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A. Proofs for Realizable Setting

Proof of Lemma 3. Let A := @ — w™ be the difference between the true answer and solution to the optimization problem.

Let S to be the support of w* and let S¢ = [d] \ S be the complements of S. Consider the permutation 41, ... ,44_ of
S¢ for which |A(i;)| > |A(7;41)| for all j. That is, the permutation dictated by the magnitude of the entries of A outside
of S. We split S into subsets of size k according to this permutation: Define S, for j > 1 as {i(j_1)k41,- -, %% }. For

convenience we also denote by Sy the set S'U Sy.
Now, consider the matrix Xg,, € Rt*I501] whose columns are those of X with indices Sp;. The Restricted Isometry
Property of X dictates that for any vector ¢ € R0t

(1 —=e)lell; < f [ Xsorclly < (1 4€) el -

Let V' C R’ be the subspace of dimension |Sy;| that is the image of the linear operator X, , and let P, € R**! be the
projection matrix onto that subspace. We have, for any vector z € R? that

(1—e) Pzl < | X502l < (1 + ) 1Pz

|

We apply this to z = X' A and conclude that

1
Py XAl < ———— || XE, XA 10
|| |4 || — \/i(l _ 6) || So1 H ( )
We continue to lower bound the quantity of || Py X A||. We decompose Py X A as
PyXA =Py XA(Sor) + Y PrXA(S)) (11)
Jj=2

Now, according to the definition of V' we that there exist vectors {¢; };j>2 in RISotl for which
Py XA(S)) = Xg,, ¢4
We now invoke Lemma 1.1 from (Candes & Tao, 2005) stating that for any S’ S” with |S’| + |S”| < 3k it holds that
Ve.d - (Xsie, Xond') < (26— ) el I
We apply this for So1,S;, 7 > 2 and conclude that

1Py XAS))l5 = (PrXA(S;), XAS))) < 2et |esl, - [ A(S))]] < 26f

- Py XAS) - 1ASH)], -
Dividing through by || Py X A(S;)|[,, we get
26\[

1Py XASHI < 37— IAGH]- (12)

Let us now bound the sum ||A(S;)|. By the definition of S; we know that any element ¢ € S; has the property A(i) <
(1/k)||A(Sj=1)|,- Hence

Do lAGHI < 1/VE) Y IAGHI, = A/VEVIAS),

j>2 j>1

We now combine this inequality with Equations (10), (11) and (12)

1 1-—
2 IXE, XA = —= Py xa)

f
>1- f (Son) f ;HPVXA ol
> X AS) |2e;2||A

> ZC XA - A,
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The third inequality holds since X A(Sp1) € V hence Py X A(Sp1) = X A(Sp1). We continue to bound the expression by
claiming that ||A(S)||; > ||A(S€)]|;. This holds since in 5S¢, Wge = A(S°) hence

[l = llw = A(S®) = Ay < [l@lly + TAS)L = 1AS)L)

Now, the optimality of @ implies ||w||; < ||w*||;, hence indeed ||A(S)]|; > [|A(S)|;-

¢ Vk
1A, < IAG)I < VEIAG), < [ASo)]l, < 1=Vt [ X A(So1)|
We continue the chain of inequalities
1 1—¢€ 2e .
7 X5, XAl 2 —= XAl = Z= IAS) ],y
1—€ 2 VEk
> [| XA(S - - =YY
> | XA(So)]| ( N (16)ﬁ>
(1—¢€)?—2¢
= —"—F[| XA(S
1= ovi X A(So1)l
Rearranging we conclude that
1
[A(Son) |l < m | X A(So1)]l (RIP of X)
1 T
< -
(1 —e)2—2e)t HXSOIXAH
2k
< (1{;% ||XTXA||OO (since for any z € R?, ||z|, < \/ﬂHZHOO)
1
<C dk%(d/é) <U+15Hw*”1> (Lemma 14 and € < 1/5)
0 0

for some constant C. We continue our bound on ||A|| by showing that [|A(S§) || < [|A(Se1)]|

ez @ . 11 . 1
IAGEIE < 1A 32— < L IAGIIE < L IAG)E < 1AG)3.

