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Abstract

We provide new approximation guarantees for
greedy low rank matrix estimation under standard
assumptions of restricted strong convexity and
smoothness. Our novel analysis also uncovers
previously unknown connections between the low
rank estimation and combinatorial optimization,
so much so that our bounds are reminiscent of cor-
responding approximation bounds in submodular
maximization. Additionally, we also provide sta-
tistical recovery guarantees. Finally, we present
empirical comparison of greedy estimation with
established baselines on two important real-world
problems.

1. Introduction

Low rank matrix optimization stands as a major tool in
modern dimensionality reduction and unsupervised learn-
ing. The singular value decomposition can be used when
the optimization objective is rotationally invariant to the
parameters. However, if we wish to optimize over more
complex, non-convex objectives we must choose to either
rely on convex relaxations (Recht et al., 2010; Negahban
& Wainwright, 2011; Rohde & Tsybakov, 2011) or directly
optimize over the non-convex space (Park et al., 2016; Jain
etal.,2013; Chen & Wainwright, 2015; Lee & Bresler, 2013;
Jain et al., 2014).

More concretely, in the low rank matrix optimization prob-
lem, we wish to solve

argmax £(©) s.t. rank(©) < r. (D)

e)
Rather than perform the computationally intractable opti-
mization above researchers have studied convex relaxations
of the form

argmax £(0) — M| O] nuc-
e
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Unfortunately, the above optimization can be computation-
ally taxing. General purpose solvers for the above optimiza-
tion problem that rely on semidefinite programming (SDP)
require ©(n3d?) computation, which is prohibitive. Gradi-
ent descent techniques require ©(e~'/2(n? + d*)) compu-
tational cost for an epsilon accurate solution. This improve-
ment is sizable in comparison to SDP solvers. Unfortunately,
it is still prohibitive for large scale matrix estimation.

An alternate vein of research has focused on directly opti-
mizing the non-convex problem (1). To that end, authors
have seen recent theoretical success in studying the conver-
gence properties of

arg max
UER"XT,VERdXT

(uvT),

Solving the problem above automatically forces the solution
to be low rank, and recent results have shown promising
behavior.

Another approach is to optimize (1) incrementally via rank
one updates to the current estimate (Shalev-Shwartz et al.,
2011; Wang et al., 2015). This approach has also been stud-
ied in more general contexts such as boosting (Buhlmann
& Yu, 2009), coordinate descent (Jaggi, 2013; Jaggi &
Sulovsky, 2010), and incremental atomic norm optimiza-
tion (Gribonval & Vandergheynst, 2006; Barron et al., 2008;
Khanna et al., 2016; Rao et al., 2015; Dudik et al., 2012;
Locatello et al., 2017).

1.1. Set Function Optimization and Coordinate
Descent

In this paper, we interpret low rank matrix estimation as
a set optimization problem over an infinite set of atoms.
Specifically, we wish to optimize

k
argmax { (Z aiXi> ,

{X1,..X,}eA i=1

where the set of atoms A4 is the set of all rank one matrices
with unit operator norm. This settings is analogous to that
taken in the results studying atomic norm optimization, coor-
dinate descent via the total variation norm, and Frank-Wolfe
style algorithms for atomic optimization. This formulation
allows us to connect the problem of low rank matrix estima-
tion to that of submodular set function optimization, which
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we discuss in the sequel. Before proceeding we discuss
related work and an informal statement of our main result.

1.2. Informal Result and Related Work

Our result demonstrates an exponential decrease in the
amount of error incurred by greedily adding rank one matri-
ces to the low rank matrix approximation.

Theorem 1 (Approximation Guarantee, Informal). If we let
Oy be our estimate of the rank r matrix ©* at iteration k,
then for some universal constant c related to the restricted
condition number of the problem we have

((©r) — £(0) = (1 — exp(—ck/r))(£(©") — £(0)).

Note that after k iterations the matrix O, will be at most
rank k.

Related work: There has been a wide array of studies
looking at the computational and statistical benefits of rank
one updates to estimating a low rank matrix. At its most
basic, the singular value decomposition will keep adding
rank one approximations through deflation steps. This
work can be generally segmented into two sets of results
— the ones that present sublinear rates of convergence and
those that obtain linear rates. Interestingly, parallel lines of
work have also demonstrated similar convergence bounds
for more general atomic or dictionary element approxima-
tions (Buhlmann & Yu, 2009; Gribonval & Vandergheynst,
2006; Barron et al., 2008; Khanna et al., 2016). For space
constraints, we will summarize these results into two cate-
gories rather than explicitly state the results for each indi-
vidual paper.

