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A. Identifiability
Lemma A.1. (Lemma 1.1 of (Minc, 1988)) The inverse of a nonnegative matrix matrix M is nonnegative if and only if

M is a generalized permutation matrix.

Proof of Theorem 2.1. Suppose there are two parameter settings (@1, B, p(1)) and (©®), B, p(?)) that yield the
same probability matrix:

P-,0eWBWeM’ - ,0e2B2e®”
Pick up pure node indices set Z; of ®1) such that 6(111) =1, and denote M = (9(1-21 ), Similarly, pick up pure node indices
set Zo of ®@ such that 6(1-22) =Landlet W = 6(112).
Then
p(l)B(l) - p(Q)MB(z)MT and p(l)WB(l)WT - p(z)B@).

Denote T = MW, then
B = %Mp(”WB“)WTMT =TBVT”. (1)
p

Note that M - 1 = (9(121) c1=1land W -1 = @%) -1=1,50T-1 =MW -1 = 1. We can consider T as a transition
matrix of a Markov chain, whose states are the nodes of the graph. Keep applying equation (1) to its RHS, we get

BM = ThMWTFT
which implies B = T, . BMWTT | where To, = lim T*.
k—o0
Given that B(Y) has full rank K, we must have T, has full rank. Now we prove that stationary point of the Markov chain,

T ., must be identity matrix.

The nodes of a finite-size Markov chain can be split into a finite number of communication classes, and possibly some
transient nodes.

1. If a communication class has at least two nodes and is aperiodic, then the rows corresponding to those nodes in T,
are the stationary distribution for that class. Hence, T, has identical rows, so it cannot be full rank.

2. The probability of a Markov chain ending in a transient node goes to zero as the number of iterations & grows, so the
column of T, corresponding to any transient node is identically zero. Again, this means that T, cannot be full rank.
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Hence, the only configuration in which T, has full rank is when it contains K communication classes, each with one
node. This implies that T, = I, and hence T = I. Note that if the communication classes are periodic, we can consider
T? where t is the product of the periods of all the classes; the matrix T is now aperiodic for all the communication classes,
and the above argument still applies to T, = lem (T)E.

oo

AsI = T = MW, M and W have full rank, then M~! = W, which is the case that a nonnegative matrix M has
nonnegative inverse W, using Lemma A.1, we know that M is a generalized permutation matrix, and note that each row
of M sums to 1, the scale goes away and thus M is a permutation matrix, which implies W is also a permutation matrix.
As largest element of B(") and B() are equals as 1, we should have p(!) = p() and thus B() = MB®MT.

Also since we have
p BT = p(”@(zll)B(”@(”T — p<2>@g>B(2)@<2>T — )OMB@e®”
— )OMBOMTMEO®" = ,WBOME®

left multiply (pVB®) ~" on both sides, we have ©(1) = @M.

Thus we have shown that MMSB is identifiable up to a permutation. O

B. Uniqueness of SNMF for MMSB networks

Lemma B.1 (Huang et al. (2014)). If rank(P) = K, the Symmetric NMF P = WW? is unique if and only if the non-
negative orthant is the only self-dual simplicial cone A with K extreme rays that satisfies cone(W?) C A = A*, where
A* is the dual cone of A, defined as A* = {y|xTy > 0,vx € A}.

Proof of Theorem 2.2. When B is diagonal, it has a square root C = B'/2, where C is also a positive diagonal matrix. It
is easy to see that cone(C) is the non-negative orthant R, so we have

cone(W') = cone(CTO) = cone(C”) = cone(C) = RE = Rf*.

The second equality follows from the fact that ® contains all pure nodes, and other nodes are convex combinations of these
pure nodes. The fourth equality is due to the diagonal form of C.

To see that this is unique, suppose there is another self-dual simplicial cone satisfying cone(W7T) C A = A*. Then we
have Rf CAand A = A* C (Rf)* = Rf, which implies A = Rf.

Hence, by Lemma B.1, an identifiable MMSB model with a diagonal B is sufficient for the Symmetric NMF solution to
be unique and correct. O
C. Concentration of the Laplacian

We will use X = ¢(1 £ ¢€) to denote X € ¢[1 — €, 1 + €] for ease of notation from now onwards.
Lemma C.1. For ® € R"*¥ where each row ; ~ Dirichlet(a), Vj € [K],

- ; 1
(7)) a; n

=1

with probability larger than 1 — 1/n>.

o[}

> byt
=1 Qo
so by setting ¢ = Op (3\/%)

n %
> i1 Ui L

Proof. By using Chernoff bound

o 2n
>en—L | <exp| ——=22 ),
(%)) 3

< 3,/ atnlogn, with probability larger than 1 — 1/n°.
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[o 1
Zem—n—iO ( nlogn) = <1i0p< ol ogn>>.
Oéo a; n

Lemma C.2. (Theorem 5.2 of (Lei et al., 2015)) Let A be the adjacency matrix of a random graph on n nodes in which
edges occur independently. Set E[A]| = P and assume that nmax; ; P;; < d for d > cyplogn and ¢y > 0. Then, for any
r > 0 there exists a constant C' = C(r, ¢g) such that:

That is

O

PJA—P|<CVd)>1—n".

