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Abstract
The goal of the paper is to design sequential
strategies which lead to efficient optimization of
an unknown function under the only assumption
that it has a finite Lipschitz constant. We first
identify sufficient conditions for the consistency
of generic sequential algorithms and formulate
the expected minimax rate for their performance.
We introduce and analyze a first algorithm called
LIPO which assumes the Lipschitz constant to
be known. Consistency, minimax rates for LIPO
are proved, as well as fast rates under an addi-
tional Hölder like condition. An adaptive version
of LIPO is also introduced for the more realistic
setup where the Lipschitz constant is unknown
and has to be estimated along with the optimiza-
tion. Similar theoretical guarantees are shown
to hold for the adaptive algorithm and a numer-
ical assessment is provided at the end of the pa-
per to illustrate the potential of this strategy with
respect to state-of-the-art methods over typical
benchmark problems for global optimization.

1. Introduction
In many applications such as complex system design or
hyperparameter calibration for learning systems, the goal
is to optimize the output value of an unknown function
with as few evaluations as possible. Indeed, in such con-
texts, evaluating the performance of a single set of pa-
rameters often requires numerical simulations or cross-
validations with significant computational cost and the op-
erational constraints impose a sequential exploration of the
solution space with small samples. Moreover, it can ge-
nerally not be assumed that the function has good prop-
erties such as linearity or convexity. This generic prob-
lem of sequentially optimizing the output of an unknown
and potentially nonconvex function is often referred to as
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global optimization (Pintér, 1991), black-box optimization
(Jones et al., 1998) or derivative-free optimization (Rios &
Sahinidis, 2013). There is a large number of algorithms
based on various heuristics which have been introduced
in order to solve this problem such as genetic algorithms,
model-based methods or Bayesian optimization. We focus
here on the smoothness-based approach to global optimiza-
tion. This approach is based on the simple observation that,
in many applications, the system presents some regularity
with respects to the input. In particular, the use of the Lips-
chitz constant, first proposed in the seminal works of (Shu-
bert, 1972; Piyavskii, 1972), initiated an active line of re-
search and played a major role in the development of many
efficient global optimization algorithms such as DIRECT
(Jones et al., 1993), MCS (Huyer & Neumaier, 1999) or
SOO (Preux et al., 2014). Convergence properties of global
optimization methods have been developed in the works of
(Valko et al., 2013; Munos, 2014) under local smoothness
assumptions, but, up to our knowledge, such properties
have not been considered in the case where only the global
smoothness of the function can be specified. An interest-
ing question is how much global assumptions on regularity
which cover in some sense local assumptions may improve
the convergence of the latter. In this work, we address the
following questions: (i) find the limitations and the best
performance that can be achieved by any algorithm over the
class of Lipschitz functions and (ii) design efficient and op-
timal algorithms for this class of problems. Our contribu-
tion with regards to the above mentioned works is twofold.
First, we introduce two novel algorithms for global opti-
mization which exploit the global smoothness of the func-
tion and display good performance in typical benchmarks
for optimization. Second, we show that these algorithms
can achieve faster rates of convergence on globally smooth
problems than the previously known methods which only
exploit the local smoothness of the function. The rest of the
paper is organized as follows. In Section 2, we introduce
the framework and give generic results about the conver-
gence of sequential algorithms. In Section 3, we introduce
and analyze the LIPO algorithm which requires the knowl-
edge of the Lipschitz constant. In Section 4, the algorithm
is extended to the case where the Lipschitz constant is un-
known and the adaptive algorithm is compared to existing
methods in Section 5. All proofs can be found in the Sup-
plementary Material provided as a separate document.
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2. Setup and preliminary results
2.1. Setup and notations

Setup. Let X ⊂ Rd be a compact and convex set with non-
empty interior and let f : X → R be an unknown function
which is only supposed to admit a maximum over its in-
put domain X . The goal in global optimization consists in
finding some point

x? ∈ arg max
x∈X

f(x)

with a minimal amount of function evaluations. The stan-
dard setup involves a sequential procedure which starts
by evaluating the function f(X1) at an initial point X1

and then selects at each step t ≥ 1 an evaluation
point Xt+1 ∈ X depending on the previous evaluations
(X1, f(X1)), . . . , (Xt, f(Xt)) and receives the evaluation
of the unknown function f(Xt+1) at this point. After n
iterations, we consider that the algorithm returns an evalu-
ation point Xı̂n with ı̂n ∈ arg mini=1...n f(Xi) which has
recorded the highest evaluation. The performance of the
algorithm over the function f is then measured after n iter-
ations through the difference between the value of the true
maximum and the highest evaluation observed so far:

max
x∈X

f(x)− max
i=1...n

f(Xi).

The analysis provided in the paper considers that the num-
ber n of evaluation points is not fixed and it is assumed that
function evaluations are noiseless. Moreover, the assump-
tion made on the unknown function f throughout the paper
is that it has a finite Lipschitz constant k, i.e.

∃k ≥ 0 s.t. |f(x)− f(x′)| ≤ k · ‖x− x′‖2 ∀(x, x′) ∈ X 2.

Before starting the analysis, we point out that similar set-
tings have also been studied in (Munos, 2014; Malherbe
et al., 2016) and that (Valko et al., 2013; Grill et al., 2015)
considered the noisy scenario.

