On Approximation Guarantees for Greedy Low Rank Optimization

A. Supplement

In this section, we provide the missing proofs.

A.1. Proof of Theorem 2

Proof. An important aspect of the assumptions is that the space of atoms spanned by S is orthogonal to the span of L.
Furthermore, span(L US) D span(S). Let k = k + r. We will first upper bound the denominator in the submodularity ratio.
From strong concavity,
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where the last equality holds because ((V/(BW)), Py, XPy, — BM) = 0. Solving the argmax problem, we get
X =BV + L Py, (VE(BWM))Py,. Plugging in, we get,
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We next bound the numerator. Recall that the atoms in S are orthogonal to each other i.e. Us and Vg are both orthonormal.

For clarity, we define the shorthand, B(LUS) (wjv] ,BES)uv ] ford, j e [[LUS]).

With an arbitrary ¢ € S, and arbitrary scalars o;, o, oy for j € L,
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where the last inequality follows by setting o;; = ———q5s;
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for j € L, and for j = .

Summing up for all i € S, we get
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A.2. Proofs for greedy improvement

Let S§ be the support set formed by Algorithm 1 at iteration 4. Define A() := f(S¥) — f(S¢ ;) with A(0) = 0 as the
greedy improvement. We also define B(i) := f(S*) — f(S%) to be the remaining amount to improve, where S* is the
optimum k-sized solution. We provide an auxiliary Lemma that uses the submodularity ratio to lower bound the greedy
improvement in terms of best possible improvement from step 4.

Lemma 1. At iteration i, the incremental gain of the greedy method (Algorithm 1) is
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Proof. LetS = S§. Let ST be the sequential orthogonalization of the atoms in S* relative to S. Thus,
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Note that the last inequality follows because f(S U SF) > f(S*). The penultimate inequality follows by the definition of
weak submodularity, which applies in this case because the atoms in S are orthogonal to eachother and are also orthogonal
to S. O

Using Lemma 1, one can prove an approximation guarantee for Algorithm 1.

A.2.1. PROOF OF THEOREM 3
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. From Lemma 1, we have,

Proof. From the notation used for Lemma 1, A(i + 1) = B(i) — B(i + 1). Let C =

B(i+1) < (1-C)B@) < (1-C)"'B(0).

From its definition, B(0) = f(S*) — f((). So we get,
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from which the result follows. O
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A.3. Proof for GECO bounds

Let S¢ be the support set selected by the GECO procedure (Algorithm 2) at iteration 4. Similar to the section on greedy
improvement, we define some notation. Let D(i) := f(S¢) — f(S¢_,) be the improvement made at step i, and as before
we have B(i) = f(5*) — f(S9) be the remaining amount to improve.

We prove the following auxiliary lemma which lower bounds the gain after adding the atom selected by the subroutine
OMP Selin terms of operator norm of the gradient of the current iterate and smoothness of the function.

Lemma 2. Assume that {(-) is m;-strongly concave and M;-smooth over matrices of in the set Q := {(X,Y) : rank(X —
Y) < 1}. Then,
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Proof. For simplicity, say L = S©. Recall that for a given support set L, f(L) = £(B(")) i.e. we denote by B(") the argmax
for £(-) for a given support set L. Hence, by the optimality of B(-“{}),
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for an arbitrary o € R, and the vectors u, v selected by OMPSel. Using the smoothness of the £(-), we get,
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Putting in v = = [V£(BW)||2, and by T-optimality of OMPSe1, we get,
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Let S” be obtained from after sequentially orthogonalizing S* w.r.t. S;. By definition of the operator norm, we further get,

2
-
D(i+1)> —[|[vVeBL)|?
( )_2M1H B2
7.2
> (wv;, veBM))?

2r M z';%
= ||PU5R VE(B(L))PVSR ||2F

7‘2m +k R

I (BT — (B
(e —us))
szr+k

L (e(BS*) - e(B<L>))

TM1

Y

v

2
T Myt k

TM1 B(Z)

The proof for Theorem 4 from Lemma 2 now follows using the same steps as for Theorem 3 from Lemma 2.
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A.4. Proof for recovery bounds
A.4.1. PROOF OF THEOREM 5

For clarity of representation, let C' = C,.;, and for an arbitrary H € R™*", let B, = Ul HVs, and A := B+ — B,.
Note that A has rank at most (k + ). Recall that by the my_,- RSC (Definition 3),
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From the approximation guarantee, we have,
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where the last inequality is due to generalized Holder’s inequality. Using 2ab < ca® + % for any positive numbers a, b, c,
we get
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which completes the proof.



