How to Escape Saddle Points Efficiently

Chi Jin' Rong Ge? Praneeth Netrapalli® Sham M. Kakade* Michael L. Jordan'

Abstract

This paper shows that a perturbed form of gradi-
ent descent converges to a second-order station-
ary point in a number iterations which depends
only poly-logarithmically on dimension (i.e., it is
almost “dimension-free”). The convergence rate
of this procedure matches the well-known con-
vergence rate of gradient descent to first-order
stationary points, up to log factors. When all sad-
dle points are non-degenerate, all second-order
stationary points are local minima, and our result
thus shows that perturbed gradient descent can
escape saddle points almost for free. Our results
can be directly applied to many machine learning
applications, including deep learning. As a par-
ticular concrete example of such an application,
we show that our results can be used directly to
establish sharp global convergence rates for ma-
trix factorization. Our results rely on a novel
characterization of the geometry around saddle
points, which may be of independent interest to
the non-convex optimization community.

1. Introduction

Given a function f : RY 5 R, a gradient descent aims to
minimize the function via the following iteration:

xer1 = x¢ — NV (%),

where 7 > 0 is a step size. Gradient descent and its vari-
ants (e.g., stochastic gradient) are widely used in machine
learning applications due to their favorable computational
properties. This is notably true in the deep learning set-
ting, where gradients can be computed efficiently via back-
propagation (Rumelhart et al., 1988).

Gradient descent is especially useful in high-dimensional
settings because the number of iterations required to reach

"University of California, Berkeley “Duke University
*Microsoft Research India “University of Washington. Corre-
spondence to: Chi Jin <chijin@berkeley.edu>.

Proceedings of the 34" International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

a point with small gradient is independent of the dimension
(“dimension-free”). More precisely, for a function that is /-
gradient Lipschitz (see Definition 1), it is well known that
gradient descent finds an e-first-order stationary point (i.e.,
a point x with |V f(x)| < €) within ¢(f(xq) — f*)/€? it-
erations (Nesterov, 1998), where X is the initial point and
f* is the optimal value of f. This bound does not depend
on the dimension of x. In convex optimization, finding an
e-first-order stationary point is equivalent to finding an ap-
proximate global optimum.

In non-convex settings, however, convergence to first-order
stationary points is not satisfactory. For non-convex func-
tions, first-order stationary points can be global minima,
local minima, saddle points or even local maxima. Find-
ing a global minimum can be hard, but fortunately, for
many non-convex problems, it is sufficient to find a local
minimum. Indeed, a line of recent results show that, in
many problems of interest, all local minima are global min-
ima (e.g., in tensor decomposition (Ge et al., 2015), dic-
tionary learning (Sun et al., 2016a), phase retrieval (Sun
et al., 2016b), matrix sensing (Bhojanapalli et al., 2016;
Park et al., 2016), matrix completion (Ge et al., 2016),
and certain classes of deep neural networks (Kawaguchi,
2016)). Moreover, there are suggestions that in more gen-
eral deep networks most of the local minima are as good as
global minima (Choromanska et al., 2014).

On the other hand, saddle points (and local maxima) can
correspond to highly suboptimal solutions in many prob-
lems (see, e.g., Jain et al., 2015; Sun et al., 2016b). Fur-
thermore, Dauphin et al. (2014) argue that saddle points
are ubiquitous in high-dimensional, non-convex optimiza-
tion problems, and are thus the main bottleneck in train-
ing neural networks. Standard analysis of gradient descent
cannot distinguish between saddle points and local minima,
leaving open the possibility that gradient descent may get
stuck at saddle points, either asymptotically or for a suffi-
ciently long time so as to make training times for arriving at
a local minimum infeasible. Ge et al. (2015) showed that
by adding noise at each step, gradient descent can escape
all saddle points in a polynomial number of iterations, pro-
vided that the objective function satisfies the strict saddle
property (see Assumption A2). Lee et al. (2016) proved
that under similar conditions, gradient descent with ran-
dom initialization avoids saddle points even without adding

How to Escape Saddle Points Efficiently

Algorithm 1 Perturbed Gradient Descent (Meta-algorithm)
fort=0,1,...do
if perturbation condition holds then
Xt — x¢ + &, &; uniformly ~ Bg(r)
X1 ¢ X — NV f(x¢)

noise. However, this result does not bound the number of
steps needed to reach a local minimum.