If we define the atomic norm of a matrix Ml € R™*¢ written
as || M||nue to be the sum of the singular values of that
matrix, then the bounds establishing sublinear convergence
behave as

0(©%)

6* ?IUC
o < 1

where we take ©* to be the best rank r solution. What we
then see is convergence towards the optimal bound. How-
ever, we expect our statistical error to behave as r(n + d)/n
where n is the number of samples that we have received
from our statistical model and ©* is rank r (Negahban &
Wainwright, 2011; Rohde & Tsybakov, 2011). We can take
1©*|lnuc & r, which would then imply that we would need
k to behave as n/(n + d). However, that would then imply
that the rank of our matrix should grow linearly in the num-
ber of observations in order to achieve the same statistical
error bounds. The above error bounds are “fast”. If we
consider a model that yields slow error bounds, then we
n+d

expect the error to behave like [|©* [|yucy/ 5. In that case,

we can take k > [|0*||nuc which looks better, but

_n_
n+d?’

still requires significant growth in k as a function of n. To
overcome the above points, some authors have aimed to
study similar greedy algorithms that then enjoy exponential
rates of convergence as we show in our paper. These results
share the most similarities with our own and behave as

UOk) = (1 =~F)e(e).

This result decays exponentially. However, when one looks
at the behavior of +y it will typically act as exp (—1/min(n,d)),
for an n X d matrix. As a result, we would need to choose &k
of the order of the dimensionality of the problem in order to
begin to see gains. In contrast, for our result listed above, if
we seek to only compare to the best rank r solution, then the
gamma we find is v = exp (=1/r). Of course, if we wish
to find a solution with full rank, then the bounds we stated
above match the existing bounds.

In order to establish our results we rely on a notion intro-
duced in the statistical community called restricted strong
convexity. This assumption has connections to ideas such as
the restricted isometry property, restricted eigenvalue condi-
tion, and incoherence (Negahban & Wainwright, 2012). In
the work by Shalev-Shwartz, Gonen, and Shamir (2011) a
form of strong convexity condition is imposed over matrices.
Under that setting, the authors demonstrate that

£(0)r
k )

((Or) > £(O7) —
where 7 is the rank of ©*. In contrast, our bound behaves as

(k) > £(07) — (L(87) — £(0)) exp (~H/r).

Our contributions: We improve upon the linear rates of
convergence for low rank approximation using rank one
updates by connecting the coordinate descent problem to
that of submodular optimization. We present this result in
the sequel along with the algorithmic consequences. We
demonstrate the good performance of these rank one updates
in the experimental section.

2. Background

We begin by fixing some notation. We represent sets using
sans script fonts e.g. A, B. Vectors are represented using
lower case bold letters e.g. x,y, and matrices are repre-
sented using upper case bold letters e.g. X,Y. Non-bold
face letters are used for scalars e.g. j, M,r and function
names e.g. f(-). The transpose of a vector or a matrix is
represented by T e.g. X . Define [p] := {1,2,...,p}. For
singleton sets, we write f(j) := f({j}). Size of aset S is
denoted by |S|. (-, -) is used for matrix inner product.

Our goal is to analyze greedy algorithms for low rank esti-
mation. Consider the classic greedy algorithm that picks up
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the next element myopically i.e. given the solution set built
so far, the algorithm picks the next element as the one which
maximizes the gain obtained by adding the said element into
the solution set. Approximation guarantees for the greedy
algorithm readily imply for the class of functions defined as
follows.

Definition 1. A set function f(-) : [p] — R is submodular
if for all A,B C [p),

f(A)+f(B) = f(AUB) + f(ANB).

Submodular set functions are well studied and have many
desirable properties that allow for efficient minimization and
maximization with approximation guarantees. Our low rank
estimation problem also falls under the purview of another
class of functions called monotone functions. A function is
called monotone if and only if f(A) < f(B) forall A C B.
For the specific case of maximizing monotone submodular
set functions, it is known that the greedy algorithm run for
k iterations is guaranteed to return a solution that is within
(1 — 1/e) of the optimum set of size k& (Nemhauser et al.,
1978). Without further assumptions or knowledge of the
function, no other polynomial time algorithm can provide a
better approximation guarantee unless P=NP (Feige, 1998).

