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Abstract

We design an active learning algorithm for
cost-sensitive multiclass classification: problems
where different errors have different costs. Our
algorithm, COAL, makes predictions by regress-
ing to each label’s cost and predicting the small-
est. On a new example, it uses a set of regressors
that perform well on past data to estimate possi-
ble costs for each label. It queries only the labels
that could be the best, ignoring the sure losers.
We prove COAL can be efficiently implemented
for any regression family that admits squared loss
optimization; it also enjoys strong guarantees
with respect to predictive performance and label-
ing effort. Our experiment with COAL show sig-
nificant improvements in labeling effort and test
cost over passive and active baselines.

1. Introduction

The field of active learning studies how to efficiently elicit
relevant information so learning algorithms can make good
decisions. Almost all active learning algorithms are de-
signed for binary classification problems, leading to the
natural question: How can active learning address more
complex prediction problems? Multiclass and importance-
weighted classification require only minor modifications
but we know of no active learning algorithms that enjoy
theoretical guarantees for more complex problems.

One such problem is cost-sensitive multiclass classification
(CSMO). In CSMC with K classes, passive learners receive
input examples = and cost vectors ¢ € R¥, where c(y)
is the cost of predicting label y on z.! A natural design
for an active CSMC learner then is to adaptively query the
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!Cost here refers to prediction cost and not labeling effort or
the cost of acquiring different labels.

costs of only a (possibly empty) subset of labels on each
x. Since measuring label complexity is more nuanced in
CSMC (e.g., is it more expensive to query three costs on a
single example or one cost on three examples?), we track
both the number of examples for which at least one cost is
queried, along with the total number of cost queries issued.
The first corresponds to a fixed human effort for inspecting
x. The second captures the additional effort for judging the
cost of each prediction, which depends on the number of
labels queried. (By querying a label, we mean querying the
cost of predicting that label given an example.)

In this setup, we develop a new active learning algo-
rithm for CSMC called Cost Overlapped Active Learn-
ing (COAL). COAL assumes access to a set of regres-
sion functions, and, when processing an example z, it uses
the functions with good past performance to compute the
range of possible costs that each label might take. Natu-
rally, COAL only queries labels with large cost range, but
furthermore, it only queries ¥’s that could possibly have the
smallest cost, avoiding the uncertain, but surely suboptimal
labels. The key algorithmic innovation is an efficient way
to compute the cost range realized by good regressors. This
computation, and COAL as a whole, only requires that the
regression set admits efficient squared loss optimization,
in contrast with prior algorithms that require 0/1 loss opti-
mization (Beygelzimer et al., 2009; Hanneke, 2014).

Among our results, we prove that when processing n (un-

labeled) examples with K classes and N regressors,

1. The algorithm needs to solve O(Kn?logn) regression
problems over the function class (Cor. 2), which can be
done in polynomial time for convex regression sets.

2. With no assumptions on the noise in the prob-
lem, the algorithm achieves generalization error
O(/KInN/n) and requests O(n#yvKInN)
costs from O(n#vVKInN) examples (Thms. 3
and 5) where 6,0, are the disagreement coefficients
(Def. 1). The worst case offers minimal improvement
over passive learning, akin to binary classification.

3. With a favorable noise assumption (As. 2), the al-
gorithm achieves generalization error O(K In N/n)
while requesting O(Kc'/#nf0,In N) labels from
@(cl/ﬁn501K In N') examples (Cor. 4, Thm. 6), where

2O(~) suppresses logarithmic dependence on n and K.
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Figure 1. Empirical evaluation of COAL on Reuters text catego-
rization dataset. Active learning achieves better test cost than pas-
sive, with a factor of 16 fewer queries. See Section 6 for details.

B € (0,1) is a safety parameter and c is a constant.

We also discuss some intuitive examples highlighting the
benefits of using COAL.

CSMC provides a more expressive language for success
and failure than multiclass classification, which allows al-
gorithms to better trade-off errors and broadens potential
applications. For example, CSMC can naturally express
partial failure in hierarchical classification (Silla Jr. & Fre-
itas, 2011). Experimentally, we show that COAL substan-
tially outperforms the passive learning baseline with orders
of magnitude savings in the labeling effort on a number of
hierarchical classification datasets (see Fig. 1 for compar-
ison between passive learning and COAL on Reuters text
categorization).