j>k+1

Inequality (¢) holds due to the following: Let «; be the absolute value of the i’th largest (in absolute value) element of
A(S°). It obviously holds that o; < ||A(S€)]|; /i. Now, according to the definition of Sy, we have that ||A(S§;) Hg =

Dokt o? and the inequality follows. Hence,
1ACSGo < Ay < 1ASon)]l, -
We conclude that

dklog(d/6 d, .
1Al < VE A, < 0y H08EO) (1 d ey
tho ko

for some universal constant C' > 0. Since ||A(S)||; > [JA(S)]|; and |S| < k we get that

1Al < 21AS)Il; < 2VE(AGS)]l, < 2VE(A],

and the claim follows. O
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Proof of Lemma 4. Let S be the support of w*. We can decompose the square of the left hand side as

H@(§) —w|

2 _ ~
i€SNS i€S\S i€S\S

We upper bound the last sum on the right hand side as

ieS\S i€S\S
<2 Y (@) - w' () + (@)’
1€S\S
<2 Y (@6) —w @) +2 Y (@),
ies\g ie§\S

where first inequality follows from the elementary inequality (a + b) < 2a? 4 2b? and the second inequality is due to the
fact that S contains top k entries of @ in absolute value and |S \ S| = |5\ S|. Hence,

|[83) —w| = 3 @6 —wr@?+ X @02+ Y @)
i€sns ieS\S ies\S
< Y (@) —wr @) +2 Y (@6 —w (@) +3 Y (@
iesns ieS\S ieS\S
<2 Z (W(i) — w*(i))* + 2 Z (@(i) —w*(i))* +3 Z (w(z
iesns i€S\S ie€5\S
=2 (@(i) —w*(i))* +3 > (@(i
i€es ieS\S
d
<3 (@) —w* (i)
=3|@ - w*|;.
Taking square root finishes the proof. O

Lemma 14. There exists a universal constant C' > 0 such that, with probability at least 1 — 6, the convex program (3) is
feasible and its optimal solution W satisfies

1
HtXtTXt(@—w*)

dlog(d/d) d, .
< _— — .
— C tko o+ kO ||w ||1

We note that the above lemma is beyond simple triangle inequality on the feasibility constraints, as the left hand side
depends on actual design matrix X; which we do not observe, instead of Xj.

Proof. To simplify notation, we drop subscript t. Namely, let X = X, X = X; and D = lA)t, and also let n =
(n1,7m2, - . ., m+) be the vector of noise variables.

First, we show that w* satisfies the constraint of (3) with probability at least 1 — §. We upper bound

1o -~ 1~
HtXT(Y — Xw*) + EDw

H[ XT(x - X)+1D}w + XT

‘ (oo}

~ ~ 1~
< H [tXT(XX)Jr tD} w

+
t S
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We first bound the left summand. By Lemma 15, we have

1~

1o o 1a 15 -
H [tXT(X - X)+ tD} wr|| <ty - HtXT(X ~X)+-D

oo

t oo
X Lor o 1l o T(% L
< JJw*|| X' X-X)| +||-X-X)(X-X)—--D
NIE o It t
. d3log(d/é
e e

For the right summand, since 7 is vector of i.i.d Gaussians with variance o2, with probability at least 1 — 4,

IIES o ~

1€[d]

2

where )?(1), )A((g), e ,)?(d) are the columns of X. Since the absolute value of the entries of X is at most d/ko, we have

| X, < Vid/k and thus

dlog(d/d)

110~
- ||xT H < .
t H g oo Co tko

Combining the inequalities so far provides

1o -~ 1~
HtXT(Y — Xw*) + EDw*

dlog(d/d) d .
< 2N T -
<C o J+k_0 lw*l,

(oo}

and hence conclude the constraint of the optimization problem (3) is satisfied (at least) by w* and thus the optimization
problem is feasible.