Notations. For all x = (x1, . . . , xd) ∈ Rd, we de-
note by ‖x‖2 = (

∑d
i=1 x

2
i )

1/2 the standard `2-norm and
by B(x, r) = {x′ ∈ Rd : ‖x− x′‖2 ≤ r} the ball
centered in x of radius r ≥ 0. For any bounded set
X ⊂ Rd, we define its inner-radius as rad(X ) = max{r >
0 : ∃x ∈ X such that B(x, r) ⊆ X}, its diameter as
diam(X ) = max(x,x′)∈X 2 ‖x− x′‖2 and we denote by
µ(X ) its volume where µ(·) stands for the Lebesgue mea-
sure. Lip(k) = {f : X → R s.t. |f(x) − f(x′)| ≤
k · ‖x− x′‖2 , ∀(x, x′) ∈ X 2} denotes the class of k-
Lipschitz functions defined on X and

⋃
k≥0 Lip(k) denotes

the set of Lipschitz continuous functions. U(X ) stands for
the uniform distribution over a bounded measurable do-
main X , B(p) for the Bernoulli distribution of parameter
p, I{·} for the standard indicator function taking values in
{0, 1} and the notationX ∼ P means that the random vari-
able X has the distribution P .

2.2. Preliminary results

In order to design efficient procedures, we first investigate
the best performance that can be achieved by any algorithm
over the class of Lipschitz functions.

Sequential algorithms and optimization consistency. We
describe the sequential procedures that are considered here
and the corresponding concept of consistency in the sense
of global optimization.

Definition 1 (SEQUENTIAL ALGORITHM) The class of
optimization algorithms we consider, denoted in the sequel
byA, contains all the algorithms A = {At}t≥1 completely
described by:

1. A distribution A1 taking values in X which allows to
generate the first evaluation point, i.e. X1 ∼ A1;

2. An infinite collection of distributions {At}t≥2 tak-
ing values in X and based on the previous evalu-
ations which define the iteration loop, i.e. Xt+1 ∼
At+1((X1, f(X1)), . . . , (Xt, f(Xt))).

Note that this class of algorithms also includes the deter-
ministic methods in which case the distributions {At}t≥1

are degenerate. The next definition introduces the notion of
asymptotic convergence.

Definition 2 (OPTIMIZATION CONSISTENCY) A global
optimization algorithm A is said to be consistent over a
set F of real-valued functions admitting a maximum over
X if and only if

∀f ∈ F , max
i=1...n

f(Xi)
p−→ max

x∈X
f(x)

where X1, . . . , Xn denotes a sequence of n evaluations
points generated by the algorithm A over the function f .

Asymptotic performance. We now investigate the mini-
mal conditions for a sequential algorithm to achieve asymp-
totic convergence. Of course, it is expected that a global
optimization algorithm should be consistent at least for the
class of Lipschitz functions and the following result reveals
a necessary and sufficient condition (NSC) in this case.

Proposition 3 (CONSISTENCY NSC) A global optimiza-
tion algorithmA is consistent over the set of Lipschitz func-
tions if and only if

∀f ∈ ⋃k≥0 Lip(k), sup
x∈X

min
i=1...n

‖Xi − x‖2 p−→ 0.

A crucial consequence of the latter proposition is that the
design of any consistent method ends up to covering the
whole input space regardless of the function values. The
example below introduces the most popular space-filling
method which will play a central role in our analysis.
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Example 4 (PURE RANDOM SEARCH) The Pure Random
Search (PRS) consists in sequentially evaluating the func-
tion over a sequence of points X1, X2, X3, . . . uniformly
and independently distributed over the input space X . For
this method, a simple union bound indicates that for all
n ∈ N? and δ ∈ (0, 1), we have with probability at least
1− δ and independently of the function values,

sup
x∈X

min
i=1...n

‖Xi−x‖2 ≤ diam(X )·
(

ln(n/δ) + d ln(d)

n

) 1
d

.

In addition to this result, we point out that the covering rate
of any method can easily be shown to be at best of order
Ω(n−1/d) and thus subject to to the curse of dimension-
ality by means of covering arguments. Keeping in mind
the equivalence of Proposition 3, we may now turn to the
nonasymptotic analysis.

Finite-time performance. We investigate here the best
performance that can be achieved by any algorithm with
a finite number of function evaluations. We start by cast-
ing a negative result stating that any algorithm can suffer, at
any time, an arbitrarily large loss over the class of Lipschitz
functions.

Proposition 5 Consider any global optimization algo-
rithm A. Then, for any constant C > 0 arbitrarily large,
any n ∈ N? and δ ∈ (0, 1), there exists a function
f̃ ∈ ⋃k≥0 Lip(k) only depending on (A,C, n, δ) for which
we have with probability at least 1− δ,

C ≤ max
x∈X

f̃(x)− max
i=1...n

f̃(Xi).

This result might however not be very surprising since the
class of Lipschitz functions includes functions with finite,
but arbitrarily large variations. When considering the sub-
class of functions with fixed Lipschitz constant, it becomes
possible to derive finite-time bounds on the minimax rate
of convergence.

Proposition 6 (MINIMAX RATE) adapted from (Bull,
2011). For any Lipschitz constant k ≥ 0 and any n ∈ N?,
the following inequalities hold true:

c1 · k · n−
1
d ≤

inf
A∈A

sup
f∈Lip(k)

E
[
max
x∈X

f(x)− max
i=1...n

f(Xi)

]
≤ c2 · k · n−

1
d

where c1 = rad(X ) /(8
√
d), c2 = diam(X ) × d! and the

expectation is taken over a sequence of n evaluation points
X1, . . . , Xn generated by the algorithm A over f .