CSMC also forms the basis of learning to avoid cascading
failures in joint prediction tasks (Daumé III et al., 2009;
Ross & Bagnell, 2014; Chang et al., 2015) like structured
prediction and reinforcement learning. As our second ap-
plication, we consider learning to search algorithms for
joint (or structured) prediction, which operate by a reduc-
tion to CSMC. In this reduction, evaluating the cost of a
class often involves a computationally expensive “roll-out,”
so using an active learning algorithm inside such a (passive)
joint prediction method can lead to significant computa-
tional savings. We show that using COAL within the AG-
GRAVATE algorithm (Ross & Bagnell, 2014; Chang et al.,
2015) reduces the number of roll-outs by a factor of  to 2
on several joint prediction tasks.

Related Work. Active learning is a thriving research area
with many theoretical and empirical studies. We recom-
mend the survey of Settles (2012) for an overview of more
empirical research. We focus here on theoretical results.

Castro & Nowak (2008) study active learning with non-
parametric decision sets, while Balcan et al. (2007); Balcan
& Long (2013) focus on linear representations under distri-

butional assumptions. The online learning community has
also studied active learning of linear separators under ad-
versarial assumptions (Cavallanti et al., 2011; Dekel et al.,
2010; Orabona & Cesa-Bianchi, 2011; Agarwal, 2013).

Our work falls into the framework of disagreement-based
active learning, which studies general hypothesis spaces
typically in an agnostic setup (see Hanneke (2014) for an
excellent survey). Existing results study binary classifica-
tion, while our work generalizes to CSMC, assuming that
we can accurately predict costs using regression functions
from our class. The other main differences are that our
query rule checks the range of predicted costs for a label,
and we use a square loss oracle to search the version space.

In contrast, prior work either explicitly enumerates the ver-
sion space (Balcan et al., 2006; Zhang & Chaudhuri, 2014)
or uses a 0/1 loss classification oracle for the search (Das-
gupta et al., 2007; Beygelzimer et al., 2009; 2010; Huang
et al., 2015). In most instantiations, the oracle solves an
NP-hard problem and so does not directly lead to an effi-
cient algorithm, although practical implementations using
heuristics are still quite effective. Our approach instead
uses a squared-loss regression oracle, which can often be
implemented efficiently via convex optimization and leads
to a polynomial time algorithm.

Supervised learning oracles that solve NP-hard optimiza-
tion problems in the worst case have been used in other
problems including contextual bandits (Agarwal et al.,
2014; Syrgkanis et al., 2016) and structured predic-
tion (Daumé III et al., 2009). Thus we hope that our work
can inspire new algorithms for these settings as well.

Lastly, we mention that square loss regression has been
used to estimate costs for passive CSMC (Langford &
Beygelzimer, 2005), but, to our knowledge, using a square
loss oracle for active CSMC is new.

2. Problem Setting and Notations

We study cost-sensitive multiclass classification problems
with K classes, where there is an instance space X', a label
space Y = {1,..., K}, and a distribution D supported on
X x [0, 153 If (x, ¢) ~ D, we refer to c as the cost-vector,
where c(y) is the cost of predicting y € Y. A classifier
h : X — Y has expected cost E, .p[c(h(z))] and we
aim to find a classifier with minimal expected cost.

LetG = {g: X + [0,1]} denote a set of base regressors
and let F £ G¥X denote a set of vector regressors where
the y coordinate of f € JF is written as f(-;y). The set
of classifiers under consideration is H = {h; | f € F}

3In general, labels just serve as indices for the cost vector in
CSMC, and the data distribution is over (x,c) pairs instead of
(z,y) pairs as in binary and multiclass classification.
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where each f defines a classifier hy : X — Y by

hy(w) £ argmin f(z;y). )
Y
Given a set of examples and queried costs, we often restrict
attention to regression functions that predict these costs
well, and assess the uncertainty in their predictions given
a new example x. For a subset of regressors G C G, we
measure uncertainty over possible cost values for x with

Yz, G) 2 ci(z,G) — c_(2,G) . (2)
—— N——

A A .
=maxgec g9(z) =mingec g(z)

For vector regressors F' C F, we define the cost range
for a label y given x as y(x,y, F) £ ~v(x, Gr(y)) where
Gr(y) £ {f(;y) | f € F} is the set of base regressors
induced by F’ for y.