More recently, the aforementioned greedy approximation
guarantee has been extended to a larger class of functions
called weakly submodular functions (Elenberg et al., 2016;
Khanna et al., 2017). Central to the notion of weak submod-
ularity is a quantity called the submodularity ratio.

Definition 2 (Submodularity Ratio (Das & Kempe, 2011)).
LetS,L C [p] be two disjoint sets, and f(-) : [p] = R. The
submodularity ratio of L with respect to S is given by

 YieslFLU{Y) — £(L)]
R (UL By

The submodularity ratio of a set U with respect to an integer
k is given by

)

U,k = min L,S- (3)
g L,S:LﬂS:@,f}/
LCU,|S|<k

It is easy to show that f(-) is submodular if and only if
7,s > 1 for all sets L and S. However, an approxima-
tion guarantee is obtained when 0 < v s V L,S (Das &
Kempe, 2011; Elenberg et al., 2016). The subset of mono-
tone functions which have v s > 0 V L,S are called
weakly submodular functions in the sense that even though
the function is not submodular, it still provides a provable
bound for greedy selections.

Also vital to our analysis is the notion of restricted strong
concavity and smoothness (Negahban et al., 2012; Loh &
Wainwright, 2015).

Definition 3 (Low Rank Restricted Strong Concavity (RSC),
Restricted Smoothness (RSM)). A function ¢ : R"*¢ — R
is said to be restricted strong concave with parameter mq,
and restricted smooth with parameter Mg if for all X, Y €
QO cC R»X d’

—TRIY = X7 = (Y) — 6X) ~ (VEX), Y = X)
M,
> *TQ”Y - X[

Remark 1. [f a function {(-) has restricted strong concavity
parameter m, then its negative —{(-) has restricted strong
convexity parameter m. We choose to use the nomenclature
of concavity for ease of exposition in terms of relationship
to submodular maximization. Further, note that we define
RSC/RSM conditions on the space of matrices rather than
vectors, on a domain ) constrained by rank rather than
sparsity. It is straightforward to see that if Q' C €, then
MQ/ S MQ and meqy Z mge.

3. Setup

In this section, we delineate our setup of low rank estimation.
In order to connect to the weak submodular maximization
framework more easily, we operate in the setting of maxi-
mization of a concave matrix variate function under a low
rank constraint. This is equivalent to minimizing a convex
matrix variate function under the low rank constraint as con-
sidered by Shalev-Shwartz et al. (2011) or under nuclear
norm constraint or regularization as considered by Jaggi
& Sulovsky (2010). The goal is to maximize a function
(R4 5 R:

ranf(r(l)%))(gr E(X) ' (4)
Instead of using a convex relaxation of (4), our approach
is to enforce the rank constraint directly by adding rank 1
matrices greedily until X is of rank k. The rank 1 matrices
to be added are obtained as outer product of vectors from the
given vector sets I/ and ). While our results hold for general
vector sets I/, ) assuming an oracle access to subroutines
GreedySel and OMPSel (to be detailed later), for the rest
of the paper we focus on the case of norm 1 ballsf := {x €
R"s.t.|x[ls = 1} and V := {x € R?s.t. ||x[]2 = 1}.

The problem (4) can be interpreted in the context of spar-
sity assuming ¢/ and V are enumerable. For example, by
the SVD theorem, it is known that we can rewrite X as
Zle aiuivz—, where Vi, u; € U and v, € V. By enu-
merating U/ and V under a finite precision representation
of real values, one can rethink of the optimization (4) as
finding a sparse solution for the infinite dimensional vector
« (Shalev-Shwartz et al., 2011; Dudik et al., 2012). We
can also optimize over support sets, similar to the classical
setting of support selection for sparse vectors. For a spec-
ified support set L consisting of vectors from ¢/ and V), let
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U\ and V| be the matrices formed by stacking the chosen
elements of ¢/ and V respectively. We define the following
set function to maximize £(-) given L.