Fact C.1. If M is rank k, then | M||% < k|| M]||%.

Lemma C.3. (Variant of Davis-Kahan (Yu etal., 2015)). Let P, A € R " pe symmetrlc with eigenvalues Ay > --- > A\,
and \; > - >\, respectively. Fix 1 < r < s < n, and assume that min(A._1 — A\, Ag A§+1) > 0, where we define
Ao = oo and )\n+1 =—oc0. Letd=s—r+1,andlet V = (v;, Vypq, - ,VS) ER™and V = (V,, Vg1, ,Vs) €
R™*? have orthonormal columns satisfying Pv; = A;v; and Av; = A\;v; for j = 7,7 + 1,--- , s. Then there exists an
orthogonal matrix O € R4 guch that

)

Lemma C4. (Lemma A.l. of (Tang et al., 2013)). Let H;, Hy € R™*™ be positive semidefinite with rank(H;) =
rank(Hy) = K. Let X, Y € R"*¥ be of full column rank such that XX* = H; and YY7 = Ho. Let Ak (H2)) be the
smallest nonzero eigenvalue of Hy. Then there exists an orthogonal matrix R € R¥* X such that:

23/2 min (
min()\rfl - )\r7 )\s - )\erl)

[v-vol, <
F

VE ||Hy — Ha|| (/L + /[Ha])
Ax (Ha) '

Lemma C.5. Recall that A; = V,E,; VT and P; = P(S, S) in Algorithm 1. If pn = Q(logn), then

IXR -Y|p <

HAl - PlH = Op(y/pn), and HAI - PlHF = Op(v/Kpn)
with probability larger than 1 — 1/7n3.
Proof. Lemma C.2 gives the spectral bound of binary symmetric random matrices, in our model,

gmgxPl(z j) < — 5 majuxP(z ,J) = %Hggxp@iBajT < gnﬁxpeilajr < p%.

Note that we need to use B is diagonal probability matrix and 6;, i € [%] has £; norm 1 and all nonnegative elements for
the last two inequality.

Since pn = Q(logn), o > 0 that pT > colog 3.
Letd = p%,thend > § max; ; P1(4,7) and d > ¢y log 5, by Lemma C.2, ¥r > 0,3 C > 0 that

Pla-pi=ofol) 2=

where A} = A(S,S). So ||A; — Py|| = Op( /pn), specially, taking = 3 then it is with probability larger than 1—1/n3.
Hence

HA1 - P1H < HA1 —A+A - P1H < HAl - AIH +[|A; = P1|| = 641 + Op(y/pn) = Op(\/pn),
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where G 41 is the (K + 1)-th eigenvalue of A; and is Op(,/pn) by Weyl’s inequality.
Since Al and P, have rank K, then by Fact C.1,
Y )
O

Lemma C.6 (Concentration of degrees). Denote B, = ming Bog. Let P = p®(1)B®(2)T, where p, B, @(1) ¢ Rz *K|
and ®2) ¢ R7*K follow the restrictions of MMSB model. Let D and D be diagonal matrices representing the sample
and population node degrees. Then

D” = Op(pn/K), D” = Q(ﬂminpn/K), and ‘D“ — D”‘ = Op(\/pnlogn/K)
with probability larger than 1 — Op(1/n3).

Proof. Vi € [5], we have

n/2 n/2 K n/2 n/2

D= Pi=>Y pBub; < Z o) Z 0'y = pz 6.} Z 6'7  (max, By, = 1 by definition)
j=1 j—l =1
o', I
Ze 105 ( +0p ( & ogn)) (from Lemma C.1)
Qo 2 a n

:2p[z<1+0p (\/Klzgn))v (when oy, = 32, Vk € [K])

so D;; = Op(pn/K).

Similarly,
K n/2 n/2
> 3 st D87 = 3 30
(=1 j=1
; 1 1
= ﬁminfmM < + Op ( 20 Ogn)) (from Lemma C.1)
Qa 2 a n

ﬂmm KlOgTL o
=S M 14+ 0p - , (when a; = 92, VI)

Then using Chernoff bound, we have

$0 D;; = Q(Bminpn/K).