Previous work explains why gradient descent avoids sad-
dle points in the nonconvex setting, but not why it is effi-
cient—all of them have runtime guarantees with high poly-
nomial dependency in dimension d. For instance, the num-
ber of iterations required in Ge et al. (2015) is at least
Q(d*), which is prohibitive in high dimensional setting
such as deep learning (typically with millions of parame-
ters). Therefore, we wonder whether gradient descent type
of algorithms are fundamentally slow in escaping saddle
points, or it is the lack of our theoretical understanding
while gradient descent is indeed efficient. This motivates
the following question: Can gradient descent escape sad-
dle points and converge to local minima in a number of
iterations that is (almost) dimension-free?

In order to answer this question formally, this paper inves-
tigates the complexity of finding e-second-order stationary
points. For p-Hessian Lipschitz functions (see Definition
5), these points are defined as (Nesterov & Polyak, 2006):

)‘min(v2f(x)) > —/pe.

Under the assumption that all saddle points are strict
(i.e., for any saddle point X5, Amin(V2f(xs)) < 0), all
second-order stationary points (¢ = 0) are local minima.
Therefore, convergence to second-order stationary points
is equivalent to convergence to local minima.

Vi) <e and

This paper studies a simple variant of gradient descent
(with phasic perturbations, see Algorithm 1). For /-smooth
functions that are also Hessian Lipschitz, we show that per-
turbed gradient descent will converge to an e-second-order
stationary point in O(£(f(xo) — f*)/€?), where O(-) hides
polylog factors. This guarantee is almost dimension free
(up to polylog(d) factors), answering the above highlighted
question affirmatively. Note that this rate is exactly the
same as the well-known convergence rate of gradient de-
scent to first-order stationary points (Nesterov, 1998), up
to log factors. Furthermore, our analysis admits a maxi-
mal step size of up to £2(1/£), which is the same as that in
analyses for first-order stationary points.

As many real learning problems present strong local geo-
metric properties, similar to strong convexity in the global
setting (see, e.g. Bhojanapalli et al., 2016; Sun & Luo,
2016; Zheng & Lafferty, 2016), it is important to note that
our analysis naturally takes advantage of such local struc-

ture. We show that when local strong convexity is present,
the e-dependence goes from a polynomial rate, 1 /€2, to lin-
ear convergence, log(1/¢). As an example, we show that
sharp global convergence rates can be obtained for matrix
factorization as a direct consequence of our analysis.

1.1. Our Contributions

This paper presents the first sharp analysis that shows that
(perturbed) gradient descent finds an approximate second-
order stationary point in at most polylog(d) iterations, thus
escaping all saddle points efficiently. Our main technical
contributions are as follows:

e For (-gradient Lipschitz, p-Hessian Lipschitz func-
tions (possibly non-convex), gradient descent with ap-
propriate perturbations finds an e-second-order sta-
tionary point in O(£(f(xo) — f*)/€?) iterations. This
rate matches the well-known convergence rate of gra-
dient descent to first-order stationary points up to log
factors.

e Under a strict-saddle condition (see Assumption A2),
the same convergence result applies for local minima.
This means that gradient descent can escape all saddle
points with only logarithmic overhead in runtime.

e When the function has local structure, such as local
strong convexity (see Assumption A3.a), the above re-
sults can be further improved to linear convergence.
We give sharp rates that are comparable to previous
problem-specific local analysis of gradient descent
with smart initialization (see Section 1.2).

o All the above results rely on a new characterization of
the geometry around saddle points: points from where
gradient descent gets stuck at a saddle point constitute
a thin “band.” We develop novel techniques to bound
the volume of this band. As a result, we can show that
after a random perturbation the current point is very
unlikely to be in the “band”; hence, efficient escape
from the saddle point is possible (see Section 5).

1.2. Related Work

Over the past few years, there have been many problem-
specific convergence results for non-convex optimization.
One line of work requires a smart initialization algorithm
to provide a coarse estimate lying inside a local neighbor-
hood, from which popular local search algorithms enjoy
fast local convergence (see, e.g., Netrapalli et al., 2013;
Candes et al., 2015; Sun & Luo, 2016; Bhojanapalli et al.,
2016). While there are not many results that show global
convergence for non-convex problems, Jain et al. (2015)
show that gradient descent yields global convergence rates
for matrix square-root problems. Although these results

How to Escape Saddle Points Efficiently

Table 1. Oracle models and iteration complexity for convergence
to second-order stationary point

Algorithm Iterations Oracle
Ge et al. (2015) O(poly(d/e)) Gradient

Levy (2016) O(d®poly(1/¢)) Gradient

This Work O(log*(d)/€?) Gradient

Agarwal et al. (2016) O(log(d)/e"/*) Hessian-vector
Carmon et al. (2016) O(log(d)/¢"/*) Hessian-vector
Carmon & Duchi

2 .
2016) O(log(d)/e*) Hessian-vector
Nesterov & Polyak 1.5 .
(2006) O(1/e*®) Hessian
Curtis et al. (2014) O(1/€*%) Hessian

give strong guarantees, the analyses are heavily tailored to
specific problems, and it is unclear how to generalize them
to a wider class of non-convex functions.

