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Abstract
Bandit methods for black-box optimisation, such
as Bayesian optimisation, are used in a variety
of applications including hyper-parameter tun-
ing and experiment design. Recently, multi-
fidelity methods have garnered considerable atten-
tion since function evaluations have become in-
creasingly expensive in such applications. Multi-
fidelity methods use cheap approximations to the
function of interest to speed up the overall opti-
misation process. However, most multi-fidelity
methods assume only a finite number of approx-
imations. On the other hand, in many practical
applications, a continuous spectrum of approxi-
mations might be available. For instance, when
tuning an expensive neural network, one might
choose to approximate the cross validation per-
formance using less data N and/or few training
iterations T . Here, the approximations are best
viewed as arising out of a continuous two dimen-
sional space (N,T ). In this work, we develop a
Bayesian optimisation method, BOCA, for this
setting. We characterise its theoretical proper-
ties and show that it achieves better regret than
than strategies which ignore the approximations.
BOCA outperforms several other baselines in syn-
thetic and real experiments.

1. Introduction
Many tasks in scientific and engineering applications can be
framed as bandit optimisation problems, where we need to
sequentially evaluate a noisy black-box function f : X → R
with the goal of finding its optimum. Some applications
include hyper-parameter tuning in machine learning (Hutter
et al., 2011; Snoek et al., 2012), optimal policy search (Li-
zotte et al., 2007; Martinez-Cantin et al., 2007) and scientific
experiments (Gonzalez et al., 2014; Parkinson et al., 2006).
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Typically, in such applications, each function evaluation is
expensive, and conventionally, the bandit literature has fo-
cused on developing methods for finding the optimum while
keeping the number of evaluations to f at a minimum.

However, with increasingly expensive function evaluations,
conventional methods have become infeasible as a signifi-
cant cost needs to be expended before we can learn anything
about f . As a result, multi-fidelity optimisation methods
have recently gained attention (Cutler et al., 2014; Kan-
dasamy et al., 2016a; Li et al., 2016). As the name suggests,
these methods assume that we have access to lower fidelity
approximations to f which can be evaluated instead of f .
The lower the fidelity, the cheaper the evaluation, but it pro-
vides less accurate information about f . For example, when
optimising the configuration of an expensive real world
robot, its performance can be approximated using cheaper
computer simulations. The goal is to use the cheap approxi-
mations to guide search for the optimum of f , and reduce the
overall cost of optimisation. However, most multi-fidelity
work assume only a finite number of approximations. In
this paper, we study multi-fidelity optimisation when there
is access to a continuous spectrum of approximations.

To motivate this set up, consider tuning a classification algo-
rithm over a space of hyper-parameters X by maximising
a validation set accuracy. The algorithm is to be trained
using N• data points via an iterative algorithm for T• it-
erations. However, we wish to use fewer training points
N < N• and/or fewer iterations T < T• to approximate
the validation accuracy. We can view validation accuracy
as a function g : [1, N•] × [1, T•] × X → R where eval-
uating g(N,T, x) requires training the algorithm with N
points for T iterations with the hyper-parameters x. If the
training complexity of the algorithm is quadratic in data
size and linear in the number of iterations, then the cost of
this evaluation is λ(N,T ) = O(N2T ). Our goal is to find
the optimum when N = N•, and T = T•, i.e. we wish to
maximise f(x) = g(N•, T•, x).

In this setting, while N,T are technically discrete choices,
they are more naturally viewed as coming from a contin-
uous 2 dimensional fidelity space, [1, N•] × [1, T•]. One
might hope that cheaper queries to g(N,T, ·) with N,T
less than N•, T• can be used to learn about g(N•, T•, ·) and
consequently optimise it using less overall cost. Indeed, this
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is the case with many machine learning algorithms where
cross validation performance tends to vary smoothly with
data set size and number of iterations. Therefore, one may
use cheap low fidelity experiments with small (N,T ) to
discard bad hyper-parameters and deploy expensive high
fidelity experiments with large (N,T ) only in a small but
promising region. The main theoretical result of this paper
(Theorem 1) shows that our proposed algorithm, BOCA,
exhibits precisely this behaviour.

Continuous approximations also arise in simulation studies:
where simulations can be carried out at varying levels of
granularity, on-line advertising: where an ad can be con-
trolled by continuous parameters such as display time or tar-
get audience, and several other experiment design tasks. In
fact, in many multi-fidelity papers, the finite approximations
were obtained by discretising a continuous space (Huang
et al., 2006; Kandasamy et al., 2016a). Here, we study a
Bayesian optimisation technique that is directly designed
for continuous fidelity spaces and is potentially applicable
to more general spaces. Our main contributions are,

1. A novel setting and model for multi-fidelity optimisa-
tion with continuous approximations using Gaussian
process (GP) assumptions. We develop a novel algo-
rithm, BOCA, for this setting.