Dy
P (|D;; — Dy;| > €Dy;]) < exp (—6 3 ) ;

so when e = Op (31 / %) D;; — Dii| < €D;; = Op(y/pnlogn/K) with probability at least 1 — 1/n3. Note we

have used Lemma C.1, so in total it is with probability larger than 1 — Op(1/n?).
O
Lemma C.7. Denote 8,,;, = min, B,. If pn = Q(log n), then
Ak (P1) = Q(Bminpn/K),  M(P1) = Op (pn/K)
and
Ak (A1) = Q(Bminpn/K),  A(A1) = Op (pn/K)
with probability larger than 1 — Op(K?/n?).



On Mixed Memberships and Symmetric Nonnegative Matrix Factorizations

Proof. For conciseness, we will omit the subscript 1 (see Lemma C.5) in the following proof without loss of generality.

The K-th eigenvalue of P is
A (P) = Mg (pOBOT) = A\ (pOB/2B/207T) = A\ (pBY/20TOB'/?).

Here we consider 8; as a random variable. Denote

n/2
S 1
M= —pB'/?0"@B"/? = — Y " ,B'/?6]0,B'/*

then M, = %/2\/ BaBb Efﬁ PBiabip.
Consider 8; ~ Dirichlet(cx), then

Covl|0;q, i) + E[0;4] - B[O, = =S if b
E[0iq - ib]:{ . o] + Elbia] - Blfa] = Sty a7

Var(0;q] + E2[0;q) = 2202l ifa=b

50 E[May] = v/BaBopE[fia - 03] < p. And

E[M] = p(diag(Ba) + B?aa”B'/?)/(ag(aq + 1)).

Using Chernoff bound, we have

p (‘Mab — E[Ma)]

sowhen e = Op (,/18;%),

. 2LEM, 2
> eE[Mab]) < exp (—623[b]> < exp (_eﬁpn) ,

Mg — E[Ms]| < €E[M,;] with probability larger than 1 — 1/n3. Thus

M — E[M]H < HM - E[M]HF <\ K22E2[M,] < Kep.

Note that
Ak (E[M]) = pAg (diag(Ba) + BY2aaBY?) /(ag(ag + 1))
> p ()\K(diag(Ba)) + AK(Bl/2aaTBl/2)) J(ao(ao + 1))

= p (min Bucra +0) /({00 + 1))
_ ming Buag
N pao(ao +1)

Brainp

= " h a:%,v
Koo+ 1)’ (when « &5 va)

the first inequality is by definition of the smallest eigenvalue and property of min function; the second equality is by the
smallest eigenvalue of a K’ x K rank-1 matrix (K > 1) is 0.

By Weyl’s inequality,

Ak (M) = Axe(BIM])| < [N - M| = Op (K ”I‘f”> 7

SO

D)
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with probability larger than 1 — K2/n?, and thus A g (P) = Q(Bminpn/K).

With similar argument we can get

Al(E[MD <

hS)

(1+ 28I /(K (a0 +1))

<p(l+ag) /(K(ap+1))

hS)

=[=

)

then A (P) = Op (pn/K).
From Weyl’s inequality, we have

[Ai(A) = Ai(P)| < |A = P[| = Or (V1) ,
o)

Ax(A) =2 Ak (P) = Op (v/pn) = Ak (A) = Q(Bminpn/K)
A(A) <A (P) +Op (Vpn) = Ai(A) = Op (pn/K) .

Lemma C.8. If pn = Q(logn), 3 orthogonal matrix O, € RE*X

[vi-vio, =or (5275

with probability larger than 1 — Op(K?/n?).

Proof. From Lemma C.7 we know that
A (P1) = Q(Bminpn/K)

with probability larger than 1 — Op(K?/n?). Because P; has rank K, its K + 1 eigenvalue is 0, and the gap between
the K-th and (K + 1)-th eigenvalue of Py is 6 = Q(Bminpn/K). Using variant of Davis-Kahan’s theorem (Lemma C.3),
setting r = 1, s = K, then d = K is the interval corresponding to the first K principle eigenvalues of P, we have
30; € REXK,

)

23/2min (X/EHAI —P1 ’Al _PlHF)
5 )

o v, -
F
using Lemma C.5,

23/2 Kpn K3/2
5o (25

Vi-v,0,| =0
H ! 11 F P (ﬂminpn/K ﬁmin\/,ﬁ

with probability larger than 1 — Op(K?/n?).