When using a set of regression functions for a classification
task, it is natural to assume that the expected costs under D
can be predicted well by some function in the set. This
motivates the following realizability assumption.

Assumption 1 (Realizability). Define the Bayes-optimal
regressor f*, which has f*(xz;y) = E.[c(y)|z],Vx € X
(with D(z) > 0), y € Y. We assume that f* € F.

While f* is always well defined, note that the cost itself
may be noisy. In comparison with our assumption, the exis-
tence of a zero-cost classifier in 74 (which is often assumed
in active learning) is stronger, while the existence of Ay« in
‘H is weaker but has not been leveraged in active learning.

In typical settings, the set G is extremely large, which in-
troduces a computational challenge of managing this set.
To address this challenge, we leverage existing algorith-
mic research on supervised learning and assume access to
a regression oracle for G. Given an importance-weighted
dataset D = {z;, ¢;, w; }7_; the regression oracle computes

n

ORACLE(D) € argminZwi(g(xi) )
9€9 oy

In many cases this is a convex problem and can be solved
efficiently. In the special case of linear functions, this is
just least squares and can be computed in closed form.

To measure the labeling effort, we track the number of ex-
amples for which even a single cost is queried as well as
the total number of queries. This bookkeeping captures
settings where the editorial effort for inspecting an exam-
ple is high, but each cost requires minimal further effort,
as well as those where each cost requires substantial effort.
Formally, we define Q;(y) to be the indicator that the algo-
rithm queries label  on the i" example and measure

Li2Y \/Qiy), and L, 2> " Qi(y). &)
i=1 y

=1 vy

Algorithm 1 Cost Overlapped Active Learning (COAL)

1: Input: Regressors G, failure probability 6 < 1/e,
safety parameter 3 € (0,1).

2: Setn; = 1/v/i, k = 80, v,, = log(2n?|G|K/5).

3: Set A; = %, € = (%)ﬁ Vp.

4: fori=1,2,...,ndo

5: Giy < argmingeg R;(g;y). (See Eq. (5))

6: Define f; < {giy}i_;.

7. Gi(y) < {9 € G| Ri(g;y) < Ri(giyiy) + Ai}
8: Receive new example z. Q;(y) < 0,Vy € Y.

9: for every y € Y do R

10: cr(y) < MaxCost((z,y), A, 4%,fi(';y))~
11: ¢=(y) « MINCOST((x, y), Ai, 72, Ri(+;y))-
12: end for

130 Y/« {yeY|eZ(y) < miny cr(y)}.

14: if |Y’| > 1 then

15: Qi(y) « lify € Y and 5 (y) — c=(y) > ;.
16: end if

17: Query costs of each y with Q;(y) = 1.
18: end for

3. Cost Overlapped Active Learning

The pseudocode for our algorithm, Cost Overlapped Ac-
tive Learning (COAL), is given in Algorithm 1. Given an
example x, COAL queries the costs of some of the labels
y for x. These costs are chosen by (1) computing a set
of good regression functions based on the past data (i.e.,
the version space), (2) computing the range of predictions
achievable by these functions for each y, and (3) querying
each y that could be the best label and has substantial un-
certainty. We now detail each step.

To compute an approximate version space we first find the
regression function that minimizes the empirical risk for
each label y, which at round i is:

i—1
Rilgin) = 5 Yo(9le) — )P0 )

Recall that Q);(y) is the indicator that we query label y on
the 5" example. Computing the minimizer requires one or-
acle call. We implicitly construct the version space G;(y)
in Line 7 as the regressors with low square loss regret to
the empirical risk minimizer. The tolerance on this regret
is A; at round 4, which depends on the safety parameter
B € (0,1) in the algorithm. When £ is large, the tolerance
is also large and the algorithm issues many queries. Con-
versely when [ is small the algorithm is more aggressive.
However, for any strictly positive 3, the definition of A;
ensures that f*(-;y) € G;(y) for all ¢, y.

COAL then computes the maximum and minimum costs
predicted by the version space G;(y) on the new example
x. Since the true expected cost is f*(x;y) and f*(;y) €
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Gi(y), these quantities serve as a confidence bound for this
value. The computation is done by the MAXCOST and
MINCOST subroutines which produce approximations to
et (x,G;i(y)) and c—(x, G;(y)) (Eq. (2)) respectively.

