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Abstract

Given a graphical model, one essential prob-
lem is MAP inference, that is, finding the most
likely configuration of states according to the
model. Although this problem is NP-hard, large
instances can be solved in practice and it is a
major open question is to explain why this is
true. We give a natural condition under which we
can provably perform MAP inference in polyno-
mial time—we require that the number of frac-
tional vertices in the LP relaxation exceeding the
optimal solution is bounded by a polynomial in
the problem size. This resolves an open question
by Dimakis, Gohari, and Wainwright. In con-
trast, for general LP relaxations of integer pro-
grams, known techniques can only handle a con-
stant number of fractional vertices whose value
exceeds the optimal solution. We experimentally
verify this condition and demonstrate how effi-
cient various integer programming methods are
at removing fractional solutions.

1. Introduction

Given a graphical model, one essential problem is MAP
inference, that is, finding the most likely configuration of
states according to the model.

Consider graphical models with binary random variables
and pairwise interactions, also known as Ising models. For
a graph G = (V, E) with node weights § € RY and edge
weights W € R¥, the probability of a variable configura-

'Department of Electrical and Computer Engineering, Uni-
versity of Texas at Austin, USA *Department of Computer
Science, University of Texas at Austin, USA. Correspondence
to: Erik M. Lindgren <erikml@utexas.edu>, Alexandros G.
Dimakis <dimakis@austin.utexas.edu>, Adam Klivans <Kkli-
vans @cs.utexas.edu>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by
the author(s).

tion is given by

1
P(X = .CL’) = E exp ;/Qm + Z;E Wijxixj , (D

where Z is a normalization constant.

The MAP problem is to find the configuration = € {0,1}V
that maximizes Equation (1). We can write this as an inte-
ger linear program (ILP) as follows:
qer%%:s ‘ 0:q; + Z Wiidi;
eV ijeE
st. ¢ €{0,1} VieV 2)
¢i; > max{0,¢; +¢q; — 1} VijeFE
¢i; <min{g;,q;} Vij € E.

The MAP problem on binary, pairwise graphical models
contains, as a special case, the Max-cut problem and is
therefore NP-hard. For this reason, a significant amount of
attention has focused on analyzing the LP relaxation of the
ILP, which can be solved efficiently in practice.

i Oigi + > Wijai;
eV ijeE
st. 0<¢qg; <1 VieV 3)
¢i; > max{0,¢; +¢q; — 1} VijeFE

¢ij < min{q;,q;} VijeE

This relaxation has been an area of intense research in ma-
chine learning and statistics. In (Meshi et al., 2016), the au-
thors state that a major open question is to identify why real
world instances of Problem (2) can be solved efficiently de-
spite the theoretical worst case complexity.

We make progress on this open problem by analyzing the
fractional vertices of the LP relaxation, that is, the ex-
treme points of the polytope with fractional coordinates.
Vertices of the relaxed polytope with fractional coordinates
are called pseudomarginals for graphical models and pseu-
docodewords in coding theory. If a fractional vertex has
higher objective value (i.e. likelihood) compared to the best
integral one, the LP relaxation fails. We call fractional ver-
tices with an objective value at least as good as the objective
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value of the optimal integral vertex confounding vertices.
Our main result is that it is possible to prune all confound-
ing vertices efficiently when their number is polynomial.

Our contributions:

o Our first contribution is a general result on integer pro-
grams. We show that any 0-1 integer linear program
(ILP) can be solved exactly in polynomial time, if the
number confounding vertices is bounded by a polyno-
mial. This applies to MAP inference for a graphical
model over any alphabet size and any order of con-
nection. The same result (exact solution if the num-
ber of confounding vertices is bounded by a polyno-
mial) was established by (Dimakis et al., 2009) for the
special case of LP decoding of LDPC codes (Feld-
man et al., 2005). The algorithm from (Dimakis et al.,
2009) relies on the special structure of the graphical
models that correspond to LDPC codes. In this paper
we generalize this result for any ILP in the unit hyper-
cube. Our results extend to finding all integral vertices
among the M -best vertices.