Now consider the vector A := W — w*, we have
Lyr Lsrs 5 lors ~ T
;X XA < z(X X —-D)A|| + E(X X-D-X"X)A
1l srs = 1 = T
<||-(X"X —=D)A|| +|-(X-X)' XA
t oo t (oo}
1
t

+ H XT(X - X)AHOO + H (1(}? _ X)X - X)— 113) AH

o0

According to Lemma 15 we have

1 S 1 S dlog(d/é . N dlog(d/é) .
[ixr@-a| <|xr@-x| nan < o TEL oy, + jal) < oy DELD oy,

where the last inequality is by the optimality of @w. The same argument provides an identical bound for

%(5(\' -X)Tx AH . The last summand can also be bounded by using Lemma 15 and the optimality of .

5 1

(w7150 15)a]_<z0/FBEE

w*
s Il

ﬁ) AH <20
Finally, according to the feasibility of @ and w* we may bound the first summand

lors 1a dlog(d/é) d
“XTX--D)|A <2 —_— — ||w*
H<t t ) Hoo =2 tho 7T i 1)

and reach the final bound. O
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Lemma 15. For any t > to, with probability at least 1 — 6, the following two inequalities hold

/d3 log d/(5

dlog d/5
tho

1 -~ o 1~
Ht(Xt - X' (X - Xy) - th

1 ~
HtX;T(Xt - Xy <C

oo

where ||-|| . denotes the maximum of the absolute values of the entries of a matrix.

Proof. Throughout we use that |2,(i)| < 1 foralli € [d] and all s € [t], and (2) (Z4(i) — 24(i))? — + D;; is unbiased with
absolute value of at most (d/ko)? and variance of at most (d/kq)>. For the first term, let’s bound

t

For 2 = j, we have

E

(@00~ 20" = i < @k, B (@)~ 2.0 - 1Ds| =0

Hence, by Bernstein’s inequality, for any v > 0,

1o . w1
;z::(xs(Z)—xs(l)) - ;D

s=1

v2t
>4SZWPCYW%P+MMM%B>'

It follows that for any § > 0, with probability at least 1 — § it holds for all ¢ € [d] that,

t
1
;Z .1'5 _xs Du

s=1

Similarly we have 1(Dy; — D;;) < O (Ioggzg 0L \/W ) .

For i # j we use an analogous argument, only now the variance term in Bernstein’s inequality is (d/ko)? rather than
(d/ko)3, hence only reach a tighter bound.

2 3
<o (e | fosta/pe
tko tko

For the second term, we again bound via Bernstein’s inequality as

dlog(d/5)  dlog(d/s)
tho tho

x| - 2}@ 7(j) — 2s(J)) < O

ij
The claim now follows by noticing that for large enough ¢, the dominating terms are those that scale as 1/v/%. O
Proof of Theorem 2. By Lemma 3,

. d klog(d/d d . .
lwigr —w™|l, <O *7( / )(UJF*HW )
ko t ko
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We have

(ye — <=’Ut,wt>)2 — (Yt — <$t7W*>)2

N

Regret,(w*) — Regret, (w*) =

ﬁ
I
I
(=}
+

(e, w* —we) +ne)* — 0}
1

Il
M=

t

o
+

t

Il
B

((, w* — wy) + 2my) (T, w" — wy)

t 1

+

to
T
= > o (wnwt —wi) + (e w” —wy))”

t=to+1

where we used that y; = (¢, w;) + 7:. To bound the regret we require the upper bound, that occurs with probability of at
least 1 — 6,

(1) (i1) d log(log(T)d/§ d
Vizto It —w| < ol e — w7l - wlly < O k\/kg(gi)/)(‘”k)

Inequality (7) holds since (a,b) < ||a(S)||, - ||bl|, with S being the support of b and [|a(S) ||, < [la||,, v/|S]|. Inequality