Finally, using the predicted costs, COAL issues (possibly
zero) queries. The algorithm queries any non-dominated
label that has a large cost range, where a label is non-
dominated if its estimated minimum cost is smaller than
the smallest maximum cost (among all labels) and the cost
range is the difference between the label’s estimated maxi-
mum and minimum costs.

Intuitively, COAL queries the cost of every label which
cannot be ruled out as having the smallest cost on z, but
only if there is sufficient ambiguity about the actual value
of the cost. The idea is that labels with little disagreement
do not provide much information for further reducing the
version space, since by construction all functions would
suffer similar loss. Moreover, only the labels that could
be the best need to be queried at all, since the cost-sensitive
performance of a hypothesis h ¢ depends only on the label
that it predicts. Hence, labels that are dominated or have
small cost range need not be queried.

Similar query rules appear in prior works on binary and
multiclass classification (Orabona & Cesa-Bianchi, 2011;
Dekel et al., 2010; Agarwal, 2013), but specialized to linear
representations. The key advantage of the linear case is that
the set G;(y) (formally, a different set with similar proper-
ties) along with ¢4 (y) and c_ (y) have closed form expres-
sions, so that the algorithms are easily implemented. How-
ever, with a general set G and a regression oracle, comput-
ing these confidence intervals is less straightforward. We
use the MAXCOST and MINCOST subroutines, and discuss
this aspect of our algorithm next.

3.1. Efficient Computation of Cost Range

In this section, we describe the MAXCOST subroutine
which uses the oracle to approximate the maximum cost
on label y realized by G;(y) (recall definition in Eq. (2)).*

Describing the algorithm requires some additional nota-
tion. Given the empirical risk functional R(g;y) over a
set of examples (we suppress the subscript as the number
of examples is fixed here), we define a weighted risk func-
tional incorporating a fresh unlabeled example x as

R(g,w,c;y) = Rg;y) +w(g(z) — ). (6)

Finding argmin,, E( g, w, ¢;y) involves a single oracle call.
We also define a set of near-optimal regressors

G(Aiy) = {g € G| Rlgi) ~minR(g'sy) < A} (D)

*MINCOST is similar and omitted due to space constraints.

Algorithm 2 MAXCOST
1: Input: (z,y), A, e, risk functional R(-;)
2! gmin = argmingeg R(g;y).
3 0=0h=1c=1
4: while |h — £ > 21/3¢ do
5: e+ argming g R(g,A/€?, c;y) (see Eq. 6).
6: If g. € G(A;y) (see Eq. 7), output g.(z) + €.
7: (91, 9n) + BSEARCH((J:,y,c),e,A,ﬁ(-;y)).
8: If gn, € G(4A;y), output gp, (z).
9: Else ¢ < max{g,(z), (}, h < gn(z), c + 2FL.
10: end while
11: return c.

Algorithm 3 BINARYSEARCH(BSEARCH)

Input: (z,vy, c), €, A, risk functional ]/%(, Y).
Wie = 0,w1’h = A/€2, t=1.
while |w, o — wy 5| > 2A do
Wy % g¢ = argmin g R(g,wy, c; ).
If gt € G(A;Y), W10 4 Wi, Wit1,h < Wi p.
Else W41, — Wt 0, We41,h — Wy.
t+—t+1.
end while
return g, =

R A A R o e

argmin, R(g,wee,c;y), and g, =
argmin, R(g, wsn, ¢;y).

Thus at round 4, the set G;(y) in COAL is equivalent to
G(A;;y), although we will use different radii here.

The algorithm for the maximum cost approximation, dis-
played in Algorithm 2, is based on a form of binary search.
When invoked with a radius parameter A, the algorithm
maintains an interval [¢, h] that contains cy(z, G(A;y))
and uses a binary search to refine the interval. Using a fixed
cost ¢ and starting with some initial weight w, at each itera-
tion, the binary search computes argmin, (g, w, ¢; y) and
verifies if the resulting regressor belongs to G(A;y). If it
does, it increases w, and otherwise it shrinks w. Once a ter-
mination criteria is reached, the BINARYSEARCH routine
outputs two regressors (ge, gp,) that provide new upper and
lower bounds on ¢y (x,G(A;y)). The MAXCOST routine
terminates and outputs gy, () if it has reasonable empirical
regret. Otherwise, it updates parameters for the next binary
search based on g (z), gn ().