Lemma C.9. If pn = Q(log n), then the orthogonal matrix O; € RX*X of Lemma C.8 satisfies
Hﬁh - O1TElOlHF = Op(v/ Kpn/Bmin)

with probability larger than 1 — Op(K?/n?).
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Proof. We have
Hvlﬁl\?,{ - VlElVTHF = HAl - PlHF = Op(\/ Kpn)

with probability larger than 1 — 1/n3 by Lemma C.5, and

. . K3/2
vV, - V,0 H —Op (-2
H ! e F OP <Bmin\/ pn)

with probability larger than 1 — Op(K?/n?) by Lemma C.8. Also,

V,E, VT - V,E, VI =V, (El . O{Elél) V7T 1+ V,07E, (()1\7{ - VlT) n (\71(){ . V1> E V7.

So
B - OTE 0, = [V (B: - OTm.0,) Vi
< [ViB VT - ViEVT|| 4 ||[Vi0TE: (09T = VT)| 4| (V20T - vi) BV
<Op(v/Epm) + 2By [¥1 - V107 |
on K3/2
=0p(v/ K Op| = ——=
p(V/Kpn) + Op (K oo

=0p (VEp/Buin )

with probability larger than 1 — Op(K?/n?). O

Lemma C.10. If pn = Q(logn), then 3 an orthogonal matrix R; € RE*X | together with the orthogonal matrix 0 e
REXE of Lemma C.8 satisfies

0,51, o0 (1)
with probability larger than 1 — Op(K?/n3).
Proof. From Lemma C.9 we have

T e )
with probability larger than 1 — Op(K?/n?).

By Lemma C.4, there exists an orthogonal matrix R; € R?*< such that:

B VE 08,07 - 1| (|0 Es07] + VTN
o "R, - B, <

A (E)
< VK -Op (\/Kiml/én(lg)(g;/%?) +O0p (\/%» (from Lemma C.7)

< 0p (K*2/82:,) .
Note that
a0, 817, - e wsiof], - o .
)

|RiEV20, — B2 = 0p (K¥2/82;,) -
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Proof of Lemma 4.1. Note that if o = ul, u > 0, then

DQl(i7i) = Z peiaBaaHja = Z peiaBaa Zeja = % Z 0iaBaa <1 +O0p (\( Klzgn>) .

a€[K],j€S a€[K] JES a€[K]

(by Lemma C.1)

Because

P ||eT@2B1/2|| . P> acix] ViaBaa
Do (i, 1) % Eae[K] 0iaBaa
2K EaE[K] 07.Baa
o on . ZaG[K] 0:aBaa

oot -

1 1
14+ Op(y/Klogn/n) 1 — Op(\/Klogn/n)]
[1 — Op(\/Klogn/n),1+ Op(\/Klogn/n)} :

also note that

63 B..
U CacpBBus 2K
n ZGE[K] 0:;uBaa n n

where the first inequality is an equality when Vk € [K], 8;;, = max, 6;, or 0. The second inequality becomes an equality
when max, 6;, = 1 (i.e. ¢ is a pure node). This implies that the LHS of the above equation equals 2K /n if and only if 4
corresponds to a pure node. Then we have

_ 2 2K
H\/ﬁ . eiT’Dml/QGQBl/?HF < — -max¥b;, (1 + Op(\/Klogn/n)> ,
n a
and

2K ZaE[K GZaBaa

2K Yac(x] PiaBaa
W = 20 ZeclK et G (K log n/n)
ac[K] YiaBaa

" el ViaBaa

—0r (2. /Kloga/n

o -ermitom

with probability larger than 1 — O(1/n?).

2
So H\/ﬁ . eiT’D;f/ 2(92B1/ 2 HF concentrates around % for pure nodes. Note that we implicitly assume that the impure

nodes have max, 6;, bounded away from one, and hence have norm bounded away from 2K /n.

O

Proof of Theorem 4.2. Denote ®; = ©(S,:) and ®; = O(S,:). Denote A1z = A(S, S) and Ay = A(S,S), Dy

1/2

and Do are the (row) degree matrix of A5 and Ag;. GeoNMEF projects D / Ao onto V1 ,and Df;/ 2A12 onto

VQ ~1/2.
Now, V1 E; V1 =P, = p©,BOT, with both E; and B diagonal. This imples that there exists an orthogonal matrix Q;
such that V, E/°Q; = VP - ©1BY/2 (by Lemma A.1 of (Tang et al., 2013)).