(i) follows from Lemma 3 and Lemma 4, and a union bound over the [log(7)] many times the vector w; is updated. Now,
for the left summand of the regret bound we have by Martingale concentration inequality that w.p. 1 — ¢

T T
Z 2n (xg, wy —w*) <O | o, |log(1/6) Z (x4, w; — w*)>
t=to+1 t=to+1
2
=0 | oy/log(1/6)log(T)k? - dlog(dlog(T)/9) o+ 4
ko ko
The right summand is bounded as
a dlog(dlog(T)/s) d\?
Z (ze,w* —w)> = O | K- A o+ — | -log(T) ] .
t=to+1 o ko

Clearly, the right summand dominates the left one.

It remains to bound the regret in first £y rounds. Since w; = 0 for t < ¢y, we have

Regret, (w 227% 2o, w) + ({2, w))2 < O (a\/to log(1/5) + to) .

Here, we used that | (z;, w*) | < 1 since ||2||,, < 1 and ||w*||; < 1. We also used that 7, (s, w*) ~ N(0, 0> (24, w*)?)
and 1y (w1, w*) , 2 (T2, w*), ..., My, (T4,,w*) are independent. Thus their sum is a Gaussian with variance at most o-2tg.

Collecting all the terms along with Lemma 16, bounding the difference Regret, — Regret-(w*), gives

2
RegretT < <t0+\/m+k2 . dlog(dlog(T)/5) <J+d> ~log(T)> (13)

ko ko

O

Lemma 16. In the realizable case, w.p. at least 1 — § we have for any sequence of w; that Regret; — Regret,(w*) =
O(0%klog(d/9)).
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Proof. Tt is an easy exercise to show that Regret;, — Regret,(w*) is equal to the regret on an algorithm that always plays
w*. We thus continue to bound the regret of w*.

Let A € R? be the difference between w* and w0, the empirical optimal solution for the sparse regression problem. The
loss associated with w* is clearly ||n||?, where 7 is the noise term y = Xw* + 7. The loss associated with 10 is

IX (w* + A) = Xw* = gl* = [|[n - XA|* = [In — XzA|

where S is the support of A, having a cardinality of at most 2k. The closed form solution for the least-squares problem
dictates that
ln = XgAl* = [ln = XaXnll* = |Inll* = | XX nl| -

Here, A' is the pseudo inverse of a matrix A and X is the matrix obtained from the columns of X whose indices are in
S. It follows that the regret of w* is bounded by
15X L2

for some subset S of size at most 2k. To bound this quantity we use a high probability bound for || X g X ;77”2 for a fixed

set S, and take a union bound over all possible sets of cardinality 2k. For a fixed set S we have that || XsX kn||?/o? is
distributed according to the x3, distribution. The tail bounds of this distribution suggest that

Pr [||XSX;77H2 > 2ko? + 20°V2kx + 202z | < exp(—x)

meaning that with probability at least 1 — §/d** we have

| XsXEn|? < 2ko? + 202\/2k - 2k - log(d/8) + 202 - 2k - log(d/5) = O(o*klog(d/d))

Taking a union bound over all possible subsets of size < 2k we get that w.p. at least 1 — ¢ the regret of w* is at most
O(0?klog(d/9)). O

B. Proofs for Agnostic Setting

We begin with an auxiliary lemma for Lemma 10, informally proving that for any matrix X with BBRCNP (Definition 6)
and vector y, the set function
S) = inf |y — Xwl|?
9(8) = inf_|ly— Xu|
is weakly supermodular. Its proof can be found in (Boutsidis et al., 2015), yet for completeness we provide it here as well.

Lemma 17. [Lemma 5 in (Boutsidis et al., 2015)] Let X be a matrix whose columns have 2-norm at most 1 and y be a
vector with ||ylle < 1 of dimension matching the number of rows in X. the set function

S) = inf_[ly — Xw]|?
9(8) = nf ly — Xul

is a-weakly supermodular for sparsity k for @ = maxg;| s|<k 1/0min(Xs)?%, where Xg is the submatrix of X obtained by
choosing the columns indexed by S, and o, (A) is the smallest singular value of A.