For general non-convex optimization, there are a few pre-
vious results on finding second-order stationary points.
These results can be divided into the following three cate-
gories, where, for simplicity of presentation, we only high-
light dependence on dimension d and €, assuming that all
other problem parameters are constant from the point of
view of iteration complexity:

Hessian-based: Traditionally, only second-order opti-
mization methods were known to converge to second-order
stationary points. These algorithms rely on computing the
Hessian to distinguish between first- and second-order sta-
tionary points. Nesterov & Polyak (2006) designed a cubic
regularization algorithm which converges to an e-second-
order stationary point in O(1/€!-®) iterations. Trust region
algorithms (Curtis et al., 2014) can also achieve the same
performance if the parameters are chosen carefully. These
algorithms typically require the computation of the inverse
of the full Hessian per iteration, which can be very expen-
sive.

Hessian-vector-product-based: A number of recent pa-
pers have explored the possibility of using only Hessian-
vector products instead of full Hessian information in order
to find second-order stationary points. These algorithms re-
quire a Hessian-vector product oracle: given a function f,
a point x and a direction u, the oracle returns V2 f(x) - u.
Agarwal et al. (2016) and Carmon et al. (2016) presented
accelerated algorithms that can find an e-second-order sta-
tionary point in O(logd/e/*) steps. Also, Carmon &
Duchi (2016) showed by running gradient descent as a
subroutine to solve the subproblem of cubic regularization

(which requires Hessian-vector product oracle), it is possi-
ble to find an e-second-order stationary pointin O (log d/€?)
iterations. In many applications such an oracle can be im-
plemented efficiently, in roughly the same complexity as
the gradient oracle. Also, when the function has a Hessian
Lipschitz property such an oracle can be approximated by
differentiating the gradients at two very close points (al-
though this may suffer from numerical issues, thus is sel-
dom used in practice).

Gradient-based: Another recent line of work shows that it
is possible to converge to a second-order stationary point
without any use of the Hessian. These methods feature
simple computation per iteration (only involving gradient
operations), and are closest to the algorithms used in prac-
tice. Ge et al. (2015) showed that stochastic gradient de-
scent could converge to a second-order stationary point in
poly(d/e) iterations, with polynomial of order at least four.
This was improved in Levy (2016) to O(d? - poly(1/¢))
using normalized gradient descent. The current paper im-
proves on both results by showing that perturbed gradi-
ent descent can actually find an e-second-order stationary
point in O(polylog(d)/€?) steps, which matches the guar-
antee for converging to first-order stationary points up to
polylog factors.

2. Preliminaries

In this section, we will first introduce our notation, and then
present some definitions and existing results in optimiza-
tion which will be used later.

2.1. Notation

We use bold upper-case letters A, B to denote matrices and
bold lower-case letters x,y to denote vectors. A;; means
the (i,7)™ entry of matrix A. For vectors we use |-|| to
denote the ¢3-norm, and for matrices we use ||| and ||-||r
to denote spectral norm and Frobenius norm respectively.
We use Omax(*), Omin(-), 0i(-) to denote the largest, the
smallest and the ¢-th largest singular values respectively,
and Apax (+), Amin (+), As (+) for corresponding eigenvalues.

For a function f : R? — R, we use Vf(-) and V2f(-) to
denote its gradient and Hessian, and f* to denote the global
minimum of f(-). We use notation O(+) to hide only abso-
lute constants which do not depend on any problem param-
eter, and notation O() to hide only absolute constants and
log factors. We let B (r) denote the d-dimensional ball
centered at x with radius r; when it is clear from context,
we simply denote it as By (7). We use P (+) to denote pro-
jection onto the set X. Distance and projection are always
defined in a Euclidean sense.

How to Escape Saddle Points Efficiently

2.2. Gradient Descent

The theory of gradient descent often takes its point of de-
parture to be the study of convex optimization.

Definition 1. A differentiable function f(-) is ¢-smooth
(or /-gradient Lipschitz) if:

VX1, X2, [[Vf(x1) = Vf(x2)[< llx1 — x2]|.