Also, as shown in Lemmas C.8 and C.10, there exists orthogonal matrices 01 and and R such that

. A K3/2 A
HVl - V101HF = OP (W) 5 and HRlE}/Qol 1/2H = O (KS/Z/Bmm)

with probability larger than 1 — O(K?/n?).
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Then we have:

TP, VIO B2 — p e?@ZBl/zqulTHF
- Hp -eT@,BOTV,0,E 2 — /5. e,.TegBl/QQ{RlTHF (by Py = p@,BOT)
- Hp -] ©;B'/? (Bm@{) VIO B - 5 eiTQzB”QQlTRlTHF

T A A
e7©,B!/? (VlE}/qu) V,0,E;"? — eT@,B2QTRT (by Lemma A.1 of (Tang et al., 2013))

=/p- H e7@,BY2QTRY (RlEl/QO ) 12 _org Bl/QQTRTH F
- H\/ﬁ . e?@2B1/2QipRip (R1E1/201 B Ei/Q) 1—1/2HF

<|vietomearn |, ey, ey 6|

< H\/f’ eiT@2B1/2Q1TR1THF - (K3/2/5mm) P ( ﬂmipn> (by Lemmas 4.1, C.6, C.7 and C.10)

= |

N K2
e[ PuVi0.E " — /5 e @,B2Q[R]| =|5-e©:B2Q[R]| -0r <55/2> @
on

min

Now that

el Dy A VIE 7 — /- 9?9511/2@231/2Q1TR1THF

< “eiTAgllefl/Q (1 +Op (\/Klogn/np)) —\p- eiTG)gBl/QQ?RfH /D21 (i,1) (by Lemma C.6)
(1 + Op (\/Klogn/np>) .

<

ef [(A21 — Pat) Vi + Par (Vi = V101) + P ViOi | B — - €7 ©:B'2QTRT||
D1 (i, 1)
+0p (VElognfup) - || V5 eT©:BQIR]|_/v/Darlici)
< (1 + Op (\/Klogn/np)> . {‘
TP, VIO B2 — p - eiT®2B1/2Q1TR1THF} /D (i, 0) + Op (K 1ogn/n2p)
(by Lemmas 4.1 and C.6)

< <1 + Op <ﬁ1~ \/Klogn/np)> . {Op (x/Klogn> -Op ( K ) (by Azuma’s and Lemma C.7)

ﬁminpn

3/2
o (\/f) Or (6:1(,1\//%) O <\/J> } /v Brinpn | K (by Lemmas C.6, C.8, and Eq. (2))

ML (ﬁj;g )+op (1< iognin)

n

e/ (A2 — Pay) VlEfl/QHF + He?PZI (\71 - V101> El_l/QHF

K%/2\/logn
=Op 52 |-
ﬂmlnpn
N
In the last step we use the fact that HeZT (Ag — Po) V1H is a sum of K projections of e (Ag; — Py;) on a fixed
F
unit vector (since the eigenvectors come from the different partition of the graph). Now Azuma’s inequality gives
el (Ag — Poy) V HF = Op(y/KTogn) with probability larger than 1 — O(1/n3).
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Now as

plef@:B2|%  ,.elT@,BOTe;
Dy (i,1)  Da(i,i)

:ng<pn?f<>:0p<§>7

eI DA ViE; 2 - /- 9?92_11/292]31/20"1? K®°/2\/logn
-0
HW'G‘TD2_11/2®2B1/2H P 5/2 \/>

¢ F

2
H\/ﬁ ) e;'D2_11/2®2Bl/2HF =

let O = QTRY, then Vi,

mlnpn
K?%\/logn
= OP o/2
mlnpf
with probability larger than 1 — n - O(K?/n?)=1 — O(K?/n?). O

D. Correctness of Pure node clusters

Proof of Lemma 4.3. Recall that max; ||X;|| concentrates around /2K /n and this is achieved at the pure nodes. For ease
of analysis let us introduce Y :=/n /2K Xand Y = \/n /2KX. Recall that from Theorem 4.2 we have entry-wise

consistency on ||¥; — Y;0| < ¢ = Op (Igj/ ;10\8’;> with probability larger than 1 — Op(K?/n?).
minPV T

Let €orm = Op <\ / Klff”) = Op(€') be the error of the norm of pure nodes in Lemma 4.1. Then Vi € F,

1Xill > (1= eo) max 1% = (1= e0)(1 =€) max [ X = (1 = o) (1 = €)(1 = €norm) V2K /.
Hence we have a series of inequalities,

(1 - c0)(1 = €)(1 = enorm) < |¥ill < V5 = V.0 + Y]l < € + [ Y]l

Hence

||Y H2 (1 — €0 — 26 61101"111)2 Z 1 - 2(60 + 26/ + €norm)

And from the proof of Lemma 4.1,

Y aeik) ViaBaa
ZCLE[K] eiaBaa
= max0;, > 1—2(eg + 2¢' + 1.5€n0rm) = 1 — Op(eo + €')

1- 2<€0 + 26, + 6norm) S ||Y1H2 S S m;ix@w (1 + €norm)

for € = 2(eg + 2€' 4+ 1.5€n0rm) = Op(€g + €), with probability larger than 1 — Op(K?/n?).