fH = (U HVL) - £(0).  (5)

max
HERILI XL

We will denote the optimizing matrix for a support set L as
B("). In other words, letting H; be the argmax obtained
in (5), then BUL .= ULTI:ILVL. Thus, the low rank matrix
estimation problem (4) can be reinterpreted as the following
equivalent combinatorial optimization problem:

max f(S). (6)

B

3.1. Algorithms

Our greedy algorithm, illustrated in Algorithm 1, builds the
support set incrementally — adding rank 1 matrices one at
a time such that at iteration ¢ for 1 < ¢ < k the size of the
chosen support set (and hence rank of the current iterate) is
1. We assume access to a subroutine GreedySel for the
greedy selection (Step 4). This subroutine solves an inner
optimization problem by calling a subroutine GreedySel
which returns an atom s from the candidate support set that
ensures

FSE U {sh) = F(SE0) 2 7 (F(SEL U{s™)) — f(SE))

where

5% <= argmax f(SiCil U{a}) — f(Sicil)'

acUxV)LSE |

In words, the subroutine GreedySel ensures that the gain
in f(-) obtained by using the selected atom is within 7 €
(0, 1] multiplicative approximation to the atom with the
best possible gain in f(-). The hyperparameter 7 governs
a tradeoff allowing a compromise in myopic gain for a
possibly quicker selection.

The greedy selection requires fitting and scoring every can-
didate support, which is often prohibitively expensive. An
alternative is to choose the next atom by using the linear
maximization oracle used by Frank-Wolfe (Jaggi, 2013) or
Matching Pursuit algorithms (Gribonval & Vandergheynst,
2006; Locatello et al., 2017). This step replaces Step 4 of
Algorithm 1 as illustrated in Algorithm 2. Let L = S¢ ,
be the set constructed by the algorithm at iteration (i — 1).
The linear oracle OMP Sel returns an atom s for iteration ¢
ensuring

max

(VeBD) uv]) > 7
(u,v)EUxV)LS? |

s -

(VeBL),uv™).

The linear problem OMP Sel can be considerably faster that
GreedySel. OMPSel reduces to finding the left and right

singular vectors of Vé(B(L)) corresponding to its largest
singular value. If ¢ is the number of non-zero entries in
V((BWU)), then this takes O(1=(logn + log d)) time.

We note that Algorithm 2 is the same as considered
by Shalev-Shwartz et al. (2011) as GECO (Greedy Effi-
cient Component Optimization). However, as we shall see,
our analysis provides stronger bounds than their Theorem 2.

Algorithm 1 GREEDY(U, V, k, T)
1: Input: vector sets U, V), sparsity parameter k, subrou-

tine hyperparameter 7
S§ 0
fori=1...kdo

$ + GreedySel(r)

S¢¥ «+ S¢ U {s}
end for
return S¢, BSY), f(S9).

A A R

Algorithm 2 GECOWU, V, k, )
same as Algorithm 1 except
4: s + OMPSel(r)

Remark 2. We note that Step 5 of Algorithms I and 2 re-
quires solving the RHS of (5) which is a matrix variate
problem of size i at iteration i. This refitting is equivalent
to the “fully-corrective” versions of Frank-Wolfe/Matching
Pursuit algorithms (Locatello et al., 2017; Lacoste-Julien &
Jaggi, 2015) which, intuitively speaking, extract out all the
information w.r.t £(-) from the chosen set of atoms, thereby
ensuring that the next rank 1 atom chosen has row and
column space orthogonal to the previously chosen atoms.
Thus the constrained maximization on the orthogonal com-
plement of S¢ in subroutine OMPSe1 (S§ in GreedySel)
need not be explicitly enforced, but is still shown for clarity.

4. Analysis

In this section, we prove that low rank matrix optimization
over the rank one atoms satisfies weak submodularity. We
explicitly delineate some notation and assumptions. With
slight abuse of notation, we assume ¢(-) is m;-strongly con-
cave and M;-smooth over pairs of matrices of rank ¢. For
1 < j, note that m; > m; and M; < M;. Additionally, let
Q= {(X,Y) : rank(X — Y) < 1}, and assume £(-) is
]\Zfl-smooth over Q. Ttis easy to see ]\2/1 < M.

First we prove that if the low rank RSC holds (Definition 3),
then the submodularity ratio (Definition 2) is lower-bounded
by the inverse condition number.