Definition 2. A twice-differentiable function f(-) is a-
strongly convex if Vx, Apin(V2f(x)) >«

Such smoothness guarantees imply that the gradient can
not change too rapidly, and strong convexity ensures that
there is a unique stationary point (and hence a global mini-
mum). Standard analysis using these two properties shows
that gradient descent converges linearly to a global opti-
mum X* (see e.g. (Bubeck et al., 2015)).

Theorem 1. Assume f(-) is {-smooth and a-strongly con-
vex. For any € > 0, if we run gradient descent with step
size N = %, iterate x; will be e-close to X* in iterations:

20 Ixo — x*||

Zlog 22— =1

e €
In a more general setting, we no longer have convexity, let
alone strong convexity. Though global optima are difficult
to achieve in such a setting, it is possible to analyze con-
vergence to first-order stationary points.

Definition 3. For a differentiable function f(-), we say
that x is a first-order stationary point if |V f(x)| =
0; we also say x is an e-first-order stationary point if
VI < e

Under an /-smoothness assumption, it is well known that
by choosing the step si.ze n = %, gradient descent con-
verges to first-order stationary points.

Theorem 2 ((Nesterov, 1998)). Assume that the function
f(-) is L-smooth. Then, for any € > 0, if we run gradient
descent with step size n = % and termination condition
IVf(x)|l < € the output will be e-first-order stationary
point, and the algorithm will terminate within the following
number of iterations:

((f(x0) — 1)

€2 '

Note that the iteration complexity does not depend explic-
itly on intrinsic dimension; in the literature this is referred
to as “dimension-free optimization.”

Note that a first-order stationary point can be either a local
minimum or a saddle point or a local maximum. For mini-
mization problems, saddle points and local maxima are un-
desirable, and we abuse nomenclature to call both of them
“saddle points” in this paper. The formal definition is as
follows:

Definition 4. For a differentiable function f(-), we say
that x is a local minimum if x is a first-order stationary
point, and there exists e > 0 so that for any y in the e-
neighborhood of x, we have f(x) < f(y); we also say x
is a saddle point if x is a first-order stationary point but
not a local minimum. For a twice-differentiable function
f(-), we further say a saddle point x is strict (or non-
degenerate) if A\, (V2 f(x)) < 0.

For a twice-differentiable function f(-), we know a saddle
point x must satify Ay (V2f(x)) < 0. Intuitively, for
saddle point x to be strict, we simply rule out the unde-
termined case Apin(V2f(x)) = 0, where Hessian infor-
mation alone is not enough to check whether x is a local
minimum or saddle point. In most non-convex problems,
saddle points are undesirable.

To escape from saddle points and find local minima in a
general setting, we move both the assumptions and guar-
antees in Theorem 2 one order higher. In particular, we
require the Hessian to be Lipschitz:

Definition 5. A twice-differentiable function f(-) is p-
Hessian Lipschitz if:

Vx1, %2, [V2f(x1) = V2 f(x2)]| < pllx1 — xa.

That is, Hessian can not change dramatically in terms of
spectral norm. We also generalize the definition of first-
order stationary point to higher order:

Definition 6. For a p-Hessian Lipschitz function f(-),
we say that x is a second-order stationary point if
IVF(x)|l = 0 and Amin(V2f(x)) > 0; we also say X is
e-second-order stationary point if:

||Vf(X)|| <e¢ and Amin(v2f(x)) > —\//76

Second-order stationary points are very important in non-
convex optimization because when all saddle points are
strict, all second-order stationary points are exactly local
minima.

Note that the literature sometime defines e-second-order
stationary point by two independent error terms; i.e., let-
ting |[Vf(x)| < €5 and Apnin(V2f(x)) > —ep. We in-
stead follow the convention of Nesterov & Polyak (2006)
by choosing ey = /p€, to reflect the natural relations be-
tween the gradient and the Hessian.

3. Main Result

In this section we show that it possible to modify gradi-
ent descent in a simple way so that the resulting algorithm
will provably converge quickly to a second-order stationary
point.