We point out that this minimax rate of convergence of or-
der Θ(n−1/d) can still be achieved by any method with
an optimal covering rate of order O(n−1/d). Observe in-
deed that since E [maxx∈X f(x)−maxi=1...n f(Xi)] ≤ k
× E [supx∈X mini=1...n ‖x−Xi‖2] for all f ∈ Lip(k),
then an optimal covering rate necessarily implies minimax
efficiency. However, as it can be seen by examining the
proof of Proposition 6 provided in the Supplementary Ma-
terial, the functions constructed to prove the limiting bound
of Ω(n−1/d) are spikes which are almost constant every-
where and do not present a large interest from a practical
perspective. In particular, we will see in the sequel that one
can design:

I) An algorithm with fixed constant k≥0 which achieves
minimax efficiency and also presents exponentially
decreasing rates over a large subset of functions, as
opposed to space-filling methods (LIPO, Section 3).

II) A consistent algorithm which does not require the
knowledge of the Lipschitz constant and presents
comparable performance as when the constant k is as-
sumed to be known (AdaLIPO, Section 4).

3. Optimization with fixed Lipschitz constant
In this section, we consider the problem of optimizing an
unknown function f given the knowledge that f ∈ Lip(k)
for a given k ≥ 0.

3.1. The LIPO Algorithm

The inputs of the LIPO algorithm (Algorithm 1) are a num-
ber n of function evaluations, a Lipschitz constant k ≥ 0,
the input space X and the unknown function f . At each
iteration t ≥ 1, a random variable Xt+1 is sampled uni-
formly over the input space X and the algorithm decides
whether or not to evaluate the function at this point. In-
deed, it evaluates the function over Xt+1 if and only if
the value of the upper bound on possible values UB :
x 7→ mini=1...t f(Xi) +k · ‖x−Xi‖2 evaluated at this
point and computed from the previous evaluations is at least
equal to the value of the best evaluation observed so far
maxi=1...t f(Xi). As an example, the computation of the
decision rule of LIPO is illustrated in Figure 1.

Algorithm 1 LIPO(n, k,X , f)

1. Initialization: Let X1 ∼ U(X )
..... Evaluate f(X1), t← 1

2. Iterations: Repeat while t < n
..... Let Xt+1 ∼ U(X )
..... If min

i=1...t
(f(Xi) + k · ‖Xt+1 −Xi‖2) ≥ max

i=1...t
f(Xi)

........... Evaluate f(Xt+1), t← t+ 1

3. Output: Return Xı̂n where ı̂n ∈ arg maxi=1...n f(Xi)
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More formally, the mechanism behind this rule can be ex-
plained using the active subset of consistent functions pre-
viously considered in active learning (see, e.g., (Dasgupta,
2011) and (Hanneke, 2011)).

Definition 7 (CONSISTENT FUNCTIONS) The active sub-
set of k-Lipschitz functions consistent with the unknown
function f over a sample (X1, f(X1)), . . . , (Xt, f(Xt)) of
t ≥ 1 evaluations is defined as follows:

Fk,t := {g ∈ Lip(k) : ∀i ∈ {1 . . . t}, g(Xi) = f(Xi)}.

Indeed, one can recover from this definition the subset of
points which can actually maximize the function f .

Definition 8 (POTENTIAL MAXIMIZERS) Using the same
notations as in Definition 7, we define the subset of poten-
tial maximizers estimated over any sample t ≥ 1 evalua-
tions with a constant k ≥ 0 as follows:

Xk,t :=

{
x ∈ X : ∃g ∈ Fk,t such that x ∈ arg max

x∈X
g(x)

}
.

We may now provide an equivalence which makes the link
with the decision rule of the LIPO algorithm.

Lemma 9 If Xk,t denotes the set of potential maximizers
defined above, then we have the following equivalence:

x ∈ Xk,t ⇔ min
i=1...t

f(Xi) + k · ‖x−Xi‖2 ≥ max
i=1...t

f(Xi).

Hence, we deduce from this lemma that the algorithm only
evaluates the function over points that still have a chance to
be maximizers of the unknown function.

Remark 10 (EXTENSION TO OTHER SMOOTHNESS AS-
SUMPTIONS) It is important to note the proposed opti-
mization scheme could easily be extended to a large num-
ber of sets of globally and locally smooth functions by
slightly adapting the decision rule. For instance, when
F` = {f : X → R | x? is unique and ∀x ∈
X , f(x?) − f(x) ≤ `(x?, x)} denotes the set of functions
locally smooth around their maxima with regards to any
semi-metric ` : X × X → R previously considered in
(Munos, 2014), a straightforward derivation of Lemma 9
directly gives that the decision rule applied in Xt+1 would

X Xk,t

Figure 1. Left:A Lipschitz function, a sample of 4 evaluations and
the upper bound UB : x 7→ mini=1...t f(Xi) +k · ‖x−Xi‖2
in grey. Right: the set of points Xk,t := {x ∈ X : UB(x) ≥
maxi=1...t f(Xi)} which satisfy the decision rule.

simply consists in testing whether maxi=1...t f(Xi) ≤
mini=1...t f(Xi) + `(Xt+1, Xi). However, since the pur-
pose of this work is to design fast algorithms for Lipschitz
functions, we will only derive convergence results for the
version of the algorithm stated above.

3.2. Convergence analysis

We start with the consistency property of the algorithm.