e Given our condition, one may be tempted to think that
we generate the top M-best vertices of a linear pro-
gram (for M polynomial) and output the best integral
one in this list. We actually show that such an ap-
proach would be computationally intractable. Specif-
ically, we show that it is NP-hard to produce a list
of the M-best vertices if M = O(n°) for any fixed
€ > 0. This result holds even if the list is allowed
to be approximate. This strengthens the previously
known hardness result (Angulo et al., 2014) which
was M = O(n) for the exact M-best vertices. In
terms of achievability, the best previously known re-
sult (from (Angulo et al., 2014)) can only solve the
ILP if there is at most a constant number of confound-
ing vertices.

e We obtain a complete characterization of the frac-
tional vertices of the local polytope for binary, pair-
wise graphical models. We show that any variable in
the fractional support must be connected to a frus-
trated cycle by other fractional variables in the graph-
ical model. This is a complete structural characteriza-
tion that was not previously known, to the best of our
knowledge.

e We develop an approach to estimate the number of
confounding vertices of a half-integral polytope. We
use this method in an empirical evaluation of the
number of confounding vertices of previously studied
problems and analyze how well common integer pro-
gramming techniques perform at pruning confounding
vertices.

2. Background and Related Work

For some classes of graphical models, it is possible to solve
the MAP problem exactly. For example see (Weller et al.,
2016) for balanced and almost balanced models, (Jebara,
2009) for perfect graphs, and (Wainwright et al., 2008) for
graphs with constant tree-width.

These conditions are often not true in practice and a wide
variety of general purpose algorithms are able to solve the
MAP problem for large inputs. One class is belief propaga-
tion and its variants (Yedidia et al., 2000; Wainwright et al.,
2003; Sontag et al., 2008). Another class involves general
ILP optimization methods (see e.g. (Nemhauser & Wolsey,
1999)). Techniques specialized to graphical models include
cutting-plane methods based on the cycle inequalities (Son-
tag & Jaakkola, 2007; Komodakis & Paragios, 2008; Son-
tag et al., 2012). See also (Kappes et al., 2013) for a com-
parative survey of techniques.

In (Weller et al., 2014), the authors investigate how pseudo-
marginals and relaxations relate to the success of the Bethe
approximation of the partition function.

There has been substantial prior work on improving in-
ference building on these LP relaxations, especially for
LDPC codes in the information theory community. This
work ranges from very fast solvers that exploit the spe-
cial structure of the polytope (Burshtein, 2009), connec-
tions to unequal error protection (Dimakis et al., 2007),
and graphical model covers (Koetter et al., 2007). LP
decoding currently provides the best known finite-length
error-correction bounds for LDPC codes both for random
(Daskalakis et al., 2008; Arora et al., 2009), and adversar-
ial bit-flipping errors (Feldman et al., 2007).

For binary graphical models, there is a body of work which
tries to exploit the persistency of the LP relaxation, that
is, the property that integer components in the solution of
the relaxation must take the same value in the optimal so-
lution, under some regularity assumptions (Boros & Ham-
mer, 2002; Rother et al., 2007; Fix et al., 2012).

Fast algorithms for solving large graphical models in prac-
tice include (Ihler et al., 2012; Dechter & Rish, 2003).

The work most closely related to this paper involves elim-
inating fractional vertices (so-called pseudocodewords in
coding theory) by changing the polytope or the objective
function (Zhang & Siegel, 2012; Chertkov & Stepanov,
2008; Liu et al., 2012).
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3. Provable Integer Programming

A binary integer linear program is an optimization problem
of the following form.

max CT T
x

subjectto Az <b
z € {0,1}"

which is relaxed to a linear program by replacing the x €
{0,1}" constraint with 0 < 2 < 1. For binary integer pro-
grams with the box constraints 0 < x; < 1 for all ¢, every
integral vector x is a vertex of the polytope described by
the constraints of the LP relaxation. However fraction ver-
tices may also be in this polytope, and fractional solutions
can potentially have an objective value larger than every
integral vertex.