2. A theoretical analysis characterising the behaviour and
regret bound for BOCA.

3. An empirical study which demonstrates that BOCA
outperforms alternatives, both multi-fidelity and other-
wise, on a series of synthetic problems and real exam-
ples in hyper-parameter tuning and astrophysics.

Related Work
Bayesian optimisation (BO), refers to a suite of techniques
for bandit optimisation which use a prior belief distribution
for f . While there are several techniques for BO (de Freitas
et al., 2012; Hernández-Lobato et al., 2014; Jones et al.,
1998; Mockus, 1994; Thompson, 1933), our work will build
on the Gaussian process upper confidence bound (GP-UCB)
algorithm of Srinivas et al. (2010). GP-UCB models f as a
GP and uses upper confidence bound (UCB) (Auer, 2003)
techniques to determine the next point for evaluation.

BO techniques have been used in developing multi-fidelity
optimisation methods in various applications such as hyper-
parameter tuning and industrial design (Forrester et al.,
2007; Huang et al., 2006; Klein et al., 2015; Lam et al.,
2015; Poloczek et al., 2016; Swersky et al., 2013). However,
these methods are either problem specific and/or only use
a finite number of fidelities. Further, none of them come
with theoretical underpinnings. Recent work has studied
multi-fidelity methods for specific problems such as hyper-
parameter tuning, active learning and reinforcement learn-
ing (Agarwal et al., 2011; Cutler et al., 2014; Li et al., 2016;
Sabharwal et al., 2015; Zhang & Chaudhuri, 2015). While

some of the above tasks can be framed as optimisation prob-
lems, the methods themselves are specific to the problem
considered. Our method is more general as it applies to any
bandit optimisation task.

Perhaps the closest work to us is that of Kandasamy et al.
(2016a;b;c) who developed MF-GP-UCB assuming a finite
number of approximations to f . While this line of work
was the first to provide theoretical guarantees for multi-
fidelity optimisation, it has two important shortcomings.
First, they make strong assumptions, particularly a uniform
bound on the difference between the expensive function and
an approximation. This does not allow for instances where
an approximation might be good at certain regions but not
at the other. In contrast, our probabilistic treatment between
fidelities is is robust to such cases. Second, their model
does not allow sharing information between fidelities; each
approximation is treated independently. Not only is this
wasteful as lower fidelities can provide useful information
about higher fidelities, it also means that the algorithm might
perform poorly if the fidelities are not designed properly.
We demonstrate this with an experiment in Section 4. On
the other hand, our model allows sharing information across
the fidelity space in a natural way. In addition, we can also
handle continuous approximations whereas their method is
strictly for a finite number of approximations. That said,
BOCA inherits a key intuition from MF-GP-UCB, which
is to choose a fidelity only if we have sufficiently reduced
the uncertainty at all lower fidelities. Besides this, there are
considerable differences in the mechanics of the algorithm
and proof techniques. As we proceed, we will draw further
comparisons to Kandasamy et al. (2016a).

2. Preliminaries
2.1. Some Background Material

Gaussian processes: A GP over a space X is a random
process from X to R. GPs are typically used as a prior for
functions in Bayesian nonparametrics. It is characterised
by a mean function µ : X → R and a covariance function
(or kernel) κ : X 2 → R. If f ∼ GP(µ, κ), then f(x) is
distributed normally N (µ(x), κ(x, x)) for all x ∈ X . Sup-
pose that we are given n observations Dn = {(xi, yi)}ni=1

from this GP, where xi ∈ X , yi = f(xi) + εi ∈ R and
εi ∼ N (0, η2). Then the posterior process f |Dn is also a
GP with mean µn and covariance κn given by

µn(x) = k>(K + η2I)−1Y, (1)

κn(x, x′) = κ(x, x′)− k>(K + η2I)−1k′.

Here Y ∈ Rn is a vector with Yi = yi, and k, k′ ∈ Rn
are such that ki = κ(x, xi), k

′
i = κ(x′, xi). The matrix

K ∈ Rn×n is given by Ki,j = κ(xi, xj). We refer the
reader to chapter 2 of Rasmussen & Williams (2006) for
more on the basics of GPs and their use in regression.
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Figure 1. Samples drawn from a GP with 0 mean and SE kernel
with bandwidths h = 0.01, h = 0.15, 0.5. Samples tend to be
smoother across the domain for large bandwidths.

Radial kernels: The prior covariance functions of GPs are
typically taken to be radial kernels; some examples are the
squared exponential (SE) and Matérn kernels. Using a radial
kernel means that the prior covariance can be written as
κ(x, x′) = κ0φ(‖x−x′‖) and depends only on the distance
between x and x′. Here, the scale parameter κ0 captures the
magnitude f could deviate from µ. The function φ : R+ →
R+ is a decreasing function with ‖φ‖∞ = φ(0) = 1. In
this paper, we will use the SE kernel in a running example
to convey the intuitions in our methods. For the SE kernel,
φ(r) = φh(r) = exp(−r2/(2h2)), where h ∈ R+, called
the bandwidth of the kernel, controls the smoothness of the
GP. When h is large, the samples drawn from the GP tend
to be smoother as illustrated in Fig. 1. We will reference
this observation frequently in the text.