Note that ||X;||? of those nearly pure nodes with max, #;, > 1 — € also concentrate around % These nearly pure nodes
can also be used along with the pure nodes to recover the MMSB model asymptotically correctly. O

Lemma D.1. Let F be the set of nodes with || X;|| > (1 — ¢o) max; [|X;||. Then when ¢g = Op(¢’) and € = Op (e + €')
from Lemma 4.3,

%l}r_ng(z,z) T (Bmin £Op(€)), and Iréa}g(Dg(z i) = 2K (1+0p(e))

with probability larger than 1 — Op(K?/n?).
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Proof. From Lemma 4.3 we know that Vi € F, Ja; that 0,,, > 1 — €, where € = Op(eg + €') = Op (¢’). Then

n/2 n/2 K n/2
Z) = ZP” ZZp@w BM@(Z = pZH( BM 29( )
j=1 j=1¢=1

K
/K1
= pz 0§§)BM% (1:I:Op < ;)gn)) (from Lemma C.1)
=1

= 2 (1~ 0p () Busa, + Op(0) <1i0P< K1Ogn>>

n
on
=—(Bg,q, £ 0 .
55 (Baia; £ Op(€))
Using the proof in Lemma C.6, we have Dy (7,7) € Ds(i,14) [1 —Op ( K;‘;Lg"), 1+0p (, / %)} , SO
. n
Da(ivi) = 2= (Ba,a, £ Op(e)).
Then
min Da(i,i) = 22 (Buin £ Op(€)).
Ilr?}?-(DQ(Z i) = QpIT; (1+O0p(e))
with probability larger than 1 — Op(K?/n?). O

Proof of Theorem 4.4. To prove this theorem, it is equivalent to prove that the upper bound of Euclidean distances within
each community’s (nearly) pure nodes is far more smaller than the lower bound of Euclidean distances between different
communities’ (nearly) pure nodes.

Recall that from Lemma 4.3, fori # j € F,3a,b € [K], such that §;, > 1 —eand 6;;, > 1 —e. Note thate = Op(ep+¢€')

2
fore’ = Op (;{Q/ ;;"\’i;) and ¢g = Op(¢).

Using a similar argument as in the proof of Lemma 4.1, we have:

1.ifa # b,
[ 1/2 1/2 1/2 1/2 2 2
IY: = Y52 = ( 0.BY2 0B ) ( 0B, 0,,B,/ ) ] . (1 o (\/m))
i \/Zk 0Bk \/Ek 0;xBrk Zk 0Bk \/Zk 0;xBrk
[ 1—c¢ € 2 1-— Klogn
B, (< < ) B, < ) 1—0p
L “ < Vv Bmax V Bmin) 1n

| (o (=)
“))

1—e¢ € 2
_2f6min ( V /Bmax B ﬁmin)
(o ()

v

v

sy

v

ﬁ

e [y (o e ] (l—OP(
_ ﬂmin _ lﬂmax
~2 (1-0p (e\/ ).
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So,
ﬂmin 2K ﬁmax
X, — Xll, > /222, 2= (1-0 Pmax )
H ! H2 o ﬁmax n e ﬁmin
and then,

[%: =%, 2 1% - X, - [ % - %
| 5min /2K _ Bmax o N
Z 2ﬂmax 7 (1 OP <6 ﬁmin )) 2 HXZ” ‘
min 2K max 2K ,
21 2/?1118&(\/”(1_0]3 <€w,l[;nnn>)_2‘,n(1+013(€))€
gy /B i _ (6,/[() . (Bmax = 1 by definition)
n n

(1= €)Ba <Y 0uBre <Bated B
k

x|
[

2. if a = b, first of all we have

k#a
then
oy S (BB i o \/m ’
Z e = \V2k0iBre /D4 0kBra F n
2
Btlzéz (1 - E)B}zéz Bmax 2
< - £ max 2l 14 0p(e)
\/(1 — 6),8@ \/ﬁa + GZk;éa B kta Bmin P
r 2
_ { 1+ 54 0p() —(1-0) ( _ 2Bk op<62>)} . 1)5“““8} (14 0p(e))
L 2 2 Ba ﬁmin
- 2
< { (3+ E’;;mﬁ“‘) e+0r(@)| +0r (Kgm)} (14 0p()
= Op (Kg:::f€2> .
So,
2K max
||Xz - Xj||2 < \/ TOP (6 Kgmin>
and then,

%= %], < 1% = X0, + [ % - X

x|
e,

< \/%OP (6 KBmax) +2[1X| - €
n Bmin
2K max 2K
o (o) B oman

K2
=0Op|e€ . (Bmax = 1 by definition)