Our main algorithmic result guarantees that this procedure
produces an adequate approximation to ci(x,G(A;y))
without requiring too many oracle calls.

Theorem 1. For any (x,y), A, and €, the MAXCOST al-
gorithm outputs ¢ satisfying

e (2,G(A:y) <& < ep(2,G(40:y)) + V3e.
Further, the algorithm uses O(e~2log(1/¢)) oracle calls.

An immediate consequence of the theorem is a bound on
the oracle complexity of COAL.
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Corollary 2. Over the course of n examples, COAL makes
O(Kn?log(n)) calls to the square loss oracle.

Thus COAL can be implemented in polynomial time for
any set G that admits efficient square loss optimization.
However, in practice, the number of oracle calls and the
oracle itself are too computationally demanding to scale to
larger problems. Our implementation alleviates this with
an alternative heuristic approximation based on a sensitiv-
ity analysis of the oracle, which we detail in Section 6.

4. Generalization Analysis

In this section, we derive generalization guarantees for
COAL. Our analysis assumes that the regressor set G is
large, but finite. We study two different settings: one with
minimal assumptions and one low-noise setting.

Our low-noise assumption is related to the Massart noise
condition (Massart & Nédélec, 2006), which in binary clas-
sification posits that the Bayes optimal predictor is bounded
away from 1/2 for all . Our condition generalizes this to
CSMC and posits that the expected cost of the best label is
separated from the expected cost of all other labels.

Assumption 2. A distribution D supported over (x,c)
pairs satisfies the Massart noise condition, if there exists
7 > 0 such that for all x (with D(x) > 0),

[ (@y* (@) < min f*(z;y) — 7,
y#y* (z)

where y* (x) = argmin,, f*(x;y).

The Massart noise condition describes favorable prediction
problems that lead to sharper generalization and label com-
plexity bounds for COAL. COAL can also be analyzed
under a milder assumption inspired by the Tsybakov noise
condition, an analysis that we defer to an extended version.

Our results depend on the noise level in the problem, which
we define using the following quantity, given any ¢ > 0.

P Prl min f*(aiy) = [yt @) < ®

P, describes the probability that the expected cost of the
best label, which is y*(z), is close to the expected cost of
the second best label. When F; is small for large ¢ the
labels are well-separated so learning is easier. For instance,
under a Massart condition P = 0 for all { < 7.

We now state our generalization guarantee.

Theorem 3. For any 6 < 1/e, for all i € [n), with proba-
bility at least 1 — 6§, we have

. 2Ky,
B clells (2) ol )] < min { e + 25522

Ci

2
where k. = 80, v, = log % , [i is as defined in

Line 6 of Algorithm 1, and hy, is defined in Equation (1).

In the worst case, we bound P by 1 and optimize for

¢ to obtain an O(y/K log(|G|/d)/i) bound after i sam-

ples. To compare, the standard generalization bound is

O(y/1og(|F]/0)/i) (Littlestone & Warmuth, 1989), which

agrees with our bound since | F| = |G|¥ in our case.

However, since the bound captures the difficulty of the
CSMC problem as measured by P, we can obtain a sharper
result under Assumption 2 by setting { = 7.

Corollary 4. Under Assumption 2, for any § < 1/e, for all
i € [n], with probability at least 1 — §, we have

Evclelhy,, (2)) — elhy (@))] < 250

1T

Thus, Massart-type conditions lead to a faster O(1/n) con-
vergence rate. This agrees with the literature on active
learning for classification (Massart & Nédélec, 2006) and
can be viewed as a generalization to CSMC. Importantly,
both generalization bounds recover the optimal rates and
are independent of the safety parameter 3.

5. Label Complexity Analysis

Without distributional assumptions, the label complexity
of COAL can be O(n), just as in the binary classification
case, since there may always be confusing labels that force
querying. In line with prior work, we introduce two dis-
agreement coefficients that characterize favorable distri-
butional properties. We first define a set of good classifiers,
the cost-sensitive regret ball:

Feulr) = {J € F | Blelhy (@) — el ()] < v}

We may now define the disagreement coefficients.

Definition 1 (Disagreement coefficients). Define

,YT(aj’y) = 7<x’ya]:csr(7ﬂ))y and
DIS(r,y) = {z | 3f, f' € Fesr(r), hy(x) =y # hyp(z)}.