GP-UCB: The Gaussian Process Upper Confidence Bound
(GP-UCB) algorithm of Srinivas et al. (2010) is a method
for bandit optimisation, which, like many other BO methods,
models f as a sample from a Gaussian process. At time t,
the next point xt for evaluating f is chosen via the following
procedure. First, we construct an upper confidence bound
ϕt(x) = µt−1(x) + β

1/2
t σt−1(x) for the GP. µt−1 is the

posterior mean of the GP conditioned on the previous t− 1
evaluations and σt−1 is the posterior standard deviation. Fol-
lowing other UCB algorithms (Auer, 2003), the next point
is chosen by maximising ϕt, i.e. xt = argmaxx∈X ϕt(x).
The µt−1 term encourages an exploitative strategy – in that
we want to query regions where we already believe f is high
– and σt−1 encourages an exploratory strategy – in that we
want to query where we are uncertain about f so that we
do not miss regions which have not been queried yet. βt,
which is typically increasing with t, controls the trade-off
between exploration and exploitation. We have provided a
brief review of GP-UCB in Appendix A.1.

2.2. Problem Set Up

Our goal in bandit optimisation is to maximise a function
f : X → R, over a domain X . When we evaluate f at
x ∈ X we observe y = f(x) + ε where E[ε] = 0. Let x? ∈
argmaxx∈X f(x) be a maximiser of f and f? = f(x?) be
the maximum value. An algorithm for bandit optimisation is
a sequence of points {xt}t≥0, where, at time t, the algorithm
chooses to evaluate f at xt based on previous queries and

x⋆

X

g(z, x)

f(x)

z•
Z

Figure 2. g : Z × X → R is a function defined on the prod-
uct space of the fidelity space Z and domain X . The pur-
ple line is f(x) = g(z•, x). We wish to find the maximiser
x? ∈ argmaxx∈X f(x). The multi-fidelity framework is attrac-
tive when g is smooth across Z as illustrated in the figure.

observations {(xi, yi)}t−1
i=1 . After n queries to f , its goal is

to achieve small simple regret Sn, as defined below.

Sn = min
t=1,...,n

f? − f(xt). (2)

Continuous Approximations: In this work, we will let f
be a slice of a function g that lies in a larger space. Precisely,
we will assume the existence of a fidelity space Z and a
function g : Z×X → R defined on the product space of the
fidelity space and domain. The function f which we wish
to maximise is related to g via f(·) = g(z•, ·), where z• ∈
Z . For instance, in the hyper-parameter tuning example
from Section 1, Z = [1, N•] × [1, T•] and z• = [N•, T•].
Our goal is to find a maximiser x? ∈ argmaxx f(x) =
argmaxx g(z•, x). We have illustrated this setup in Fig. 2.
In the rest of the manuscript, the term “fidelities” will refer
to points z in the fidelity space Z .

The multi-fidelity framework is attractive when the follow-
ing two conditions are true about the problem.

1. There exist fidelities z ∈ Z where evaluating g is
cheaper than evaluating at z•. To this end, we will as-
sociate a known cost function λ : Z → R+. In the
hyper-parameter tuning example, λ(z) = λ(N,T ) =
O(N2T ). It is helpful to think of z• as being the most
expensive fidelity, i.e. maximiser of λ, and that λ(z) de-
creases as we move away from z•. However, this notion
is strictly not necessary for our algorithm or results.

2. The cheap g(z, ·) evaluation gives us information about
g(z•, ·). This is true if g is smooth across the fidelity
space as illustrated in Fig. 2. As we will describe shortly,
this smoothness can be achieved by modelling g as a GP
with an appropriate kernel for the fidelity space Z .

In the above setup, a multi-fidelity algorithm is a sequence
of query-fidelity pairs {(zt, xt)}t≥0 where, at time t, the
algorithm chooses zt ∈ Z and xt ∈ X , and observes yt =
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g(zt, xt) + ε where E[ε] = 0. The choice of (zt, xt) can of
course depend on the previous fidelity-query-observation
triples {(zi, xi, yi)}t−1

i=1 .

Multi-fidelity Simple Regret: We provide bounds on the
simple regret S(Λ) of a multi-fidelity optimisation method
after it has spent capital Λ of a resource. Following Kan-
dasamy et al. (2016a); Srinivas et al. (2010), we will
aim to provide any capital bounds, meaning that an al-
gorithm would be expected to do well for all values of
(sufficiently large) Λ. Say we have made N queries to g
within capital Λ, i.e. N is the random quantity such that
N = max{n ≥ 1 :

∑n
t=1 λ(zt) ≤ Λ}. While the cheap

evaluations at z 6= z• are useful in guiding search for the
optimum of g(z•, ·), there is no reward for optimising a
cheaper g(z, ·). Accordingly, we define the simple regret
after capital Λ as,

S(Λ) =


min

t∈{1,...,N}
s.t zt=z•

f? − f(xt) if we have queried at z•,

+∞ otherwise.