Proposition 11 (CONSISTENCY) For any Lipschitz con-
stant k ≥ 0, the LIPO algorithm tuned with a parameter
k is consistent over the set k-Lipschitz functions, i.e.,

∀f ∈ Lip(k), max
i=1...n

f(Xi)
p−→ max

x∈X
f(x).

The next result shows that the value of the highest evalua-
tion observed by the algorithm is always superior or equal
in the usual stochastic ordering sense to the one of a PRS.

Proposition 12 (FASTER THAN PURE RANDOM SEARCH)
Consider the LIPO algorithm tuned with any constant k ≥
0. Then, for any f ∈ Lip(k) and n ∈ N?, we have that
∀y ∈ R,

P
(

max
i=1...n

f(Xi) ≥ y
)
≥ P

(
max
i=1...n

f(X ′i) ≥ y
)

where X1, . . . , Xn is a sequence of n evaluation points
generated by LIPO and X ′1, . . . , X

′
n is a sequence of n in-

dependent random variables uniformly distributed over X .

Based on this result, one can easily derive a first finite-time
bound on the difference between the value of the true max-
imum and its approximation.

Corollary 13 (UPPER BOUND) For any f ∈ Lip(k), n ∈
N? and δ ∈ (0, 1), we have with probability at least 1− δ,

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ k · diam(X ) ·
(

ln(1/δ)

n

) 1
d

.

This bound which assesses the miminax optimality of LIPO
stated in Proposition 6 does however not show any im-
provement over PRS and it cannot be significantly im-
proved without any additional assumption as shown below.

Proposition 14 For any n ∈ N? and δ ∈ (0, 1), there ex-
ists a function f̃ ∈ Lip(k) only depending on n and δ for
which we have with probability at least 1− δ:

k · rad(X ) ·
(
δ

n

) 1
d

≤ max
x∈X

f̃(x)− max
i=1...n

f̃(Xi).

As announced in Section 2.2, one can nonetheless get
tighter polynomial bounds and even an exponential decay
by using the following condition which describes the be-
havior of the function around its maximum.
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κ = 0.5 κ = 1 κ = 2

Figure 2. Three one-dimensional functions satisfying Condition 1
with κ = 1/2 (Left), κ = 1 (Middle) and κ = 2 (Right).

Condition 1 (DECREASING RATE AROUND THE MAXI-
MUM) A function f : X → R is (κ, cκ)-decreasing around
its maximum for some κ ≥ 0, cκ ≥ 0 if:

1. The global optimizer x? ∈ X is unique;

2. For all x ∈ X , we have that:

f(x?)− f(x) ≥ cκ · ‖x− x?‖κ2 .

This condition, already considered in the works of (Zhigl-
javsky & Pintér, 1991) and (Munos, 2014), captures how
fast the function decreases around its maximum. It can be
seen as a local one-sided Hölder condition which can only
be met for κ ≥ 1 when f is assumed to be Lipschitz. As
an example, three functions satisfying this condition with
different values of κ are displayed on Figure 3.2.

Theorem 15 (FAST RATES) Let f ∈ Lip(k) be any Lips-
chitz function satisfying Condition 1 for some κ ≥ 1, cκ >
0. Then, for any n ∈ N? and δ ∈ (0, 1), we have with
probability at least 1− δ,

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ k × diam(X )×



exp

{
− Ck,κ ·

n ln(2)

ln(n/δ) + 2(2
√
d)d

}
, κ = 1

2κ

2

(
1 + Ck,κ ·

n(2d(κ 1) − 1)

ln(n/δ) + 2(2
√
d)d

)− κ
d(κ−1)

, κ > 1

where Ck,κ = (cκ maxx∈X ‖x− x?‖κ−1
/8k)d.

The last result we provide states an exponentially decreas-
ing lower bound.

Theorem 16 (LOWER BOUND) For any f ∈ Lip(k) satis-
fying Condition 1 for some κ ≥ 1, cκ > 0 and any n ∈ N?
and δ ∈ (0, 1), we have with probability at least 1− δ,

cκ rad(X )
κ · e−

κ
d ·

(
n+
√

2n ln(1/δ)+ln(1/δ)
)

≤ max
x∈X

f(x)− max
i=1...n

f(Xi).

A discussion on these results can be found in the next sec-
tion where LIPO is compared with similar algorithms.

3.3. Comparison with previous works

The Piyavskii algorithm (Piyavskii, 1972) is a Lips-
chitz method with fixed k ≥ 0 consisting in sequen-
tially evaluating the function over a point Xt+1 ∈
arg maxx∈X mini=1...t f(Xi) + k · ‖x−Xi‖ maximizing
the upper bound displayed on Figure 1. (Munos, 2014)
also proposed a similar algorithm (DOO) which uses a hi-
erarchical partitioning of the space in order to sequentially
expand and evaluate the function over the center of a par-
tition which has the highest upper bound computed from
a semi-metric ` set as input. Up to our knowledge, only
the consistency of the Piyavskii algorithm was proven in
(Mladineo, 1986) and (Munos, 2014) derived finite-time
bounds for DOO with the use of weaker local assump-
tions. To compare our results, we thus considered DOO
tuned with `(x, x′) = k ‖x− x′‖2 over X = [0, 1]d parti-
tioned into a 2d-ary tree of hypercubes and with f belong-
ing to the sets of globally smooth functions: (a) Lip(k), (b)
Fκ= {f ∈ Lip(k) satisfying Condition 1 with cκ, κ ≥ 0}
and (c) F ′κ = {f ∈ Fκ : ∃c2 > 0, f(x?) − f(x) ≤
c2 ‖x− x?‖κ2}. The results of the comparison can be found
in Table 1. In addition to the novel lower bounds and
the rate over Lip(k), we were able to obtain similar up-
per bounds as DOO over Fκ, uniformly better rates for the
functions inF ′κ locally equivalent to ‖x? − x‖κ2 with κ > 1
and a similar exponenital rate, up to a constant factor, when
κ = 1. Hence, when f is only known to be k-Lipschitz,
one thus should expect the algorithm exploiting the global
smoothness (LIPO) to perform asymptotically better or at
least similarly to the one using the local smoothness (DOO)
or no information (PRS). However, keeping in mind that
the constants are not necessarily optimal, it is also interest-
ing to note that the term (k