Then the disagreement coefficients are defined as:

612 sup P (3y|v.(x,y) > m Az € DIS(r,y))
n,r>0 T

sup n ZIP(%(x,y) >m ANx € DIS(r,y)) .
n,r>0 T "

02

Intuitively, the conditions in both coefficients correspond
to the checks on the domination and cost range of a la-
bel in Lines 13 and 15 of Algorithm 1. Specifically, when
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x € DIS(r, y), there is confusion about whether y is the op-
timal label or not, and hence ¥ is not dominated. The con-
dition on ~,.(x, y) additionally captures the fact that a small
cost range provides little information, even when y is non-
dominated. Collectively, the coefficients capture the prob-
ability of an example = where the good classifiers disagree
substantially on z in both predicted costs and labels. Im-
portantly, the notion of good classifiers is via the algorithm-
independent set F (1), and is only a property of F and D.

The definition is a natural adaptation from binary classifi-
cation (Hanneke, 2014), where a similar disagreement re-
gion to DIS(r,y) is used. Our definition asks for confu-
sion about the optimality of a specific label y, which pro-
vides more detailed information about the cost-structure
than simply asking for any confusion among the good clas-
sifiers. The 1/r scaling leads to bounded coefficients in
many examples (Hanneke, 2014), and we also scale by the
cost range parameter 71, so that the favorable settings for
active learning can be concisely expressed as having 61, 65
bounded, as opposed to a complex function of 7.

The next two results bound the labeling effort (Eq. (4)) in
the high noise and low noise cases respectively. The low
noise assumption enables a significantly sharper bound.

Theorem 5. With probability at least 1 — 26, the label com-
plexity of the algorithm over n examples is bounded by,

Ly = C)((25f/ﬁ (n91\/155;¥+log(1/5)))
Ly=0 ((25)1/6 (n92M+ Klog(1/5)>> :

where v,, = log (M)

Theorem 6. Assume the Massart noise condition holds.
With probability at least 1 — 20 the label complexity of the
algorithm over n examples is at most,

o51/8 s
Li=0 ( 2 (n” K log(n)v, 01 + 10g(1/5))>

2518 K
L-o(2
-

In the high-noise case, the bounds scales with nf for the
respective coefficients. This agrees with results in binary
classification, where at best constant-factor savings over
passive learning are possible. On the other hand, in the low
noise case, the label complexity scales as O(c'/#nf0/72),
which is a polynomial improvement over passive learning.
However, the constant scales exponentially with 1/ so
should not be chosen to be too small.

Note that 5 can be much smaller than K6, as demon-
strated through an example in the next section. In such
cases, only a few labels are ever queried and the Ly bound

(n” log(n)vy, [K61 + 602) + 10g(1/5))> :

in the high noise case reflects this additional savings over
passive learning. Unfortunately, under Massart-noise, the
Lo bound depends directly on K61, so that we do not ben-
efit when 65 < K#6;. This can be resolved by letting 7;
depend on the noise level 7, but we prefer to use the more
robust choice 7; = 1/+/i which still allows COAL to par-
tially adapt to low noise and achieve low label complexity.

Unfortunately, comparing our bound to binary classifica-
tion reveals suboptimality here. Under Massart noise and
bounded coefficients, the label complexity for binary clas-
sification is typically log(n)/72 which contrasts with our
nP /7% rate. This loss in rate arises from setting 3 > 0.
However, with 8 = 0, a suboptimal regressor that left the
version space may re-enter at a later round and cause us to
issue more queries, since we may not accumulate evidence
against this regressor unless it is in the version space. Bi-
nary classification methods address this issue by hallucinat-
ing labels for unqueried examples (Dasgupta et al., 2007),
but hallucinating costs does not seem applicable to CSMC
since the only safe choice that avoids eliminating f* ap-
pears to be f*(x;y), which is unknown. Our solution uses
B > 0 to induce a shrinking radius so that bad regressors
cannot re-enter the version space. However, to avoid elimi-
nating f*, the initial radius A; must be larger than standard
concentration arguments require, so the algorithm is con-
servative. Information-theoretically (by enumerating the
version space), the logarithmic rate is possible in CSMC,
but we do not know of efficient algorithms for this.