Proof. Firstly, the well known closed form solution for the least-squares problem informs us that
S) = inf — Xwl|?,
9(8) = it lly— Xul
=y" [l - (X§)'X§]y.

We use the notation AT for the pseudoinverse of a matrix A. That is, if the singular value decomposition of A is A =
1, T

>, oiuvl with oy > 0 then AT =3 o ' vul’.

Let us first estimate g(S) — g(T), for sets S C T'. For brevity, define Hg as the projection matrix X ¢ X g projecting onto
the column space of X 5. Denote by Z7 g the matrix whose columns are those of X7\ g projected away from the span of
X, and normalized. Namely, writing x; as the 4’th column of X, ¢; = ||[(I — Hg)x;||, 2 = (I — Hs)x;/;, and Zp\g’s
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columns are {z;};cr\g. Notice that the columns of Zp\ g and X5 are orthogonal, hence according to the Pythagorean
theorem it holds that

9(S) = lyl* = 1Hsyl*, ¢(T) = llyl* = 1Hsyll* — 1 Z\s Z} sylI*

meaning that — = ||Zr . In particular, this implies that for an it holds that —g(SuU =
ing that g(S) —g(T) = || Zr\s Z} sy|*. In particular, this implies that for any j ¢ S itholds that g(S) —g(SU{;})

(ijy)Q, since z; is a unit vector. Let us now decompose g(.S) — g(T').

9(8) = 9(T) = 1 Zr\s Zj yI* = 1(Z1\8)' Z1\syl1” < 1(Z7 ) I - 123 59117

The norm used in the last inequality is the matrix operator norm. We now bound both factors of the product on the RHS
separately. For the first factor, we claim that || (Z%\S)T | = ||Z;\S|| < ||X;|| To see this, consider a vector w € RIT\SI,

for convenience denote its entries by {w(7) };e7\ s, and write z; = (z; — Zjes a;;;)/C. We have

ZT\SU) = Z zzw(z) = Z xlw(z)/g — ij Z w(i)aij/g = XT’U)/
i€T\S i€T\S JES  i€T\S
for the vector w’ € RI”! defined as w’(i) = w(i)/¢; fori € T\ S and w'(j) = — 2ier\s W(i)ay; /¢ for j € S. Since

Gi < ||zi]] <1 we must have [|w'|| > ||w]|. Consider now the unit vector w for which || Z\ sw|| = ||Z:TF\S||_1, that is, the
unit norm singular vector corresponding to the smallest non-zero singular value of Z 5. For this w, and its corresponding
vector w’, we have

1Z5 sl = 12 swll = | X7 | = omin(Xr) 0| = omin(Xr) 1] = Tmin(X7)-

It follows that
I(Z )12 = 125 17 < 1/0min(Xr)?

We continue to bound the right factor of product.

1ZE syl = > (v’ =Y 9(S) —g(Su{i}).
i€T\S i€T\S
By combining the inequalities we obtained the required result:
9(8) = g(T) < (1/owmin(X1)?) Y 9(S) — g(SU{i}).
ieT\S

O
Proof of Lemma 10. We would like to apply Lemma 17 on the design matrix X. The only catch is that the columns of X
may not be bounded by 1 in norm. To remedy this, let j be the index of the column with the maximum norm and consider

the matrix X = mX instead (here, X is the j-th column of X; note that X; = Xe; for the j-th standard basis vector
J
e;). Now, for any subset S of coordinates,

inf |ly — Xw|®= inf_|ly — Xw|?>
Jnf fly - Xwl® = nf_ly — Xuw]

Thus, we conclude that the set function of interest, g(S) = inf ,cps ||y — Xw||?, is a-weakly supermodular for sparsity &
for @ = maxg.|s|< ||)_(; ||2. For any subset of coordinates S of size at most &, let w be a unit norm right singular vector of

e : : et — 1 1 lIXel ’s
X corresponding to th.e smallest s1ngular Yalue, so that || X |2 = el BU Txsmy = x> Where w' is the vector
w extended to all coordinates by padding with zeros.