If the optimal solution to the linear program happens to
be integral, then this is the optimal solution to the original
integer linear program. If the optimal solution is fractional,
then a variety of techniques are available to tighten the LP
relaxation and eliminate the fractional solution.

We establish a success condition for integer programming
based on the number of confounding vertices, which to the
best of our knowledge was unknown. The algorithm used
in proving Theorem 1 is a version of branch-and-bound, a
classic technique in integer programming (Land & Doig,
1960) (see (Nemhauser & Wolsey, 1999) for a modern ref-
erence on integer programming). This algorithm works by
starting with a root node, then branching on a fractional
coordinate by making two new linear programs with all the
constraints of the parent node, with the constraint z; = 0
added to one new leaf and x; = 1 added to the other. The
decision on which leaf of the tree to branch on next is based
on which leaf has the best objective value. When the best
leaf is integral, we know that this is the best integral solu-
tion. This algorithm is formally written in Algorithm 1.

Theorem 1. Let x* be the optimal integral solution and let
{v1,v2,...,vp} be the set of confounding vertices in the
LP relaxation. Algorithm 1 will find the optimal integral
solution x* after 2M calls to an LP solver.

Since MAP inference is a binary integer program regardless
of the alphabet size of the variables and order of the clique
potentials, we have the following corollary:

Corollary 2. Given a graphical model such that the local
polytope has M as cofounding variables, Algorithm I can
find the optimal MAP configuration with 2M calls to an LP
solver.

Cutting-plane methods, which remove a fractional vertex
by introducing a new constraint in the polytope may not
have this property, since this cut may create new confound-

Algorithm 1 Branch and Bound
test

Input: an LP {minc’z : Az <b,0 <2 <1}

# branch (v, Iy, I;) means v is optimal LP
#withz;, =0and zy, = 1.
def LP(Iy, I1):
V¥ ¢ argmaxc’
subject to:
Ax <b
Ty = 0
Ty, = 1
return v* if feasible, else return null

v < LP(0,0)
B« {(v,0,0)}
while optimal integral vertex not found:
(v, lo, I)  argmax, 1, 1,)ep v
if v is integral:
return v
else:
find a fractional coordinate 7
v — LP(Iy U {i}, I)
v« LP(Iy, I; U {i})
remove (v, Iy, I;) from B
add (v(®, I, U {i}, I)) to B if feasible
add (v(V), Iy, I, U {i}) to B if feasible

ing vertices. This branch-and-bound algorithm has the de-
sirable property that it never creates a new fractional vertex.
We note that other branching algorithms, such as the algo-
rithm presented by the authors in (Marinescu & Dechter,
2009), do not immediately allow us to prove our desired
theorem.

Note that warm starting a linear program with slightly
modified constraints allows subsequent calls to an LP
solver to be much more efficient after the root LP has been
solved.

3.1. Proof of Theorem 1

The proof follows from the following invariants:

e At every iteration we remove at least one fractional
vertex.

e Every integral vertex is in exactly one branch.
e Every fractional vertex is in at most one branch.

e No fractional vertices are created by the new con-
straints.
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To see the last invariant, note that every vertex of a polytope
can be identified by the set of inequality constraints that are
satisfied with equality (see (Bertsimas & Tsitsiklis, 1997)).
By forcing an inequality constraint to be tight, we cannot
possibly introduce new vertices.

3.2. The M -Best LP Problem

As mentioned in the introduction, the algorithm used to
prove Theorem 1 does not enumerate all the fractional ver-
tices until it finds an integral vertex. Enumerating the M-
best vertices of a linear program is the //-best LP problem.

Definition. Given a linear program {minc’z : x € P}
over a polytope P and a positive integer M, the M -best LP
problem is to optimize

M
max E o,
o1, o }EVI(P) =

This was established by (Angulo et al., 2014) to be NP-hard
when M = O(n). We strengthen this result to hardness of
approximation even when M = n® for any € > 0.

Theorem 3. It is NP-hard to approximate the M-best LP
problem by a factor better than O (%) for any fixed € > 0.