Theorem 2. Let L be a set of k rank 1 atoms and S be
a set of r rank 1 atoms where we sequentially orthogo-
nalize the atoms against L. If £(-) is m;-strongly con-
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cave over matrices of rank i, and Mi-smooth over the set

Q:={(X,Y) :rank(X — Y) = 1}, then

ZaES[f(L U {a}) - f(L)] > Myt k
fLus)—f(L) - oM

T,r =

The proof of Theorem 2 is structured around individually
obtaining a lower bound for the numerator and an upper
bound for the denominator of the submodularity ratio by
exploiting the concavity and convexity conditions.

4.1. Greedy Improvement

Bounding the submodularity ratio is crucial to obtaining
approximation guarantees for Algorithm 1.

Theorem 3. Let S := S be the greedy solution set ob-
tained by running Algorithm 1 for k iterations, and let S*
be an optimal support set of size r. Let {(-) be m; strongly
concave on the set of matrices with rank less than or equal
10 i, and My smooth on the set of matrices in the set Q.
Then,

182 (1= ) 169 = (1- ) 150

e

where ¢q = T’ys’ré and ¢y = T%%

The proof technique for the first inequality of Theorem 3
relies on lower bounding the progress made in each iteration
of Algorithm 1. Intuitively, it exploits weak submodularity
to make sure that each iteration makes enough progress, and
then applies an induction argument for r iterations. We also
emphasize that the bounds in Theorem 3 are for normalized
set function f(-) (which means f (@) = 0). A more detailed
proof is presented in the appendix.

The bounds obtained in Theorem 3 are similar to the one
obtained in submodular maximization of monotone normal-
ized functions (Nemhauser et al., 1978). In fact, our result
can be re-interpreted as an extension to previous results. The
greedy algorithm for submodular maximization assumes fi-
nite ground sets. We extend this for infinite ground sets. We
can do this (for matrices) as long as we have an implemen-
tation of the oracle GreedySel. Once the choice is made
by the oracle, standard analysis holds.

Remark 3. Theorem 3 provides the approximation guar-
antees for running the greedy selection algorithm up to k
iterations to obtain a rank k matrix iterate vis-a-vis the
best rank r approximation. For r = k, and 7 = 1, we get
an approximation bound (1 — e~"/™) which is reminiscent
of the greedy bound of (1 — 1/e) under the framework of
submodularity. Note that our analysis can not be used to es-
tablish classical submodularity. However, establishing weak
submodularity that lower bounds ~ is sufficient to provide
slightly weaker than classical submodularity guarantees.

Remark 4. Theorem 3 implies that to obtain (1 —€) approx-
imation guarantee in the worst case, running Algorithm 1
fork = M log 1) = O(rlog V/e) iterations suffices. This
is useful when the application allows a tradeoff: compro-
mising on the low rank constraint a little to achieve tighter
approximation guarantees.

Remark 5. Das & Kempe (2011) considered the special
case of greedily maximizing R? statistic for linear regres-
sion, which corresponds to classical sparsity in vectors.
They also obtain a bound of (1 — 1/e7), where v is the
submodularity ratio for their respective setup. This was
generalized by Elenberg et al. (2016) to general concave
functions under sparsity constraints. Our analysis is for the
low rank constraint, as opposed to sparsity in vectors that
was considered by them.

4.2. GECO Improvement

In this section, we obtain approximation guarantees for
Algorithm 2. The greedy search over the infinitely many
candidate atoms is infeasible, especially when 7 = 1. Thus
while Algorithm 1 establishes interesting theoretical con-
nections with submodularity, it is not practical in general.
To obtain a tractable and practically useful algorithm, the
greedy search is replaced by a Frank Wolfe or Matching
Pursuit style linear optimization which can be easily imple-
mented as finding the top singular vectors of the gradient at
iteration ¢. In this section, we show that despite the speedup,
we lose very little in terms of approximation guarantees. In
fact, if the approximation factor 7 in OMPSe 1() is 1, we get
the same bounds as those obtained for the greedy algorithm.