√
d/cκ)d appearing in both the

exponential rates of LIPO and DOO tends to suggest that
if f is also known to be locally smooth for some k`� k,
then one should expect an algorithm exploiting the local
smoothness k` to be asymptotically faster than the one us-
ing the global smoothness k in the case where κ = 1.

Algorithm DOO LIPO Piyavskii PRS

f ∈ Lip(k)
Consistency X X X X
Upper Bound - OP(n−

1
d ) - OP(n−

1
d )

f ∈ Fκ, κ>1

Upper bound O(n
− κ
d(κ 1) ) O∗P (n

− κ
d(κ 1) ) - OP(n−

1
d )

Lower bound - Ω∗P (e−
κ
d
n) - ΩP(n−

κ
d )

f ∈ F ′κ, κ>1

Upper bound O(n
− κ
d(κ 1) ) O∗P (n

− κ×κ
d(κ 1) ) - OP(n−

κ
d )

Lower bound - Ω∗P (e−
κ
d
n) - ΩP(n−

κ
d )

f ∈ F ′κ, κ=1

Upper bound O(e

n ln(2)

(2k
√
d/cκ)d ) O∗P (e

n ln(2)

2(16k
√
d/cκ)d ) - OP(n−

1
d )

Lower bound - Ω∗P (e−
n
d ) - ΩP(n−

1
d )

Table 1. Comparison of the results reported over the difference
maxx∈X f(x) − maxi=1...n f(Xi) in Lipschitz optimization.
Dash symbols are used when no results could be found.
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4. Optimization with unknown Lipschitz
constant

In this section, we consider the problem of optimizing any
unknown function f in the class

⋃
k≥0 Lip(k).

4.1. The adaptive algorithm

The AdaLIPO algorithm (Algorithm 2) is an extension of
LIPO which involves an estimate of the Lipschitz constant
and takes as input a parameter p ∈ (0, 1) and a nondecreas-
ing sequence of Lipschitz constant ki∈Z defining a mesh-
grid of R+ (i.e. such that ∀x > 0, ∃i ∈ Z with ki ≤ x ≤
ki+1). The algorithm is initialized with a Lipschitz constant
k̂1 set to 0 and alternates randomly between two distinct
phases: exploration and exploitation. Indeed, at step t < n,
a Bernoulli random variable Bt+1 of parameter p driving
this trade-off is sampled. If Bt+1 = 1, then the algorithm
explores the space by evaluating the function over a point
uniformly sampled over X . Otherwise, if Bt+1 = 0, the
algorithm exploits the previous evaluations by making an
iteration of the LIPO algorithm with the smallest Lipschitz
constant of the sequence k̂t which is associated with a sub-
set of Lipschitz functions that probably contains f (step ab-
breviated in the algorithm by Xt+1 ∼ U(Xk̂t,t)). Once an
evaluation has been made, the Lipschitz constant estimate
k̂t is updated.

Remark 17 (EXAMPLES OF MESHGRIDS) Several se-
quences of Lipschitz constants with various shapes such as
ki = |i|sgn(i), ln(1 + |i|sgn(i)) or (1 + α)i for some α > 0
could be considered to implement the algorithm. In par-
ticular, we point out that with these sequences the com-
putation of the estimate is straightforward. For instance,
when ki = (1 + α)i, we have k̂t = (1 + α)it where it =
dln(maxi 6=j |f(Xj)− f(Xl)|/‖Xj −Xl‖2)/ ln(1 + α)e.

4.2. Convergence analysis

Lipschitz constant estimate. Before starting the analysis
of AdaLIPO, we first provide a control on the Lipschitz
constant estimate based on a sample of random evaluations
that will be useful to analyse its performance. In partic-
ular, the next result illustrates the purpose of using a dis-
cretization of Lipschitz constant instead of a raw estimate
of the maximum slope by showing that, given this estimate,
a small subset of functions containing the unknown func-
tion can be recovered in a finite-time.