Proof. Consider the circulation polytope described in
(Khachiyan et al., 2008), with the graph and weight vector
w described in (Boros et al., 2011). By adding an O(log M)
long series of 2 x 2 bipartite subgraphs, we can make it such
that one long path in the original graph implies M long
paths in the new graph, and thus it is NP-hard to find any
of these long paths in the new graph. By adding the con-
straint vector wTz < 0, and using the cost function —w,
the vertices corresponding to the short paths have value
1/2, the vertices corresponding to the long paths have value
O(1/n), and all other vertices have value 0. Thus the opti-
mal set has value O(n + 2£). However it is NP-hard to find
a set of value greater than O(n) in polynomial time, which
gives an O( ) approximation. Using a padding argument,
we can replace n with n°. O

The best known algorithm for the M-best LP problem is
a generalization of the facet guessing algorithm (Dimakis
et al., 2009) developed in (Angulo et al., 2014), which
would require O(m™) calls to an LP solver, where m is
the number of constraints of the LP. Since we only care
about integral solutions, we can find the single best integral
vertex with O(M) calls to an LP solver, and if we want all
of the K -best integral solutions among the top M vertices
of the polytope, we can find these with O(nK + M) calls
to an LP-solver, as we will see in the next section.

3.3. K-Best Integral Solutions

Finding the K -best solutions to general optimization prob-
lems has been uses in several machine learning appli-
cations. Producing multiple high-value outputs can be
naturally combined with post-processing algorithms that
select the most desired solution using additional side-
information. There is a significant volume of work in the
general area, see (Fromer & Globerson, 2009; Batra et al.,
2012) for MAP solutions in graphical models and (Epp-
stein, 2014) for a survey on M -best problems.

We further generalize our theorem to find the K -best inte-
gral solutions.

Theorem 4. Under the assumption that there are less than
M fractional vertices with objective value at least as good
as the K-best integral solutions, we can find all of the K-
best integral solutions, O(nK + M) calls to an LP solver.

The algorithm used in this theorem is Algorithm 2. It com-
bines Algorithm 1 with the space partitioning technique
used in (Murty, 1968; Lawler, 1972). If the current optimal
solution in the solution tree is fractional, then we use the
branching technique in Algorithm 1. If the current optimal
solution in the solution tree z* is integral, then we branch
by creating a new leaf for every i not currently constrained
by the parent with the constraint x; = —z].

4. Fractional Vertices of the Local Polytope

We now describe the fractional vertices of the local poly-
tope for binary, pairwise graphical models, which is de-
scribed in Equation 3. It was shown in (Padberg, 1989) that
all the vertices of this polytope are half-integral, that is, all
coordinates have a value from {0, %, 1} (see (Weller et al.,
2016) for a new proof of this).

Given a half-integral point ¢ € {0, 3,1}Y“F in the local

polytope, we say that a cycle C = (V¢, E¢) C G is frus-
trated if there is an odd number of edges ij € E¢ such that
qi; = 0. If a point ¢ has a frustrated cycle, then it is a pseu-
domarginal, as no probability distribution exists that has
as its singleton and pairwise marginals the coordinates of
q. Half-integral points ¢ with a frustrated cycle do not sat-
isfy the cycle inequalities (Sontag & Jaakkola, 2007; Wain-
wright et al., 2008), for all cycles C = (Vo, E¢), F =
(Vr, Er) C C,|EFr| odd we must have

Z 4+ a5 —2qi5 — Z ¢i+q;—2q; < |Fo|—1. (4)
ijeER ijGEc\EF

Frustrated cycles allow a solution to be zero on negative
weights in a way that is not possible for any integral solu-
tion.