IN
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Now we can see %\ TS ”3 min can be used as a threshold to separate different clusters. However, in the algorithm we do not

know Sy in advance, so we need to approximate it with some computable statistics. From Lemma D.1, we know that
Dy (i,i) = £% (Baja, £ Op(€')) when 0;5, > 1 — €. So min;e 7 Do(i,4) and max;c 7 D2(4,4) can be used to estimate

Bmin'
T = EM— Epn(ﬁminiOP(€))/(2K) _1 Kﬁminio p K
VI maxicr Da(i,i)  \dn pn(1£0p()/2K) 2V n r nBmin )

2
2\/Kﬂmln:|:0p<HK>>2T>>Op (6 K >,
n n nﬁmin

which means PartitionPureNodes(X(]-' ,:),T) can exactly give us K clusters of different (nearly) pure nodes and return
one (nearly) pure node from each of the K clusters with probability larger than 1 — Op (K2 /n?). O

Clearly,

E. Consistency of inferred parameters

Proof of Theorem 4.5. Let Y := \/n/2KX and Y = \/n/2KX. Let e = Op(ey +€') = O (¢') from Lemma 4.3, where
we show that ||Y;||? > 1 — e for i € Sp. Furthermore for ease of exposition let us assume that the pure nodes are arranged
so that @4, = ©4(S,, :) is close to an identity matrix, i.e., the columns are arranged with a particular permutation.

Thus 1Y, 2 = 5, 1Y, (i) 2 = K(1— ¢) and so [[Y, || > /K(1— 6.
We have also shown that || Y,(,:)[|? < 1 +¢,50 [|[Y,||r < VK (1 +¢).

We will use

1Y, = (Y,0) " e < [1(Y,0) 7 (Y,0 = Y)Y, e < 1Y, P Y0 = Yl rllY, . 3)

First we will prove a bound on ||f’;)_1 || Let 6, be the i singular value of Y,

- 1
Yl = 4

We can bound 6 by bounding 0. In what follows we use M;, to denote the rows of M; indexed by S, when M;
is n/2 x K and by the square submatrix M;(S,,S,) is when M is n/2 x n/2. Note that ||@,, — I||r = VKe,
IBY2||p = Op(VEK), [©llr = Op(VK) and | Dy, |Ir = Op (K% /Buinpn),

o? = N(Y, YD) = KA(D211/2G)21,B® Dy

2

= QK)\ {(B'/?0] D;/) ©,,B'/?)

n
= QPK)\ (B1/2 (D21 + (®2p - ]) D21p@2p + D21p(@2p - I)) Bl/z)
Note that the matrix BY/2D;;) B'/2 is a diagonal matrix with the (i,4)"" diagonal element being 3; /D1, (i, i).

With similar arguments in the proof of Lemma D.1, we can get
. n
Daiy(ivi) = 5 (Bi £ Op(e))

SO

Ac(BYDABY) = 22 (14 0p e/ )
on
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By Weyl’s inequality and note that operator norm is less than or equal to Frobenius norm, it immediately gives us:

pn pn _ _
0_1_2 _ ﬁA (BI/QD B1/2)‘ Sﬁ . HB1/2(®2p _ I)TD211p®2pBl/2 + B1/2'D21i)(®2p o I)B1/2H

pn 1/2 -1 1/2
<282 -1e —f||F Pz 21005+ ||B2)]
:op( VR Ve L @@)

B K92\ /logn
=0p 7/2
mlnpf
K92\ /1
— af(liop< — Og”>
mll’lpf

Now, Weyl’s inequality for singular values gives us:
61 — oil < |IY, = Y,0ll < |Y, ~ Y,0||r = Op(VKe)
1/2
K%2/logn K2\/logn K%2/logn
b = (HEOp( — Ogn)) <1i0p (\/7( - Og”>> _ 1i0p< — Ogn>
mlnp\/> mlnp\/> mmp\/>

Plugging this into Equation (4) we get:

||1’;;)71H —14+0p <K9/2\/10gn>

7/2
2 ovn

Finally putting everything together with Equation (3) we get:

X' = (X,0) e (1Y, = (Y,0) ' Ir - : o1 K®/%\/logn
=) = - <0 = YollpllY, "l = Or | —55—— (5)
% e Y5 PRI
with probability larger than 1 — Op(K?/n?). O

Proof of Theorem 4.6. Recall that @, = ©(S) = D}fXX 1D_1/ 2 (Sp, Sp). First note that if one plugs in the population

counterparts of the the terms in ©,, then for some permutation matrix IT that @4, := ©4(S,,:) - I is close to an identity
matrix, and

1/2 —1/2
B~/’11®; 11)2{p) D,/* = ©,110; ],

_ 1
Dy*XX, ' Dyy,/* = Dif* (vo- Dy *@:B12) <\/ﬁ

SO
©,11 = D, *XX, ' D;,/?©,,.
We have the following decomposition

Heg—e)gnH <[ i - Dy XX, 1Dy

|+ [Pl x - x0)%; 1Dy

.