Since the restricted condition number of X for sparsity k is bounded by x we conclude that ‘\‘I))ézj/ ‘||| < k. Since this bound

holds for any subset .S of size at most k, we conclude that o < K2. O
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Proof of Lemma 11. By the a-weak supermodularity of g, we have

9(®) —g(V) <a- ) [g(0) = g({j})]

JEV
<alV[-[(g(®) = g(V)) = (¢({5"}) —g(M))]-

Rearranging, we get the claimed bounds. O

The following lemma gives a useful property of weakly supermodular functions.

Lemma 18. Let g(-) be a (k, o)-weakly supermodular set function and U be a subset with |U| < k. Then ¢'(S) =
g(U U S8)is (k — |U|, a)-weakly supermodular.

Proof. For any two subsets S C T with |T'| < k — |U|, we have

g(8)—g(T)=gUUS)—g(UUT)<a >  [gUUS)—g(UUSU{j})
JE(TUU)\(SUU)

<a Y [gUUS)-gUUSU{=a > [g(S) - g (SUj})

JET\S JET\S

Proof of Lemma 12. Fori € {0,1,...,k;}, define the set function glg ) as g( )(S) =g(SU Vb(i)).

First, we analyze the performance of the BEXP algorithms. Fix any 7 € [k] and consider BEXP". Conceptually, for any

j € [d], the loss of expert j at the end of mini-batch b is gb(‘/;)(i_l) U 7) (note that this loss is only evaluated for j € U, b(i)
in the algorithm). To bound the regret, we need to bound the magnitude of the losses. Note that for any subset S, we have
0< g(S) <Y, e, ¥i < 1. Thus, the regret guarantee of BEXP (Theorem 8) implies that for any i € (k1] and any
j € [d], we have

T/B 4 } T/B 4
S (VUGN < S (T UG} + 2y drjesldT,
b=1 b=1

The expectation above is conditioned on the randomness in Vb(ifl), for b € [T/ B]. Rewriting the above inequality using
the g=1 and ¢(*) functions, and using the fact that V"' ™ U {{"} = V;{), we get

T/B T/B
Do) <3 g AIh + 2y (14)
=1 b=1

Next, since we assumed that the sequence of feature vectors satisfies BBRCNP with parameters (¢, k1 + k), Lemma 10
implies that the set function g, defined in (6) is (k1 + k, k?)-weakly supermodular for x = 1+€ By Lemma 18, the set

function géi) is (k, k?)-weakly supermodular (since \Vb(i)| < k1).

It is easy to check that the sum of weakly supermodular functions is also weakly supermodular (with the same parameters),
and hence Zb 1 gb Vs also (k, k?)-weakly supermodular. Hence, by Lemma 11, if j* = arg min; Zrbrz/f glgz_l)({j}),
we have, for any subset V' of size at most k,

T/B T/B

Zg“ DG =gy V) < (1= o) Zg“ V@) - g Vvl

Since g,(V) > g»(V U V;(i_l)) = gl(f_l)(V), the above inequality implies that

T/B T/B

Zg(z 1) ({5 } a(V) < (1- N2|V‘ Zg(z 1) @ gb(V)]~
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Combining this bound with (14) for 7 = j*, we get

T/B T/B

>0 1)~ (V)| < (1~ o) Zg“ V(0) — gn(V)] + 20/ DT

Applying this bound recursively for ¢ € [k1] and simplifying, we get

T/B T/B

Zg(kl) @ V) S o k1 Zg(o) @ +2/€2|V| / dk1 lcz)gB(d)T

Using the definitions of gékl) and glgo)’ and the fact that |V| < k, we get the claimed bound.