We have the following theorem describing all the vertices
of the local polytope for binary, pairwise graphical models.
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Algorithm 2 M -best Integral
Input: an LP {maxc’z : Az <b,0 <z <1}
Input: number of solutions K

def LP(Iy, I1): same as Algorithm 1

def SplitIntegral(v, Iy, I1):

P+ {}

fori e [n]ifi ¢ IpU Iq:
a < ;
14, I < copy(lo, I1)
addito I,

v LP(I}, 1))
add (v', I)), I]) to P if feasible
return P

v < LP(0,0)
B {(v,0,0)}
results < { }
while K integral vertices not found:
(v, Io, I1) < argmax, j, 1,)ep v
if v is integral:
add v to results
add SplitIntegeral(v, Iy, I1) to B
remove (v, Iy, I1) from B
else:
find a fractional coordinate 7
v — LP(Ih U {i}, I)
v« LP(Iy, I U {i})
remove (v, Iy, I1) from B
add (v(®, I, U {i}, I,) to B if feasible
add (v(V, Iy, I; U {i}) to B if feasible
return results

Theorem 5. Given a point q in the local polytope, q is a
vertex of this polytope if and only if ¢ € {0, 1,1}VYE and
the induced subgraph on the fractional nodes of q is such
that every connected component of this subgraph contains

a frustrated cycle.

4.1. Proof of Theorem 5

Every vertex ¢ of an n-dimensional polytope is such that
there are n constraints such that ¢ satisfies them with equal-
ity, known as active constraints (see (Bertsimas & Tsitsik-
lis, 1997)). Every integral ¢ is thus a vertex of the local
polytope. We now describe the fractional vertices of the lo-
cal polytope.

Definition. Let ¢ € {0, 3,1}"™ be a point of the local

polytope. Let G = (Vp, EF) be an induced subgraph of
points such that ¢; = % for all i € Vp. We say that G is

full rank if the following system of equations is full rank.
Qi+ q; — qij = 1 Vij € Er such that qij =0
¢;;j =0 Vij € Epsuchthatg;; =0

¢ — qi; =0 Vij € Ep such that ¢;; = ®)

DN = N =

q¢; — @5 =0 Vij € Ep such that g;;

Theorem 5 follows from the following lemmas.

Lemma 6. Let g € {0,3,1}"T™ be a point of the local
polytope. Let Gp = (Vg, Er) be the subgraph induced by
the nodes v € V such that q; = % The point q is a vertex if

and only if every connected component of G g is full rank.

Lemma 7. Let q € {0,3,1}"T™ be a point of the local
polytope. Let Gp = (Vp, EF) be a connected subgraph
induced from nodes such that such that q; = % foralli €
Ve. G is full rank if and only if G contains cycle that is

full rank.

Lemma 8. Let g € {0, 3,1}"™™ be a point of the local
polytope. Let C = (Vo E¢) be a cycle of G such that q; is
fractional for all i € V. C is full rank if and only if C'is a

frustrated cycle.

Proof of Lemma 6. Suppose every connected component is
full rank. Then every fractional node and edge between
fractional nodes is fully specified by their corresponding
equations in Problem 3. It is easy to check that all integral
nodes, edges between integral nodes, and edges between
integral and fractional nodes is also fixed. Thus g is a ver-
tex.

Now suppose that there exists a connected component that
is not full rank. The only other constraints involving this
connected component are those between fractional nodes
and integral nodes. However, note that these constraints are
always rank 1, and also introduce a new edge variable. Thus
all the constraints where ¢ is tight do not make a full rank
system of equations. [

Proof of Lemma 7. Suppose G'r has a full rank cycle. We
will build the graph starting with the full rank cycle then
adding one connected edge at a time. It is easy to see from
Equations 5 that all new variables introduced to the system
of equations have a fixed value, and thus the whole con-
nected component is full rank.

Now suppose G has no full rank cycle. We will again
build the graph starting from the cycle then adding one con-
nected edge at a time. If we add an edge that connects to a
new node, then we added two variables and two equations,
thus we did not make the graph full rank. If we add an edge
between two existing nodes, then we have a cycle involving
this edge. We introduce two new equations, however with



Exact MAP Inference by Avoiding Fractional Vertices

one of the equations and the other cycle equations, we can
produce the other equation, thus we can increase the rank
by one but we also introduced a new edge. Thus the whole
graph cannot be full rank. O

The proof of Lemma 8 from the following lemma.