Proposition 18 Let f be any non-constant Lipschitz func-
tion. Then, if k̂t denotes the Lipschitz constant esti-
mate of Algorithm 2 computed with any increasing se-
quence ki∈Z defining a meshgrid of R+ over a sample
(X1, f(X1)), . . . , (Xt, f(Xt)) of t ≥ 2 evaluations where
X1, . . . , Xt are uniformly and independently distributed

Algorithm 2 ADALIPO(n, p, ki∈Z,X , f)

1. Initialization: Let X1 ∼ U(X )

..... Evaluate f(X1), t← 1, k̂1 ← 0

2. Iterations: Repeat while t < n
..... Let Bt+1 ∼ B(p)
..... If Bt+1 = 1 (Exploration)
........... Let Xt+1 ∼ U(X )
..... If Bt+1 = 0 (Exploitation)
........... Let Xt+1 ∼ U(Xk̂t,t) where Xk̂t,t denotes the set
........... of potential maximizers introduced in Definition 8
........... computed with k set to k̂t
..... Evaluate f(Xt+1), t← t+ 1

..... Let k̂t := inf

{
ki∈Z : max

i6=j

|f(Xi)− f(Xj)|
‖Xi −Xj‖2

≤ ki
}

3. Output: Return Xı̂n where ı̂n ∈ arg maxi=1...n f(Xi)

over X , we have that

P
(
f ∈ Lip(k̂t)

)
≥ 1− (1− Γ(f, ki? 1))bt/2c

where the coefficient

Γ(f, ki? 1) := P
( |f(X1)− f(X2)|
‖X1 −X2‖2

> ki? 1

)
> 0

with i? = min{i ∈ Z : f ∈ Lip(ki)}, is strictly positive.

Remark 19 (MEASURE OF GLOBAL SMOOTHNESS) The
coefficient Γ(f, ki? 1) which appears in the lower bound
of Proposition 18 can be seen as a measure of the global
smoothness of the function f with regards to ki? 1. Indeed,
observing that 1/bt/2c∑bt/2ci=1 I{|f(Xi)−f(Xi+bt/2c)| >
ki? 1‖Xi − Xbt/2c+i‖2}

p−→ Γ(f, ki? 1), it is easy to see
that Γ records the ratio of volume the product space X ×X
where f is witnessed to be at least ki? 1 Lipschitz.

Remark 20 (DENSITY OF THE SEQUENCE) As a direct
consequence of the previous remark, we point out that
the density of the sequence ki∈Z, captured here by α =
supi∈Z(ki+1 − ki)/ki has opposite impacts on the max-
imal deviation of the estimate and its convergence rate.
Indeed, since α is involved in both the following upper
bounds on the deviation (limt→∞ k̂t − k?)/k? ≤ α where
k? = sup{k ≥ 0 : f /∈ Lip(k)} and on the coefficient
Γ(f, ki? 1) ≤ Γ(f, k?/(1 + α)), we deduce that using a
sequence with a small α reduces the bias but also the con-
vergence rate through a small coefficient Γ(f, ki?−1).

Analysis of AdaLIPO. Given the consistency equivalence
of Proposition 3, one can directly obtain the following
asymptotic result.

Proposition 21 (CONSISTENCY) The AdaLIPO algorithm
tuned with any parameter p ∈ (0, 1) and any sequence of
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Lipschitz constant ki∈Z covering R+ is consistent over the
set of Lipschitz functions, i.e.,

∀f ∈ ⋃k≥0 Lip(k), max
i=1...n

f(Xi)
p−→ max

x∈X
f(x).

The next result provides a first finite-time bound on the dif-
ference between the maximum and its approximation.

Proposition 22 (UPPER BOUND) Consider AdaLIPO
tuned with any p ∈ (0, 1) and any sequence ki∈Z defin-
ing a meshgrid of R+. Then, for any non-constant f ∈⋃
k≥0 Lip(k), any n ∈ N? and δ ∈ (0, 1), we have with

probability at least 1− δ,

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ diam(X )×

ki? ×
(

5

p
+

2 ln(δ/3)

p ln(1− Γ(f, ki?-1))

) 1
d

×
(

ln(3/δ)

n

) 1
d

where Γ(f, ki? 1) and i? are defined as in Proposition 18.

This result might be misleading since it advocates that do-
ing pure exploration gives the best rate (i.e., when p→ 1).
However, as Proposition 18 provides us with the guaran-
tee that f ∈ Lip(k̂t) within a finite number of iterations
where k̂t denotes the Lipschitz constant estimate, one can
recover faster convergence rates similar to the one reported
for LIPO where the constant k is assumed to be known.

Theorem 23 (FAST RATES) Consider the same assump-
tions as in Proposition 22 and assume in addition that the
function f satisfies Condition 1 for some κ ≥ 1, cκ ≥ 0.
Then, for any n ∈ N? and δ ∈ (0, 1), we have with proba-
bility at least 1− δ,

max
x∈X

f(x)− max
i=1...n

f(Xi) ≤ diam(X )×

ki? × exp
(

2 ln(δ/4)
p ln(1−Γ(f,ki? 1)) + 7 ln(4/δ)

p(1−p)2

)
×



exp

{
−Cki? ,κ ·

n (1− p) ln(2)

2 ln(n/δ) + 4(2
√
d)d

}
, κ = 1

2κ
(

1 + Cki? ,κ ·
n(1− p)(2d(κ−1) − 1)

2 ln(n/δ) + 4(2
√
d)d

)− κ
d(κ−1)

, κ > 1

where Cki? ,κ = (cκ,maxx∈X ‖x− x?‖κ−1
2 /8ki?)d.

This bound shows the precise impact of the parameters p
and ki∈Z on the convergence of the algorithm. In particular,
it illustrates the complexity of the exploration/exploitation
trade-off through a constant term and a convergence rate
which are inversely correlated to the exploration parameter
and the density of the sequence of Lipschitz constants.