5.1. Two Examples

Our first example shows the benefits of using the domi-
nation criterion in querying, in addition to the cost range
condition. Consider a problem under Assumption 2, where
the optimal cost is predicted perfectly, the second best cost
is 7 worse and all the other costs are substantially worse,
but with variability in the predictions. Since all classifiers
predict the right label, we get 6; = 6> = 0, so our label
complexity bound is O(1). Intuitively, since every regres-
sor is certain of the optimal label and its cost, we actually
make zero queries. On the other hand, all of the suboptimal
labels have large cost ranges, so querying based solely on a
cost range criteria leads to a large label complexity.

A related example demonstrates the improvement in our
query rule over more naive approaches where we query ei-
ther no label or all labels, which is the natural generaliza-
tion of query rules from multiclass classification (Agarwal,
2013). In the above example, if the best and second best
labels are confused occasionally 6; may be large, but we
expect 3 < K6 since only the second best label can be
confused with the best. Thus, the L, bound in Theorem 5
is a factor of K smaller than with a naive query rule since
COAL only queries the best and second best labels.



Active Learning for Cost-Sensitive Classification

K n feat K n feat ¢
INet 20 20 38k 6k POS 45 38k 40k 24
INet 40 40 71k 6k NER 9 15k 15k 14

RCVI-v2 103 781k 47k  Wiki 9 132k 89k 25

Table 1. Dataset statistics (¢ is the average sequence length).
6. Experiments

For computational efficiency, we implemented an approxi-
mate version of COAL using online optimization, based on
online linear least-squares regression. The algorithm pro-
cesses the data in one pass, and the idea is to (1) replace
Gi,y» the ERM, with an approximation g7, obtained by on-
line updates, and (2) compute the minimum and maximum
costs via a sensitivity analysis of the online update. Specif-
ically, we define the a sensitivity value s(,c,g7,) > 0,
which is the derivative of the prediction on x as a function
of the importance weight w, for the new example x and
costc = 0 or c = 1 (for c_ and c; respectively). Then we
approximate c_ via g7, (z) — w® - s(z,0, g, ) where w’ is
the largest weight w satisfying

w(g?,(x)® = (g7, (x) —ws(x,0,g7,))°) < A,

and A, is the radius used at round 7. We similarly approxi-
mate the maximum cost. See Appendix A for details.

6.1. Simulated Active Learning

We performed simulated active learning experiments with
three datasets. ImageNet 20 and 40 are sub-trees of the Im-
ageNet hierarchy covering 20 and 40 most frequent classes,
where each example has a single zero-cost label and the
cost for incorrect labels is the tree-distance to the cor-
rect one. The feature vectors are the top layer of the In-
ception neural network (Szegedy et al., 2015). The third
dataset, RCV1-v2 (Lewis et al., 2004), is a multilabel text-
categorization dataset, which has 103 topic labels, orga-
nized as a tree with similar tree-distance cost structure as
the ImageNet data. Some dataset statistics are in Table 1.

We compare our online version of COAL to passive on-
line learning. We use the cost-sensitive one-against-all
(CSOAA) implementation in Vowpal Wabbit>, which per-
forms online linear regression for each label separately.
There are two tuning parameters in our implementation.
First, instead of A;, we set the radius of the version space

to A] = =45 (ie. B = 0 and the log factor v; =

log (w) scales with 7) and instead tune the con-

stant x. This alternate “mellowness” parameter controls
how aggressive the query strategy is. The second parame-
ter is the learning rate used by online linear regression®.
Shttp://hunch.net/~vw
SWe use the default online learning algorithm in Vowpal

For each parameter setting and each dataset, we make one
pass through the training set and check the test cost (which
is just the normalized expected cost) of the model every
doubling number of queries. We repeat this on 100 random
permutations of the training data and plot the results in Fig-
ures 1 and 2. For each mellowness, we show the results of
the best learning rate, which maximizes a notion of AUC
that reflects the trade-off between test cost and number of
queries (see Eq. (11) in Appendix A).

The figures show, for each dataset and mellowness, the
number of queries against the median test cost along with
bars extending from the 15th to 85th quantile. Overall,
COAL achieves a better trade-off between performance
and queries. With proper mellowness parameter, active
learning achieves similar test cost as passive learning with a
factor of 8 to 32 less queries. On ImageNet 40 and RCV1-
v2 (recall Figure 1), active learning achieves better test cost
with a factor of 16 less queries. On RCV1-v2, COAL
queries like passive up to around 256k queries, since the
data is very sparse, and linear regression has the property
that the cost range is maximal when an example has a new
unseen feature. Once COAL sees all features a few times,
it queries much more efficiently than passive. Note that
these plots correspond to the label complexity Lo, with
similar results for L, in Appendix A.3.