This definition reduces to the single fidelity definition (2)
when we only query g at z•. It is also similar to the definition
in Kandasamy et al. (2016a), but unlike them, we do not
impose additional boundedness constraints on f or g.

Before we proceed, we note that it is customary in the
bandit literature to analyse cumulative regret. However, the
definition of cumulative regret depends on the application at
hand (Kandasamy et al., 2016c) and the results in this paper
can be extended to to many sensible notions of cumulative
regret. However, both to simplify exposition and since our
focus in this paper is optimisation, we stick to simple regret.

Assumptions: As we will be primarily focusing on con-
tinuous and compact domains and fidelity spaces, going
forward we will assume, without any loss of generality, that
X = [0, 1]d and Z = [0, 1]p. We discuss non-continuous
settings briefly at the end of Section 3. In keeping with sim-
ilar work in the Bayesian optimisation literature, we will as-
sume g ∼ GP(0, κ) and upon querying at (z, x) we observe
y = g(z, x) + ε where ε ∼ N (0, η2). κ : (Z × X )2 → R
is the prior covariance defined on the product space. In this
work, we will study exclusively κ of the following form,

κ([z, x], [z′, x′]) = κ0 φZ(‖z − z′‖)φX (‖x− x′‖). (3)

Here, κ0 ∈ R+ is the scale parameter and φZ , φX are radial
kernels defined on Z,X respectively. The fidelity space ker-
nel φZ is an important component in this work. It controls
the smoothness of g across the fidelity space and hence de-
termines how much information the lower fidelities provide
about g(z•, ·). For example, suppose that φZ was a SE ker-
nel. A favourable setting for a multi-fidelity method would
be for φZ to have a large bandwidth hZ as that would imply

that g is very smooth across Z . We will see that hZ deter-
mines the behaviour and theoretical guarantees of BOCA in
a natural way when φZ is the SE kernel. To formalise this
notion, we will define the following function ξ : Z → [0, 1].

ξ(z) =
√

1− φZ(‖z − z•‖)2 (4)

One interpretation of ξ(z) is that it measures the gap in
information about g(z•, ·) when we query at z 6= z•. That
is, it is the price we have to pay, in information, for querying
at a cheap fidelity. Observe that ξ increases when we move
away from z• in the fidelity space. For the SE kernel, it
can be shown1 ξ(z) ≈ ‖z−z•‖hZ

. For large hZ , g is smoother
across Z and we can expect the lower fidelities to be more
informative about f ; as expected the information gap ξ is
small for large hZ . If hZ is small and g is not smooth, the
gap ξ is large and lower fidelities are not as informative.

Before we present our algorithm for the above setup, we
will introduce notation for the posterior GPs for g and f . Let
Dn = {(zi, xi, yi)}ni=1 be n fidelity, query, observation val-
ues from the GP g, where yi was observed when evaluating
g(zi, xi). We will denote the posterior mean and standard
deviation of g conditioned on Dn by νn and τn respec-
tively (νn, τn can be computed from (1) by replacing x←
[z, x]). Therefore g(z, x)|Dn ∼ N (νn(z, x), τ2

n(z, x)) for
all (z, x) ∈ Z × X . We will further denote

µn(·) = νn(z•, ·), σn(·) = τn(z•, ·),
(5)

to be the posterior mean and standard deviation of g(z•, ·) =
f(·). It follows that f |Dn is also a GP and satisfies
f(x)|Dn ∼ N (µn(x), σ2

n(x)) for all x ∈ X .

3. BOCA: Bayesian Optimisation with
Continuous Approximations

BOCA is a sequential strategy to select a domain point
xt ∈ X and fidelity zt ∈ Z at time t based on previous
observations. At time t, we will first construct an upper
confidence bound ϕt for the function f we wish to optimise.
It takes the form,

ϕt(x) = µt−1(x) + β
1/2
t σt−1(x). (6)

Recall from (5) that µt−1 and σt−1 are the posterior mean
and standard deviation of f using the observations from the
previous t−1 time steps at all fidelities, i.e. the entireZ×X
space. We will specify βt in Theorems 1, 8. Following other
UCB algorithms, our next point xt in the domain X for eval-
uating g is a maximiser of ϕt, i.e. xt ∈ argmaxx∈X ϕt(x).

Next, we need to determine the fidelity zt ∈ Z to query g.