4.3. Comparison with previous works

The DIRECT algorithm (Jones et al., 1993) is a Lipschitz
algorithm with unknown constant which uses a determin-
istic splitting technique of the search space to evaluate the
function on subdivisions of the space that have recorded
the highest evaluation among all subdivisions of similar
size. Moreover, (Munos, 2014) generalized DIRECT in
a broader setting by extending DOO to any unknown and
arbitrary local semi-metric. With regards to these works,
we proposed an alternative stochastic strategy which di-
rectly relies on the estimation of the Lipschitz constant and
thus only presents guarantees for globally smooth func-
tions. However, as far as we know, only the consistency
property of DIRECT was shown in (Finkel & Kelley, 2004)
and (Munos, 2014) derived convergence rates of the same
order as for DOO, except that the best rate they derive is
of order O(e−c

√
n) to be compared with the fast rate of

AdaLIPO which is of order O∗P(e−cn). The conclusion of
the comparison thus remains the same as in Section 3: ex-
ploiting the global smoothness instead of just the local one
allows to derive faster algorithms in the some cases where
the unknown function is indeed globally smooth.

5. Experiments
We compare here the empirical performance of AdaLIPO
with five state-of-the-art global optimization methods.

Algorithms. BAYESOPT∗ (Martinez-Cantin, 2014) is a
Bayesian optimization algorithm which uses a distribution
over functions to build a surrogate model of the unknown
function. The parameters of the distribution are estimated
during the optimization process. CMA-ES‡(Hansen, 2006)
is an evolutionary algorithm which samples the new evalu-
ation points according to a multivariate normal distribution
with mean vector and covariance matrix computed from the
previous evaluations. CRS†(Kaelo & Ali, 2006) is a vari-
ant of PRS including local mutations which starts with a
random population and evolves these points by an heuris-
tic rule. MLSL†(Kan & Timmer, 1987) is a multistart al-
gorithm performing a series of local optimizations start-
ing from points randomly chosen by a clustering heuris-
tic that helps to avoid repeated searches of the same lo-
cal optima. DIRECT†(Jones et al., 1993) and PRS were
previously introduced. For a fair comparison, the tuning
parameters were all set to default and AdaLIPO was con-
stantly used with a parameter p set to 0.1 and a sequence
ki = (1 + 0.01/d)i fixed by an arbitrary rule of thumb. 1

Data sets. Following the steps of (Malherbe & Vayatis,
2016), we first studied the task of estimating the regulariza-
tion parameter λ and the bandwidth σ of a gaussian kernel
ridge regression minimizing the empirical mean squared

1In Python 2.7 from ∗BayesOpt (Martinez-Cantin, 2014),
‡CMA 1.1.06 (Hansen, 2011) and †NLOpt (Johnson, 2014).



Global optimization of Lipschitz functions

Problem Auto-MPG BreastCancer Concrete Housing Yacht HolderTable Rosenbrock LinearSlope Sphere Deb N.1

AdaLIPO 14.6 (±09) 05.4 (±03) 04.9 (±02) 05.4 (±04) 25.2 (±21) 077 (±058) 07.5 (±07) 029 (±13) 036 (±12) 916(±225)
BayesOpt 10.8 (±03) 06.8 (±04) 06.4 (±03) 07.5 (±04) 13.8 (±20) 410 (±417) 07.6 (±05) 032 (±58) 019 (±03) 814(±276)
CMA-ES 29.3 (±25) 11.1 (±09) 10.4 (±08) 12.4 (±12) 29.6 (±25) 080 (±115) 10.0 (±10) 100 (±76) 171 (±68) 930(±166)
CRS 28.7 (±14) 08.9 (±08) 10.0 (±09) 13.8 (±10) 32.6 (±15) 307 (±422) 09.0 (±09) 094 (±43) 233 (±54) 980(±166)
DIRECT 11.0 (±00) 06.0 (±00) 06.0 (±00) 06.0 (±00) 11.0 (±00) 080 (±000) 10.0 (±00) 092 (±00) 031 (±00) 1000(±00)
MLSL 13.1 (±15) 06.6 (±03) 06.1 (±04) 07.2 (±03) 14.4 (±13) 305 (±379) 06.9 (±05) 016 (±33) 175(±302) 198(±326)
PRS 65.1 (±62) 10.6 (±10) 09.8 (±09) 11.5 (±10) 73.3 (±72) 210 (±202) 09.0 (±09) 831(±283) 924(±210) 977(±117)

target90%

AdaLIPO 17.7 (±09) 06.6 (±04) 06.4 (±04) 17.9 (±25) 33.3 (±26) 102 (±065) 11.5 (±11) 053 (±22) 042 (±11) 986(±255)
BayesOpt 12.2 (±06) 08.4 (±03) 07.9 (±03) 13.9 (±22) 15.9 (±21) 418 (±410) 12.0 (±08) 032 (±59) 045 (±16) 949(±153)
CMA-ES 42.9 (±31) 13.7 (±10) 13.5 (±10) 23.0 (±16) 40.5 (±30) 136 (±184) 16.1 (±13) 151 (±94) 223 (±57) 952(±127)
CRS 35.8 (±13) 13.6 (±10) 14.6 (±11) 22.8 (±12) 38.3 (±31) 580 (±444) 15.8 (±14) 131 (±62) 340 (±66) 997(±127)
DIRECT 11.0 (±00) 11.0 (±00) 11.0 (±00) 19.0 (±00) 27.0 (±00) 080 (±000) 10.0 (±00) 116 (±00) 098 (±00) 1000(±00)
MLSL 15.0 (±15) 07.6 (±03) 07.3 (±04) 16.3 (±10) 16.3 (±13) 316 (±384) 08.8 (±05) 018 (±37) 226(±336) 215(±328)
PRS 139 (±131) 17.7 (±17) 14.0 (±12) 39.6 (±39) 247(±249) 349 (±290) 18.0 (±17) 985(±104) 1000(±00) 998(±025)