Theorem 4. Let S := S¢ be the greedy solution set ob-
tained using Algorithm 2 for k iterations, and let S* be the
optimum size r support set. Let {(-) be m, 4. strongly con-
cave on the set of matrices with rank less than or equal to
(r + k), and My smooth on the set of matrices with rank in
the set Q. Then,

1) (1 ) 1657,

ecs

2Mrik k

T = .
where c3 = T %

The proof of Theorem 4 follows along the lines of The-
orem 3. The central idea is similar — to exploit the RSC
conditions to make sure that each iteration makes sufficient
progress, and then provide an induction argument for r it-
erations. Unlike the greedy algorithm, however, using the
submodularity ratio is no longer required. Note that the
bound obtained in Theorem 4 is similar to Theorem 3, ex-
cept the exponent on the approximation factor 7.

Remark 6. Our proof technique for Theorem 4 can be ap-
plied for classical sparsity to improve the bounds obtained
by Elenberg et al. (2016) for OMP for support selection
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under RSC, and by Das & Kempe (2011) for R? statistic.
If T = 1,r = k, their bounds involve terms of the form
O(m*/M?) in the exponent, as opposed to our bounds which
only has ™/M in the exponent.

Remark 7. Similar to the greedy algorithm, to achieve a
tighter approximation to best rank k solution, one can relax
the low rank constraint a little by running the algorithm for
r > k greedy iterations. The result obtained by our Theo-
rem 4 can be compared to the bound obtained by (Shalev-
Shwartz et al., 2011) [Theorem 2] for the same algorithm.
For an e multiplicative approximation, Theorem 4 implies we
need v/k = O(log Y/¢). On the other hand, Shalev-Shwartz
et al. (2011) obtain an additive approximation bound with
r/k = O(1/¢), which is an exponential improvement.

5. Recovery Guarantees

While understanding approximation guarantees are useful,
providing parameter recovery bounds can further help us
understand the practical utility of greedy algorithms. In this
section, we present a general theorem that provides us with
recovery bounds of the true underlying low rank structure.

Theorem 5. Suppose that an algorithm achieves the ap-
proximation guarantee:

f(Sk) Z Cr,kf(S:)v

where Sy, is the set of size k at iteration k of the algorithm,
S be the optimal solution for r-cardinality constrained
maximization of f(-), and C,}, be the corresponding ap-
proximation ratio guaranteed by the algorithm. Recall that
we represent by Us, Vs the matrices formed by stacking
the vectors represented by the support set S chosen from
U,V respectively, s.t. |S| = r. Then under my., RSC, with
B, = U{ HVs for any H € R™", we have

2
B By < gk ) Lol

k+r

= Cn) yg,) — 1(0))
Mi4r

+

Theorem 5 can be applied for B, = B(5), which is the
argmax for maximizing ¢(-) under the low rank constraint.
It is general in the sense that it can be applied for getting
recovery bounds from approximation guarantees for any
algorithm, and hence is applicable for both Algorithms 1
and 2.

Statistical recovery guarantees can be obtained from Theo-
rem 5 for specific choice of £(-) and statistical model. Con-
sider the case of low rank matrix estimation from noisy
linear measurements. Let X; € R™*™2 for ¢ € [n] be
generated so that each entry of X; is M'(0, 1). We observe
yvi = (X;,0%) + ¢, where O* is low rank, and say € ~

N(0,0%). Let N = myma, and let p(©) : R™1*™m2 — R"
be the linear operator so that [¢(©)]; = (X;, ©). Our corre-
sponding function is now £(©) = — 1|y —(©)||3. For this
function, using arguments by Negahban et al. (2012), we
know |[V4(B)|13 < 15X and ¢(BS") — £(0) < (r + 1)
with high probability. It is also straightforward to apply

their results to bound M4, > (:‘%2 - w) , and

M; < 1, which gives explicit bounds as per Theorem 5 for
Algorithms 1, 2 for the considered function and the design
matrix.

6. Experiments

In this section, we empirically evaluate the proposed algo-
rithms.

6.1. Clustering under Stochastic Block Model

First, we test empirically the performance of GECO (Algo-
rithm 2 with 7 = 1) for a clustering task. We are provided
with a graph with nodes and the respective edges between
the nodes. The observed graph is assumed to have been
noisily generated from a true underlying clustering. The
goal is to recover the underlying clustering structure from
the noisy graph provided to us. Our greedy framework is ap-
plicable because the adjacency matrix of the true clustering
is low rank. We compare performance of Algorithm 2 on
simulated data against standard baselines of spectral clus-
tering which are commonly used for this task. We begin by
describing a generative model for creating edges between
nodes given the ground truth.