1Strictly, ξ(z) ≤ ‖z− z•‖/hZ , but the inequality is tighter for
larger hZ . In any case, ξ is strictly decreasing with hZ .
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For this we will first select a subset Zt(xt) of Z as follows,

Zt(xt) =
{
z ∈ Z : λ(z) < λ(z•), τt−1(z, xt) > γ(z),

ξ(z) > β
−1/2
t ‖ξ‖∞

}
, (7)

where γ(z) =
√
κ0 ξ(z)

(
λ(z)

λ(z•)

)q
.

Here, ξ is the information gap function in (4) and τt−1

is the posterior standard deviation of g, and p, d are the
dimensionalities of Z,X . The exponent q depends on the
kernel used for φZ . For e.g., for the SE kernel, q = 1/(p+
d + 2). We filter out the fidelities we consider at time t
using three conditions as specified above. We elaborate
on these conditions in more detail in Section 3.1. If Zt is
not empty, we choose the cheapest fidelity in this set, i.e.
zt ∈ argminz∈Zt λ(z). If Zt is empty, we choose zt = z•.

We have summarised the resulting procedure below in Al-
gorithm 1. An important advantage of BOCA is that it only
requires specifying the GP hyper-parameters for g such as
the kernel κ. In practice, this can be achieved by various
effective heuristics such as maximising the GP marginal
likelihood or cross validation which are standard in most
BO methods. In contrast, MF-GP-UCB of Kandasamy et al.
(2016a) requires tuning several other hyper-parameters.

Algorithm 1 BOCA
Input: kernel κ.
• Set ν0(·)← 0, τ0(·)← κ(·, ·)1/2, D0 ← ∅.

• for t = 1, 2, . . .

1. xt ← argmaxx∈X ϕt(x). See (6)
2. zt ← argminz∈Zt(xt)∪{z•} λ(z). See (7)
3. yt ← Query g at (zt, xt).
4. Dt ← Dt−1 ∪ {(zt, xt, yt)}. Update posterior mean
νt, and standard deviation τt for g conditioned on Dt.

3.1. Fidelity Selection Criterion

We will now provide an intuitive justification for the three
conditions in the selection criterion for zt, i.e., equation (7).
The first condition, λ(z) < λ(z•) is fairly obvious; since
we wish to optimise g(z•, ·) and since we are not rewarded
for queries at other fidelities, there is no reason to consider
fidelities that are more expensive than z•.

The second condition, τt−1(z, xt) > γ(z) says that we will
only consider fidelities where the posterior variance is larger
than a threshold γ(z) =

√
κ0ξ(z)(λ(z)/λ(z•))

q , which de-
pends critically on two quantities, the cost function λ and
the information gap ξ. As a first step towards parsing this
condition, observe that a reasonable multi-fidelity strategy
should be inclined to query cheap fidelities and learn about

g before querying expensive fidelities. As γ(z) is monoton-
ically increasing in λ(z), it becomes easier for a cheap z to
satisfy τt−1(z, xt) > γ(z) and be included in Zt at time t.
Moreover, since we choose zt to be the minimiser of λ in
Zt, a cheaper fidelity will always be chosen over expensive
ones if included in Zt. Second, if a particular fidelity z is far
away from z•, it probably contains less information about
g(z•, ·). Again, a reasonable multi-fidelity strategy should
be discouraged from making such queries. This is precisely
the role of the information gap ξ which is increasing with
‖z − z•‖. As z moves away from z•, γ(z) increases and it
becomes harder to satisfy τt−1(z, xt) > γ(z). Therefore,
such a z is less likely to be included in Zt(xt) and be con-
sidered for evaluation. Our analysis reveals that setting γ as
in (7) is a reasonable trade off between cost and information
in the approximations available to us; cheaper fidelities cost
less, but provide less accurate information about the func-
tion f we wish to optimise. It is worth noting that the second
condition is similar in spirit to Kandasamy et al. (2016a)
who proceed from a lower to higher fidelity only when the
lower fidelity variance is smaller than a threshold. However,
while they treat the threshold as a hyper-parameter, we are
able to explicitly specify theoretically motivated values.

The third condition in (7) is ξ(z) > ‖ξ‖∞/β1/2
t . Since ξ is

increasing as we move away from z•, it says we should ex-
clude fidelities inside a (small) neighbourhood of z•. Recall
that if Zt is empty, BOCA will choose z• by default. But
when it is not empty, we want to prevent situations where
we get arbitrarily close to z• but not actually query at z•.
Such pathologies can occur when we are dealing with a
continuum of fidelities and this condition forces BOCA to
pick z• instead of querying very close to it. Observe that
since βt is increasing with t, this neighborhood is shrinking
with time and therefore the algorithm will eventually have
the opportunity to evaluate fidelities close to z•.

3.2. Theoretical Results

We now present our main theoretical contributions. In order
to simplify the exposition and convey the gist of our results,
we will only present a simplified version of our theorems.
We will suppress constants, polylog terms, and other tech-
nical details that arise due to a covering argument in our
proofs. A rigorous treatment is available in Appendix B.