target95%

AdaLIPO 32.6 (±16) 34.1 (±36) 70.8 (±58) 65.4 (±62) 61.7 (±39) 212 (±129) 44.6 (±39) 122 (±31) 052 (±10) 1000(±00)
BayesOpt 14.0 (±07) 31.0 (±51) 28.2 (±34) 17.9 (±22) 18.5 (±22) 422 (±407) 27.6 (±22) 032 (±59) 222 (±77) 1000(±00)
CMA-ES 73.7 (±49) 35.1 (±20) 46.3 (±29) 61.5 (±85) 70.9 (±50) 215 (±198) 43.5 (±37) 211 (±92) 308 (±60) 962(±106)
CRS 48.5 (±16) 34.8 (±12) 36.6 (±15) 43.7 (±14) 52.9 (±18) 599 (±427) 42.7 (±23) 168 (±76) 607 (±81) 1000(±00)
DIRECT 47.0 (±00) 27.0 (±00) 37.0 (±00) 41.0 (±00) 49.0 (±00) 080 (±000) 24.0 (±00) 226 (±00) 548 (±00) 1000(±00)
MLSL 20.6 (±17) 12.8 (±03) 14.7 (±10) 16.3 (±10) 21.4 (±14) 322 (±382) 19.4 (±49) 022 (±42) 304(±357) 256(±334)
PRS 747(±330) 145(±124) 176(±148) 406(±312) 779(±334) 772 (±310) 100(±106) 1000(±00) 1000(±00) 1000(±00)

target99%

Table 2. Results of the numerical experiments. The table displays the number of evaluations required by each method to reach the
specified target (mean ± standard deviation). In bold, the best result obtained in terms of average of function evaluations.

error of the predictions over a 10-fold cross validation
with real data sets. The optimization was performed over
(ln(λ), ln(σ)) ∈ [−3, 5] × [−2, 2] with five data sets from
the UCI Machine Learning Repository (Lichman, 2013):
Auto-MPG, Breast Cancer Wisconsin (Prognostic), Con-
crete slump test, Housing and Yacht Hydrodynamics. We
then compared the algorithms on a series of five synthetic
problems commonly met in standard optimization bench-
mark taken from (Jamil & Yang, 2013; Surjanovic & Bing-
ham, 2013): HolderTable, Rosenbrock, Sphere, LinearS-
lope and Deb N.1. This series includes multimodal and
non-linear functions as well as ill-conditioned and well-
shaped functions with a dimensionality ranging from 2 to 5.
A complete description of the test functions of the bench-
mark can be found in the Supplementary Material.

Protocol and performance metrics. For each problem
and each algorithm, we performed K =100 distinct runs
with a budget of n =1000 function evaluations. For each
target parameter t = 90%, 95% and 99%, we have col-
lected the stopping times corresponding to the number of
evaluations required by each method to reach the specified
target τk := min{i = 1, . . . , n : f(X

(k)
i ) ≥ ftarget(t)}

where min{∅} = 1000 by convention, {f(X
(k)
i )}ni=1 de-

notes the evaluations made by a given method on the k-th
run with k ≤ K and the target value is set to ftarget(t) :=
maxx∈X f(x)−

(
maxx∈X f(x)−

∫
x∈X f(x) dx/µ(X )

)
×

(1 − t). The normalization of the target to the average
value prevents the performance measures from being de-
pendent of any constant term in the unknown function. In
practice, the average was estimated from a Monte Carlo
sampling of 106 evaluations and the maximum by taking
the best value observed over all the sets of experiments.
Based on these stopping times, we computed the average
and standard deviation of the number of evaluations re-
quired to reach the target, i.e. τ̄K =

∑K
k=1 τk/K and

σ̂τ = (
∑K
k=1(τk − τ̄K)2/K)1/2.

Results. Results are collected in Table 2. Due to space
constraints, we only make few comments. First, we point
out that the proposed method displays very competitive re-
sults over most of the problems of the benchmark (except
on the non-smooth DebN.1 where most methods fail). In
particular, AdaLIPO obtains several times the best perfor-
mance for the target 90% and 95% (see, e.g., BreastCancer,
HolderTable, Sphere) and experiments Linear Slope and
Sphere also suggest that, in the case of smooth functions, it
can be robust against the dimensionality of the input space.
However, in some cases, the algorithm can be witnessed
to reach the 95% target with very few evaluations while
getting more slowly to the 99% target (see, e.g., Concrete,
Housing). This problem is due to the instability of the Lip-
schitz constant estimate around the maxima but could cer-
tainly be solved with the addition of a noise parameter that
would allow the algorithm be more robust against local per-
turbations. Additionally, investigating better values for p
and ki as well as alternative covering methods such as LHS
(Stein, 1987) could also be promising approaches to im-
prove its performance. However, an empirical analysis of
the algorithm with these extensions is beyond the scope of
the paper and will be carried out in a future work.

6. Conclusion
We introduced two novel strategies for global optimization:
LIPO which requires the knowledge of the Lipschitz con-
stant and its adaptive version AdaLIPO which estimates
the constant during the optimization process. A theoreti-
cal analysis is provided and empirical results based on syn-
thetic and real problems have been obtained demonstrating
the performance of the adaptive algorithm with regards to
existing state-of-the-art global optimization methods.
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