1/2 1/2 1/2 —1/2 —1/2
+||PaxoX, " - (%,0) DL+ [PaPxX D) - D)

N S e

From the proof of Lemma C.6 we have /D21 (i) = /D21 (i,1)(1 £ Op(y/K logn/np)) and hence

Ios - 24 = [ orty .
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and
HD2 L/2 ,D2711p/2H < H’D;llp/zH Op(v/Klogn/np).

And ||X;1|| = \/n/(QK)HYp*lH = Op(y/n/K), as we have shown in the proof of Theorem 4.5. Furthermore, by
Fact C.1, ||X;1HF = Op(V/n).

From the proof of Theorem 4.2 we can get |X — XO||r = Op(v/K¢'). Theorem 4.5 gives

. _ K5/2,/logn
%1~ (%,0)™ | = IX; | - O <5/J s )
ﬁminp\/ﬁ
n K5/2\/logn K5/2,/logn
OP<VK' K>0P< 5/2 g >0P<5/2g>
mlnpf /Bmlnp

Also || X||p = Op(v/K), since it concentrates around its population entry-wisely, and the max norm of any row of the

population is /2K /n, so | X||r = Op(VK). And
DX = |D31° V- D5, 202B' 2| = |[/p - ©2BY?| = \/[P[ = Op(v/pn/K).
Hence,
|31 - atx, oz < oal? - 2af? x5 mai?]
:OP(\/W)OP(\/W)'OP(\/»>'OP(W)' (\/IW)=OP(\/IW),

H’D%{Q(X—XO) SID;, /2 s

o0 (VTR) 00 (V) -0 (4ATE) - Ot KTio ~0n (o) = on (F30m),

BIIIIHp

<[Pt [x %o %"

oz X - o075, < P [t - 05,007 oy
K%/2\/logn K%/2\/logn
:OP (\/pn/K)Op <55/2 OP(\/K/ﬁmlinL):OP (BSP),
'min P min
1/2 — —1/2 —1 2 1/2 — —1/2 —1/2
HDQ{ XXpl(D21p/ 21p/ H HDQ{ XH ||Xp1|| HD21p/ _D21p/ r
= 0p (Von/K) - Op(VE - /nK) - Op (VK Buinpm)Op (VEognjnp) = Op (VE1ogn/Buinp) ,
oz xx; D2, (1 - @), < i 1657 [z, 12 - @01,

= 00 (VTR - OV TR Oy ) Ve = 0 ({2 ) < 0, (X22/057)

So

R 5/2
H@2 B ®2HHF _op (K \/logn> .

B?ninp
Since ||@®3]|% = Q(n/K), we finally have:
i (4w
W=~ NF <, (= VY200
1©:2]|F BainPV1

with probability larger than 1 — O(K?/n?). O
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. L2
Proof of Theorem 4.7. Recall that p3, = efDé{Q(Sp,Sp)XpH , and for some permutation matrix IT that @3, :=
F

0,(S,,:) - ILis close to an identity matrix, if one plugs in the population counterparts of the the terms in 0.,

GED%{Q (SpsSp)

X, = H\/ﬁ.eaT@%HTBl/QHF - H\/ﬁ el (@, ~ ) IITBY/2 + \/ﬁ-eaTHTBl/QHF

<[ 0 DB ],
= /€' + /pBar,

where o’ € [K] satisfies I/, = 1.

Using the bounds mentioned in the proof of Theorem 4.6, we have:

\ D2 - DYX + e DLU*(X - XO)H

< |[(vParin - \/Dgl G )e» XH + |[VPali el (X - x0)|

< (VDP2i(id) = VD (0,0 ([leF (X ~XO0) | + [l X))

or (V)or (157 [or (i) o (V)
np Bmlnpn n

1/2G 1/2
€; (Dz{ X - Dz{

Dglll

T(X - X0) H

K51
+0P< /np) Op ivmogn
K /Bmlnpn

As a result,

K5 2] K5/21
< Op < 572 Ogn) +\/E€/:Op <5/20gn> ,
ﬂmm\/pn 6min pn

K5/21 K5/2]
1_0P< 5/2 Ogn>71+0P< 5/2 Ogn>‘|
ﬁmlnp\/ﬁ mlnp\/>

with probability larger than 1 — O(K?/n?). O

and note that p3,, = Q(p), we have

pBa € pBar
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