Maximum Information Gain: Up until this point, we have
not discussed much about the kernel φX of the domain X .
Since we are optimising f over X , it is natural to expect that
this will appear in the bounds. Srinivas et al. (2010) showed
that the statistical difficulty of GP bandits is determined
by the Maximum Information Gain (MIG) which measures
the maximum information a subset of observations have
about f . We denote it by Ψn(A) where A is a subset of X
and n is the number of queries to f . We refer the reader
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to Appendix B for a formal definition of MIG. For the
current exposition however, it suffices to know that for radial
kernels, Ψn(A) increases with n and the volume vol(A) of
A. For instance, when we use an SE kernel for φX , we have
Ψn(A) ∝ vol(A) log(n)d+1and for a Matérn kernel with
smoothness parameter ν, Ψn(A) ∝ vol(A)n1− ν

2ν+d(d+1) .
(Srinivas et al., 2010). Let nΛ = bΛ/λ(z•)c denote the
number of queries by a single fidelity algorithm within
capital Λ. Srinivas et al. (2010) showed that the simple
regret S(Λ) for GP-UCB after capital Λ can be bounded by,

Simple Regret for GP-UCB: S(Λ) .

√
ΨnΛ

(X )

nΛ
. (8)

In our analysis of BOCA we show that most queries to g
at fidelity z• will be confined to a small subset of X which
contains the optimum x?. Precisely, after capital Λ, for any
α ∈ (0, 1), we show there exists ρ > 0 such that the number
of queries outside the following set Xρ is less than nαΛ.

Xρ =
{
x ∈ X : f? − f(x) ≤ 2ρ

√
κ0 ‖ξ‖∞

}
. (9)

Here, ξ is from (4). While it is true that any optimisation
algorithm would eventually query extensively in a neigh-
bourhood around the optimum, a strong result of the above
form is not always possible. For instance, for GP-UCB, the
best achievable bound on the number of queries in any set
that does not contain x? is n1/2

Λ . The fact that Xρ exists re-
lies crucially on the multi-fidelity assumptions and that our
algorithm leverages information from lower fidelities when
querying at z•. As ξ is small when g is smooth across Z ,
the set Xρ will be small when the approximations are highly
informative about g(z•, ·). For e.g., when φZ is a SE kernel,
we haveXρ ≈ {x ∈ X : f?−f(x) ≤ 2ρ

√
κ0p/hZ}. When

hZ is large and g is smooth across Z , Xρ is small as the
right side of the inequality is smaller. As BOCA confines
most of its evaluations to this small set containing x?, we
will be able to achieve much better regret than GP-UCB.
When hZ is small and g is not smooth across Z , the set Xρ
becomes large and the advantage of multi-fidelity optimisa-
tion diminishes. One can similarly argue that for the Matérn
kernel, as the parameter ν increases, g will be smoother
across Z , and Xρ becomes smaller yielding better bounds
on the regret. Below, we provide an informal statement of
our main theoretical result. .,� will denote inequality and
equality ignoring constant and polylog terms.

Theorem 1 (Informal, Regret of BOCA). Let g ∼ GP(0, κ)
where κ satisfies (3). Choose βt � d log(t/δ). Then, for
sufficiently large Λ and for all α ∈ (0, 1), there exists ρ
depending on α such that the following bound holds with
probability at least 1− δ.

S(Λ) .

√
ΨnΛ(Xρ)
nΛ

+

√
ΨnαΛ

(X )

n2−α
Λ

In the above bound, the latter term vanishes fast due
to the n

−(1−α/2)
Λ dependence. When comparing this

with (8), we see that we outperform GP-UCB by a factor
of
√

ΨnΛ
(Xρ)/ΨnΛ

(X ) �
√

vol(Xρ)/vol(X ) asymptoti-
cally. If g is smooth across the fidelity space, Xρ is small
and the gains over GP-UCB are significant. If g becomes
less smooth across Z , the bound decays gracefully, but we
are never worse than GP-UCB up to constant factors.

Theorem 1 also has similarities to the bounds of Kandasamy
et al. (2016a) who also demonstrate better regret than GP-
UCB by showing that it is dominated by queries inside a set
X ′ which contains the optimum. However, their bounds de-
pend critically on certain threshold hyper-parameters which
determine the volume of X ′ among other terms in their re-
gret. The authors of that paper note that their bounds will
suffer if these hyper-parameters are not chosen appropri-
ately, but do not provide theoretically justified methods to
make this choice. In contrast, many of the design choices
for BOCA fall out naturally of our modeling assumptions.
Beyond this analogue, our results are not comparable to Kan-
dasamy et al. (2016a) as the assumptions are different.