The Stochastic Block Model is a model to generate random
graphs. It takes its input the set of n nodes, and a partition
of [n] which form a set of disjoint clusters, and returns
the graph with nodes and the generated edges. The model
has two additional parameters, the generative probabilities
(p,q). A pair of nodes within the same cluster have an
edge between them with probability p, while a pair of nodes
belonging to different clusters have an edge between them
with probability ¢. For simplicity we assume g = (1 — p).
The model then iterates over each pair of nodes. For each
such pair that belongs to same cluster, it samples an edge as
Bernoulli(p), otherwise as Bernoulli(1 — p). This provides
us with a {0, 1} adjacency matrix.

We compare against two versions of spectral clustering,
which is a standard technique applied to find communities
in a graph. The method takes as input the n x n adjacency
matrix A, which is a {0, 1} matrix with an entry A;; = 1
if there is an edge between node ¢ and j, and is O other-
wise. From the adjacency matrix, the graph Laplacian L
is constructed. The Laplacian may be unnormalized, in
which case it is simply L = D — A, where D is the diago-
nal matrix of degrees of nodes. A normalized Laplacian is
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computed as Ly = D~/2LD~"/2. After calculating the
Laplacian, the algorithm solves for bottom k eigenvectors
of the Laplacian, and then apply k-means clustering on the
rows of the thus obtained eigenvector matrix. We refer to
the works of Shi & Malik (2000); Ng et al. (2001) for the
specific details of clustering algorithms using unnormalized
and normalized graph Laplacian respectively.

We use our greedy algorithm to cluster the graph by opti-
mizing a logistic PCA objective function, which is a spe-
cial case of the exponential family PCA (Collins et al.,
2001). For a given matrix X, each entry X,; is assumed
to be independently drawn with likelihood proportional to
exp (0,5, X;;) — G(©;;), where © is the true underlying
parameter, and G(+) is the partition function corresponding
to a generalized linear model (GLM). It is easy to see we
can apply our framework of greedy selection by defining
£(-) as the log-likelihood:

((©) = (0,X) — Zlog G(04),

where O is the true parameter matrix of p and ¢ that gener-
ates a realization of A. Since the true O is low rank, we get
the low rank constrained optimization problem:

max {(©),
rank(©)<k

where k is a hyperparameter suggesting the true number
of clusters. Note that lack of knowledge of true value of &k
is not more restrictive than spectral clustering algorithms
which typically also require the true value of k. Having
cast the clustering problem in the same form as (4), we
can apply our greedy selection algorithm as opposed to the
more costly alternating minimizing algorithms suggested
by Collins et al. (2001).

We generate the data as follows. For n = 100 nodes, and
fixed number of cluster £ = 5, we vary the within cluster
edge generation probability p from 0.55 to 0.95 in incre-
ments of 0.05, and use the Stochastic Block model to gener-
ate a noisy graph with each p. Note that smaller p implies
that the sampled graph will be more noisy and likely to be
more different than the underlying clustering.

We compare against the spectral clustering algorithm using
unnormalized Laplacian of Shi & Malik (2000) which we
label “Spectral_unnorm{k}” for k = {3,5,10}, and the
spectral clustering algorithm using normalized Laplacian
of Ng et al. (2001) which we label “Spectral_.norm{k}”
for k = {3,5,10}. We use Algorithm 2 which we label
“Greedy{k}” for k = {3, 5, 10}. For each of these models,
the referred k is the supplied hyperparameter. We report the
least squares error of the output from each model to the true
underlying © (generalization error), and to the instantiation
used for training X (reconstruction error).
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Figure 1. Greedy Logistic PCA vs spectral clustering baselines
averaged over 10 runs. Top: Robust performance of greedy logistic
PCA for generalizing over varying values of k across different
values of p, spectral clustering algorithms are more sensitive to
knowing true value of k Bottom: Strong performance of greedy
logisitic PCA even with small value of k£ = 3 for reconstructing
the given cluster matrix.