Lemma 9. Consider a collection of n vectors

U1 = (lat1707"'70)
Vo = (0,1,t2707...,0)
V3 = (0,0,l,tg,o,...,())

Un—1 = (Oa BERE) 03 1; tn—l)
Un = (tnaoa e aOa 1)

fort; € {—1,1}. We have rank(vy, va,...,v,) = n if and
only if there is an odd number of vectors such that t; = 1.

Proof of Lemma 9. Let k be the number of vectors such
that ¢; = 1. Let S; = v and define

S — v
Si+1 _ ) Vi+1
Si + vig1

ifSi(i+1) =1
if Si(i+1) = —1

fortr=2,...,n—1.

Note that if ;11 = —1 then S;41 (¢ +2) = S;(i + 1) and if
tiy1 = lthen S;y1(i+2) = —S;(i + 1). Thus the number
of times the sign changes is exactly the number of ¢; = 1
forie{2,...,n—1}.

Using the value of S,,_1 we can now we can check for all
values of ¢; and ¢,, that the following is true.

e If k is odd then (1,0,...,0) € span(vy,vs,...,v,),
which allows us to create the entire standard basis,
showing the vectors are full rank.

e If k is even then v,, € span(vi,va,..
thus the vectors are not full rank.

., Un—1) and

5. Estimating the number of Confounding
Singleton Marginals

For this section we generalize generalize Theorem 1. We
see after every iteration we potentially remove more than
one confounding vertex—we remove all confounding ver-
tices that agree with z7, = 0 and z;, = 1 and are fractional
with any value at coordinate <. We also observe that we can

handle a mixed integer program (MIP) with the same algo-
rithm.
max clz+d'z
xT
subjectto Az + Bz <b
xz € {0,1}"

We will call a vertex (z, z) fractional if its 2z component
is fractional. For each fractional vertex (x, z), we create a
half-integral vector S(z) such that

0 if Tr; = 0
S(x); = ¢ 3 if @, is fractional

For a set of vertices V, we define S(V') to be the set {.S(x) :
(z,z) € V},i.e. we remove all duplicate entries.

Theorem 10. Ler (z*,2*) be the optimal integral solu-
tion and let Vo be the set of confounding vertices. Algo-
rithm 1 will find the optimal integral solution (x*, z*) after
2|5 (V)| calls to an LP solver.

For MAP inference in graphical models, S(V¢) refers to
the fractional singleton marginals gy such that there exists
a set of pairwise pseudomarginals ¢g such that (qv, gg) is
a cofounding vertex. In this case we call gy a confounding
singleton marginal. We develop Algorithm 3 to estimate the
number of confounding singleton marginals for our experi-
ments section. It is based on the k-best enumeration method
developed in (Murty, 1968; Lawler, 1972).

Algorithm 3 works by a branching argument. The root node
is the original LP. A leaf node is branched on by introduc-
ing a new leaf for every node in V' and every element of
{0, %, 1} such that ¢; # a in the parent node and the con-
straint {g; = a} is not in the constraints for the parent node.
Fori e V,a € {0, %, 1}, we create the leaf such that it has
all the constraints of its parents plus the constraint ¢; = a.

Note that Algorithm 3 actually generates a superset of the
elements of S(V¢), since the introduction of constraints of
the type ¢q; = % introduce vertices into the new polytope
that were not in the original polytope. This does not seem
to be an issue for the experiments we consider, however this
does occur for other graphs. An interesting question is if the
vertices of the local polytope can be provably enumerated.

6. Experiments

We consider a synthetic experiment on randomly created
graphical models, which were also used in (Sontag &
Jaakkola, 2007; Weller, 2016; Weller et al., 2014). The
graph topology used is the complete graph on 12 nodes. We
first reparametrize the model to use the sufficient statistics
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Algorithm 3 Estimate S(V) for Binary, Pairwise Graphi-
cal Models
Input: a binary, pairwise graphical model LP

# branch (v, I, I, I1) means v is optimal LP
# with Tr, = O,le = %,and T = 1.

2
def LP (I, Iy, I):
optimize LP with additional constraints:

1’[0:0

1
rr, = 5
% 2
56‘11:1

return ¢* if feasible, else return null

q < LP(0,0,0)
B« {(q,0,0,0)}
solution < { }
while optimal integral vertex not found:
(¢, 1o, 1y, 1) < argmax, 1, 1, 1,)e B Objective val

add ¢ to solution
remove (q, Iy, I1, 1) from B
fori € Vifig IyUT, UL:
fora € {0,%,1} if ¢; # a:
I, I, I < copy(IO,I%,Il)
I I U i}
q LP(I(/Jv /le{)
add (¢/, 1), I, I}) to B if feasible
return solution ’

1(x; = x;) and 1(z; = 1). The node weights are drawn
0; ~ Uniform(—1,1) and the edge weights are drawn
W,; ~ Uniform(—w,w) for varying w. The quantity w
determines how strong the connections are between nodes.
We do 100 draws for each choice of edge strength w.

For the complete graph, we observe that Algorithm 3 does
not yield any points that do not correspond to vertices, how-
ever this does occur for other topologies.

We first compare how the number of fractional singleton
marginals |S(V¢)| changes with the connection strength w.
In Figure 1, we plot the sample CDF of the probability that
|S(Ve)| is some given value. We observe that |.S(V¢)| in-
creases as the connection strength increases. Further we see
that while most instances have a small number for |S(V¢)|,
there are rare instances where |S (V)| is quite large.

Now we compare how the number of cycle constraints from
Equation (4) that need to be introduced to find the best in-
tegral solution changes with the number of confounding
singleton marginals in Figure 2. We use the algorithm for
finding the most frustrated cycle in (Sontag & Jaakkola,
2007) to introduce new constraints. We observe that each
constraint seems to remove many confounding singleton

L s 1 s 1B o 1 O B RN

1, |

v 08| |
=
28

= 06| |

0.4} —

T O T A 1 S S A M 1 B M M AT

100 10t 102 103 104
1S(Ve)l

Figure 1. We compare how the number of fractional singleton
marginals |S(V¢)| changes with the connection strength w. We
plot the sample CDF of the probability that |S(Vc)| is some
given value. We observe that |S(V¢)| increases as the connec-
tion strength increases. Further we see that while most instances
have a small number for |S(V¢)|, there are rare instances where
|S(Ve)| is quite large.

marginals.

We also observe the number of introduced confounding
singleton marginals that are introduced by the cycle con-
straints increases with the number of confounding single-
ton marginals in Figure 3.

Finally we compare the number of branches needed to find
the optimal solution increases with the number of con-
founding singleton marginals in Figure 4. A similar trend
arises as with the number of cycle inequalities introduced.
To compare the methods, note that branch-and-bound uses
twice as many LP calls as there are branches. For this fam-
ily of graphical models, branch-and-bound tends to require
less calls to an LP solver than the cut constraints.

7. Conclusion

Perhaps the most interesting follow-up question to our
work is to determine when, in theory and practice, our con-
dition on the number of confounding pseudomarginals in
the LP relaxation is small. Another interesting question is
to see if it is possible to prune the number of confounding
pseudomarginals at a faster rate. The algorithm presented
for our main theorem removes one pseudomarginal after
two calls to an LP solver. Is it possible to do this at a faster
rate? From our experiments, this seems to be the case in
practice.
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Figure 2. We compare how the number of cycle constraints from
Equation (4) that need to be introduced to find the best inte-
gral solution changes with the number of confounding singleton
marginals. We use the algorithm for finding the most frustrated
cycle in (Sontag & Jaakkola, 2007) to introduce new constraints.
We observe that each constraint seems to remove many confound-
ing singleton marginals.
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Figure 3. We also observe the number of introduced confounding
singleton marginals that are introduced by the cycle constraints
increases with the number of confounding singleton marginals .
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Figure 4. Finally we compare the number of branches needed to
find the optimal solution increases with the number of confound-
ing singleton marginals in Figure 4. A similar trend arises as with
the number of cycle inequalities introduced. To compare the meth-
ods, note that branch-and-bound uses twice as many LP calls as
there are branches. For this family of graphical models, branch-
and-bound tends to require less calls to an LP solver than the cut
constraints.
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