Extensions: While we have focused on continuousZ , many
of the ideas here can be extended to other settings. If Z
is a discrete subset of [0, 1]p our work extends straightfor-
wardly. We reiterate that this will not be the same as the
finite fidelity MF-GP-UCB algorithm as the assumptions
are different. In particular, Kandasamy et al. (2016a) are
not able to effectively share information across fidelities as
we do. We also believe that Algorithm 1 can be extended
to arbitrary fidelity spaces Z provided that a kernel can be
defined on Z . Our results can also be extended to discrete
domains X and various other kernels for φX by adopting
techniques from Srinivas et al. (2010).

4. Experiments
We compare BOCA to the following four baselines: (i) GP-
UCB, (ii) the GP-EI criterion in BO (Jones et al., 1998), (iii)
MF-GP-UCB (Kandasamy et al., 2016a) and (iv) MF-SKO,
the multi-fidelity sequential kriging optimisation method
from Huang et al. (2006). All methods are based on GPs
and we use the SE kernel for both the fidelity space and do-
main. The first two are not multi-fidelity methods, while the
last two are finite multi-fidelity methods2. Kandasamy et al.
(2016a) also study some naive multi-fidelity algorithms and
demonstrate that they do not perform well; as such we will
not consider such alternatives here. In all our experiments,
the fidelity space was designed to be Z = [0, 1]p with
z• = 1p = [1, . . . , 1] ∈ Rp being the most expensive fi-

2To our knowledge, the only other work that applies to contin-
uous approximations is Klein et al. (2015) which was developed
specifically for hyper-parameter tuning. Further, their implementa-
tion is not made available and is not straightforward to implement.
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Figure 3. Results on 6 synthetic problems where we plot the simple regret S(Λ) (lower is better) against the capital Λ. The title states
the function used, and the fidelity and domain dimesions. For the first two figures we used capital 30λ(z•), therefore a method which
only queries at g(z•, ·) can make at most 30 evaluations. For the third figure we used 50λ(z•), for the fourth 100λ(z•) and for the last
200λ(z•) to reflect the dimensionality d of X . The curves for the multi-fidelity methods start mid-way since they have not queried at z•
up until that point. All curves were produced by averaging over 20 experiments and the error bars indicate one standard error.

delity. For MF-GP-UCB and MF-SKO, we used 3 fidelities
(2 approximations) where the approximations were obtained
at z = 0.3331p and z = 0.6671p in Z . Empirically, we
found that both algorithms did reasonably well with 1-3 ap-
proximations, but did not perform well with a large number
of approximations (> 5); even the original papers restrict
experiments to 1-3 approximations. Implementation details
for all methods are given in Appendix C.1.

4.1. Synthetic Experiments
The results for the first set of synthetic experiments are
given in Fig. 3. The title of each figure states the function
used, and the dimensionalities p, d of the fidelity space and
domain. To reflect the setting in our theory, we add Gaussian
noise to the function value when observing g at any (z, x).
This makes the problem more challenging than standard
global optimisation problems where function evaluations
are not noisy. The functions g, the cost functions λ and the
noise variances η2 are given in Appendix C.2.

The first two panels in Fig. 3 are simple sanity checks. In
both cases, Z = [0, 1], X = [0, 1] and the functions were
sampled from GPs. The GP was made known to all methods,
i.e. all methods used the true GP in picking the next point.
In the first panel, we used an SE kernel with bandwidth 0.1
for φX and 1.0 for φZ . g is smooth across Z in this setting,
and BOCA outperforms other baselines. The curve starts
mid-way as BOCA is yet to query at z• up until that point.
The second panel uses the same set up as the first except

we used bandwidth 0.01 for φZ . Even though g is highly
un-smooth across Z , BOCA does not perform poorly. This
corroborates a claim that we made earlier that BOCA can
naturally adapt to the smoothness of the approximations.
The other multi-fidelity methods suffer in this setting.

In the remaining experiments, we use some standard bench-
marks for global optimisation. We modify them to obtain
g and add noise to the observations. As the kernel and
other GP hyper-parameters are unknown, we learn them by
maximising the marginal likelihood every 25 iterations. We
outperform all methods on all problems except in the case
of the Borehole function where MF-GP-UCB does better.
The last synthetic experiment is the Branin function given
in Fig. 4(a). We used the same set up as above, but use 10 fi-
delities for MF-GP-UCB and MF-SKO where the kth fidelity
is obtained at z = k

101p in the fidelity space. Notice that the
performance of finite fidelity methods deteriorate. In par-
ticular, as MF-GP-UCB does not share information across
fidelities, the approximations need to be designed carefully
for the algorithm to work well. Our more natural modelling
assumptions prevent such pitfalls. We next present two real
examples in astrophysics and hyper-parameter tuning. We
do not add noise to the observations, but treat it as optimisa-
tion tasks, where the goal is to maximise the function.