Figure 1 shows that the greedy logistic PCA performs well
in not only recreating the given noisy matrix (reconstruc-
tion) but also captures the true low rank structure better
(generalization). Further, note that providing the true hy-
perparameter k is vital for spectral clustering algorithms,
while on the other hand greedy is less sensitive to k. This is
very useful in practice as k is typically not known. Spectral
clustering algorithms typically select & by computing an
SVD and rerunning k-means for different values of k. In
addition to being more robust, our greedy algorithm does
not need to be rerun for different values of k — it produces
solutions incrementally.
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6.2. Word Embeddings

Algorithms for embedding text into a vector space yield
representations that can be quite beneficial in many appli-
cations, e.g. features for sentiment analysis. Mikolov et al.
(2013b) proposed a context-based embedding called skip-
gram or word2vec. The context of a word can be defined
as a set of words before, around, or after the respective
word. Their model strives to find an embedding of each
word so that the representation predicts the embedding of
each context word around it. Levy & Goldberg (2014) sub-
sequently showed that the word embedding model proposed
by Mikolov et al. (2013b) can be reinterpreted as matrix fac-
torization of the PMI matrix constructed as follows. A word
c is in context of w if it lies within the respective window of
w. The PMI matrix is then calculated as

p(w, c)
p(w)p(0)> '

In practice the probabilities p(w, ¢), p(w), p(c) are replaced
by their empirical counterparts. Further, note that p(w, c) is
0 if words ¢ and w do not coexist in the same context, which
yields —oo for PMI. Levy & Goldberg (2014) suggest
using an alternative: PPMI,, . = max{PMI,, .,0}. They
also suggest variations of PMI hyper parameterized by &
which corresponds to the number of negative samples in the
training of the original skip gram model.

PMI,,, . = log (

We employ the binomial PCA model on the normalized
count matrix (instead of the PMI), in a manner similar to
the clustering approach in Section 6.1. The normalized
count matrix is calculated simply as 2 ;}E‘;ﬂ? , without taking
logarithms. This gives us a probability matrix which has
each entry between 0 and 1, and which can be factorized

under the binomial model greedily as per Algorithm 2.

We empirically study the embeddings obtained by binomial
factorization on two tasks — word similarity and analogies.
For word similarity, we use the W353 dataset (Finkelstein
et al., 2001) and the MEN data (Bruni et al., 2012). Both
these datasets contain words with human assigned similarity
scores. We evaluate the embeddings by their cosine similar-
ity, and measuring the correlation with the available human
ratings. The fraction of correctly answered queries are re-
turned as the metric. For the analogy task, we use the Mi-
crosoft Research (MSR) syntactic analogies (Mikolov et al.,
2013c) and the Google mixed analogies dataset (Mikolov
et al., 2013a). For completing analogy a:b::c:x, the predic-
7“8(;?(;?;)(1’@) . To compute
accuracy, we use the multiplication similarity metric as used
by Levy & Goldberg (2014). To train the word embeddings,
we use the 2013 news crawl dataset!. We filter out stop
words, non-ASCII characters, and words occurring less than

tion is calculated as arg max.,

"ttp://www.statmt.org/wmt14/
training-monolingual-news-crawl

Table 1. Empirical study of binomial based greedy factorization
shows competitive performance of word embeddings of common
words across tasks and datasets.

W353 MEN MSR GOOGLE
# QUERIES 353 3000 8000 19544
SVD 0.226 0.233 0.086 0.092
PPMI 0.175 0.178 0.210 0.130
SGNS 0.223  0.020 0.052 0.002
GREEDY 0.202 0.198 0.176 0.102

2000 times (which yields a vocabulary of 6713). Note that
since we keep only the most common words, several queries
from the datasets are invalid because we do not have embed-
dings for words appearing in them. However, we do include
them by assigning invalid queries a value of 0 and reporting
the overall average over the entire dataset.

Table 1 shows the empirical evaluation. SVD and PPMI
are the models proposed by Levy & Goldberg (2014),
while SGNS is the skipgram with negative sampling model
of Mikolov et al. (2013b). We run each of these for
k = {5,10, 15,20} and report the best results. This shows
that alternative factorizations such as our application of bi-
nomial PCA can be more consistent and competitive with
other embedding methods.

Conclusion: We have connected the problem of greedy
low rank matrix estimation to that of submodular optimiza-
tion. Through that connection we have provided improved
exponential rates of convergence for the algorithm. An in-
teresting area of future study will be to connect these ideas
to general atoms or dictionary elements.
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