
j=1

vi,j

(
((h̃C̃ ′) ◦B′)j,k + ((C̃h̃′) ◦B)j,k

)
,

=−
[
∂L
∂C

]
i

h̃k − hiC̃k+

m∑
j=1

vi,j

(
h̃jC̃k

Jk ≤ jK
1 + δj,k

+ C̃j h̃k
Jj ≤ kK
1 + δj,k

)
,

=−
[
∂L
∂C

]
i

h̃k − hiC̃k+

m∑
j=1

vi,j

(
h̃jC̃kJk < jK + C̃j h̃kJj ≤ kK

)
,

=C̃k

 m∑
j=k+1

vi,j h̃j − hi


+ h̃k

 k∑
j=1

vi,jC̃j −
[
∂L
∂C

]
i

 .

Therefore, when C = C(t) and h = h(t−1) we have[
∂L
∂U (t)

]
∗,k

= −C̃kH∗,k+1 − h̃kg,

where g = ∂L
∂C(t) −

∑k−1
j=1 C̃jU∗,j . This explains lines 14

and 18 of Algorithm 1.

C. Time complexity
Table 1 shows the flop count for different operations in the
local backward and forward propagation steps in Algorithm
1.

D. Matlab implementation of Algorithm 1

% Inputs: U - matrix of reflection vectors
% h - hidden state at time-step t-1
% BPg - Grad of loss w.r.t C=Wh
% Outputs: g, G, C=Wh
[n, m] = size(U);
G=zeros(n, m); H = zeros(n, m+1);
N = zeros(m); h_tilde = zeros(m);
% Zero-initialisation not required above!
H(:,m+1)=h; g=BPg;
%%--Forward propagation--%%
for k =0:m-1

N(m-k) = U(:, m-k)' * U(:, m-k);
h_tilde(m-k)=2 / N(m-k) * ...

U(:, m-k)' * H(:,m-k+1);
H(:,m-k)=H(:,m-k+1) - ...

h_tilde(m-k) * U(:,m-k);
end
C = H(:,1)
%%--Backward propagation--%%
for k=1:m

c_tilde_k = 2*U(:,k)' * g / N(k);
g = g - c_tilde_k * U(:,k);
G(:, k)=-h_tilde(k) * g - ...

c_tilde_k*H(:,k+1);
end

Figure 1. MATLAB code performing one-step FP and BP re-
quired to compute C(t), ∂L

∂h(t−1) (variable g is the code), and
∂L

∂U(t) (variable G is the code). The required inputs for the FP and
BP are, respectively, the tuples (U, h(t−1)) and (U,C(t), ∂L

∂C(t)).
Note that ∂L

∂C(t) is variable BPg in the Matlab code.

References
Giles, Mike B. An extended collection of matrix derivative

results for forward and reverse mode automatic differen-
tiation. 2008.

Mezzadri, Francesco. How to generate random matrices
from the classical compact groups. arXiv preprint math-
ph/0609050, 2006.