While not always the best, we recommend a mellowness
setting of 0.01 as it achieves reasonable performance on all
three datasets. This is also confirmed by the learning-to-
search experiments, which we discuss in the next section.

We also compare COAL with two active learning base-
lines. Both algorithms differ from COAL only in their
query rule. ALLORNONE queries either all labels or no
labels using both domination and cost-range conditions
and is an adaptation of existing multiclass active learn-
ers (Agarwal, 2013). NODOM just uses the cost-range con-
dition, inspired by active regression (Castro et al., 2005).
The results for ImageNet 40 are displayed in Figure 2
(See also Appendix A.3), where we use the AUC strat-
egy to choose the learning rate. We choose the mellow-
ness by visual inspection for the baselines and use 0.01 for
COAL’. COAL substantially outperforms both baselines,
which provide minimal improvement over passive learning.

6.2. Learning to Search

We also experiment with COAL as the base leaner in
learning-to-search (Daumé 1III et al., 2009; Chang et al.,
2015), which reduces joint prediction problems to CSMC.
Here, a joint prediction example defines a search space,

Wabbit, which is a scale-free (Ross et al., 2013) importance
weight invariant (Karampatziakis & Langford, 2011) form of
AdaGrad (Duchi et al., 2010).

"We use 0.01 for ALLORNONE and 10~ for NoDoM.
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Figure 2. Experiments with COAL. Top row shows test cost vs. number of queries for simulated active learning experiments. Bottom
row shows accuracy vs. number of rollouts for active and passive learning as the CSMC algorithm in learning-to-search.

where a sequence of decisions are made to generate the
structured label. We focus here on sequence labeling tasks,
where the input is a sentence and the output is a sequence
of labels (specifically, parts of speech or named entities).

Learning-to-search solves joint prediction problems by
generating the output one label at a time, conditioning the
input « on all past decisions. Since mistakes may lead to
compounding errors, it is natural to represent the decision
space as a CSMC problem, where the classes are the “ac-
tions” available (possible labels for a word) and the costs
reflect the long term loss of each choice. Intuitively, we
should be able to avoid expensive computation of long term
loss on decisions like “is ‘the’ a DETERMINER?” once we
are quite sure of the answer. Similar ideas motivate adap-
tive sampling for structured prediction. (Shi et al., 2015).

We specifically use AGGRAVATE (Ross & Bagnell, 2014;
Chang et al., 2015), which runs a learned policy to produce
a backbone sequence of labels. For each position in the
input, it then considers all possible deviation actions and
executes an oracle for the rest of the sequence. The loss
on this complete output is used as the cost for the deviating
action. Run in this way, AGGRAVATE requires /K roll-outs
when the input sentence has ¢ words and each word can
take one of K possible labels.

Since each roll-out takes O(¢) time, this can be computa-
tionally prohibitive, so we use active learning to reduce the
number of roll-outs. We use COAL and a passive learn-
ing baseline inside AGGRAVATE on three joint prediction
datasets (statistics are in Figure 2, upper right). As above,

we use several mellowness values and the same AUC cri-
teria to select the best learning rate. The results are in Fig-
ure 2, and again our recommended mellowness is 0.01.

Overall, active learning reduces the number of roll-outs re-
quired, but the improvements vary on the three datasets. On
the Wikipedia data, COAL performs a factor of 4 less roll-
outs to achieve similar performance to passive learning and
achieves substantially better test performance. A similar,
but less dramatic, behavior arises on the NER task. On the
other hand, COAL offers minimal improvement over pas-
sive learning on the POS-tagging task. This agrees with our
theory and prior empirical results (Hsu, 2010), which show
that active learning may not always improve upon passive.

7. Discussion

This paper presents a new active learning algorithm for
cost-sensitive multiclass classification. The algorithm en-
joys strong theoretical guarantees and also outperforms
passive baselines both in CSMC and structured prediction.

We close with some intriguing questions:

1. Can we use a square loss oracle in other partial infor-
mation problems like contextual bandits?

2. Can we avoid the safety parameter to achieve the opti-
mal complexity in the low noise case?

3. Can we analyze the online approximation to COAL?

We hope to answer these questions in future work.
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