4.2. Astrophysical Maximum Likelihood Inference
We use data on TypeIa supernova for maximum likelihood
inference on 3 cosmological parameters, the Hubble con-



Bayesian Optimisation with Continuous Approximations

Λ

0 20 40 60 80 100 120 140

S
(Λ

)

10
0

10
1

Branin, p = 3, d = 2

GP-UCB

GP-EI

MF-GP-UCB

MF-SKO

BOCA

(a)
Time (s)

1000 1500 2000 2500 3000 3500

A
v
g
.
L
o
g
L
ik
el
ih
o
o
d

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Supernova, p = 2, d = 3

(b)
Time (s)

500 1000 1500 2000

C
ro
ss

V
a
li
d
a
ti
o
n
A
cc
u
ra
cy

0.89

0.895

0.9

0.905

0.91

0.915

NewsGroup-SVM, p = 2, d = 2

(c)
Figure 4. (a): The synthetic benchmark with the Branin function where we used a capital of 50λ(z•). See caption under Fig. 3 for more
details. (b), (c): Results on the supernova and news group experiments from sections 4.2 and 4.3 respectively. We have plotted the
maximum value (higher is better) against wall clock time. (a) was averaged over 20 experiments while (b) and (c) were averaged over 10
xperiments each. The error bars indicate one standard error.

stant H0 ∈ (60, 80), the dark matter fraction ΩM ∈ (0, 1)
and dark energy fraction ΩΛ ∈ (0, 1); hence d = 3. The
likelihood is given by the Robertson-Walker metric, the
computation of which requires a one dimensional numer-
ical integration for each point in the dataset. Unlike typi-
cal maximum likelihood problems, here the likelihood is
only accessible via point evaluations. We use the dataset
from Davis et al (2007) which has data on 192 supernovae.
We construct a p = 2 dimensional multi-fidelity problem
where we can choose between data set size N ∈ [50, 192]
and perform the integration on grids of size G ∈ [102, 106]
via the trapezoidal rule. As the cost function for fidelity se-
lection, we used λ(N,G) = NG as the computation time is
linear in both parameters. Our goal is to maximise the aver-
age log likelihood at z• = [192, 106]. For the finite fidelity
methods we use three fidelities with the approximations
available at z = [97, 2.15× 103] and z = [145, 4.64× 104]
(which correspond to 0.3331p and 0.6671p after rescaling
as in Section 4.1). The results are given in Fig. 4(b) where
we plot the maximum average log likelihood against wall
clock time as that is the cost in this experiment. The plot
includes the time taken by each method to tune the GPs and
determine the next points/fidelities for evaluation.

4.3. Support Vector Classification with 20 news groups
We use the 20 news groups dataset (Joachims, 1996) in a
text classification task. We obtain the bag of words repre-
sentation for each document, convert them to tf-idf features
and feed them to a support vector classifier. The goal is to
tune the regularisation penalty and the temperature of the
rbf kernel both in the range [10−2, 103]; hence d = 2. The
support vector implementation was taken from scikit-learn.
We set this up as a 2 dimensional multi-fidelity problem
where we can choose a dataset size N ∈ [5000, 15000]
and the number of training iterations T ∈ [20, 100]. Each
evaluation takes the given dataset of size N and splits it
up into 5 to perform 5-fold cross validation. As the cost
function for fidelity selection, we used λ(N,T ) = NT as

the training/validation complexity is linear in both param-
eters. Our goal is to maximise the cross validation accu-
racy at z• = [15000, 100]. For the finite fidelity methods
we use three fidelities with the approximations available
at z = [8333, 47] and z = [11667, 73]. The results are
given in Fig. 4(c) where we plot the average cross validation
accuracy against wall clock time.

5. Conclusion
We studied Bayesian optimisation with continuous approx-
imations, by treating the approximations as arising out of
a continuous fidelity space. While previous multi-fidelity
literature has predominantly focused on a finite number
of approximations, BOCA applies to continuous fidelity
spaces and can potentially be extended to arbitrary spaces.
We bound the simple regret for BOCA and demonstrate
that it is better than methods such as GP-UCB which ig-
nore the approximations and that the gains are determined
by the smoothness of the fidelity space. When compared
to existing multi-fidelity methods, BOCA is able to share
information across fidelities effectively, has more natural
modelling assumptions and has fewer hyper-parameters to
tune. Empirically, we demonstrate that BOCA is compet-
itive with other baselines in synthetic and real problems.
Another nice feature of using continuous approximations
is that it relieves the practitioner from having to design the
approximations; she/he can specify the available approxi-
mations and let the algorithm decide how to choose them.

Going forward, we wish to extend our theoretical results to
more general settings. For instance, we believe a stronger
bound on the regret might be possible if φZ is a finite dimen-
sional kernel. Since finite dimensional kernels are typically
not radial (Sriperumbudur et al., 2016), our analysis tech-
niques will not carry over straightforwardly. Another line
of work that we have alluded to is to study more general
fidelity spaces with an appropriately defined kernel φZ .
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