How to Escape Saddle Points Efficiently

Algorithm 2 Perturbed Gradient Descent:
PGD(xo, ¥, p, €,¢, 6, Ay)

X 3max{log(%),4},n — G % -5

Othres < % : E7fthres < 762 ! %7tlhres — le ' \/Zp?

tnoise — _tthres -1
fort=0,1,...do
if ||Vf(Xf)H S Gthres and ¢ — tnoise > tthres then
it — X, tnoise «—t
Xy — X + &, & uniformly ~ Bg(r)
if ¢t — tnoise = tthres and f(Xt) - f(itnoise) > _fthres
then
return x; .
Xtp1 & Xt — T]Vf(Xt)

The algorithm that we analyze is a perturbed form of gra-
dient descent (see Algorithm 2). The algorithm is based on
gradient descent with step size 7. When the norm of the
current gradient is small (< gures) (Which indicates that the
current iterate X, is potentially near a saddle point), the al-
gorithm adds a small random perturbation to the gradient.
The perturbation is added at most only once every fpyes it-
erations.

To simplify the analysis we choose the perturbation &; to
be uniformly sampled from a d-dimensional ball'. The use
of the threshold #y,.s ensures that the dynamics are mostly
those of gradient descent. If the function value does not
decrease enough (by fines) after ¢y iterations, the algo-
rithm outputs X, ... The analysis in this section shows that
under this protocol, the output x;_, is necessarily “close”
to a second-order stationary point.

We first state the assumptions that we require.

Assumption Al. Function f(-) is both ¢-smooth and p-
Hessian Lipschitz.

The Hessian Lipschitz condition ensures that the function
is well-behaved near a saddle point, and the small pertur-
bation we add will suffice to allow the subsequent gradient
updates to escape from the saddle point. More formally, we
have:

Theorem 3. Assume that f(-) satisfies Al. Then there
exists an absolute constant cpyax sSuch that, for any 6 >
0,e < %, Ay > f(x0) — f*, and constant ¢ <
Cmax, PGD(x0,4,p,€,¢,6,A¢) will output an e-second-
order stationary point, with probability 1—0, and terminate
in the following number of iterations:

o (af(xi)z) ot (dm&f» |

"Note that uniform sampling from a d-dimensional ball can

be done efficiently by sampling Ui x H¥7\I where U~
Uniform([0, 1]) and Y ~ AN(0,I4) (Harman & Lacko, 2010).

Strikingly, Theorem 3 shows that perturbed gradient de-
scent finds a second-order stationary point in almost the
same amount of time that gradient descent takes to find
first-order stationary point. The step size n is chosen as
O(1/¢) which is in accord with classical analyses of con-
vergence to first-order stationary points. Though we state
the theorem with a certain choice of parameters for sim-
plicity of presentation, our result holds even if we vary the
parameters up to constant factors.

Without loss of generality, we can focus on the case € <
¢%/p, as in Theorem 3. In the case ¢ > (2/p, standard
gradient descent without perturbation—Theorem 2—easily
solves the problem. This is because by Al, we always have
Amin(V2f(x)) > —€ > —,/pe, which means that all e-
second-order stationary points are e-first order stationary
points.

We believe that the dependence on at least one log d fac-
tor in the iteration complexity is unavoidable in the non-
convex setting, as our result can be directly applied to the
principal component analysis problem, for which the best
known runtimes (for the power method or Lanczos method)
incur a log d factor due to random initialization. Establish-
ing this formally is still an open question however.

To provide some intuition for Theorem 3, consider an iter-
ate x; which is not yet an e-second-order stationary point.
By definition, either (1) the gradient V f(x;) is large, or
(2) the Hessian V2 f(x;) has a significant negative eigen-
value. Traditional analysis works in the first case. The
crucial step in the proof of Theorem 3 involves handling
the second case: when the gradient is small ||V f(x;)]] <
Jwmres and the Hessian has a significant negative eigenvalue
Amin(V2f(%¢)) < —/p€, then adding a perturbation, fol-
lowed by standard gradient descent for tgs steps, de-
creases the function value by at least fies, with high prob-
ability. The proof of this fact relies on a novel characteri-
zation of geometry around saddle points (see Section 5)

If we are able to make stronger assumptions on the objec-
tive function we are able to strengthen our main result. This
further analysis is presented in the next section.

3.1. Functions with Strict Saddle Property

In many real applications, objective functions further admit
the property that all saddle points are strict (Ge et al., 2015;
Sun et al., 2016a;b; Bhojanapalli et al., 2016; Ge et al.,
2016). In this case, all second-order stationary points are
local minima and hence convergence to second-order sta-
tionary points (Theorem 3) is equivalent to convergence to
local minima.

To state this result formally, we introduce a robust version
of the strict saddle property (cf. Ge et al., 2015):

Assumption A2. Function f(-) is (6,~, ()-strict saddle.

How to Escape Saddle Points Efficiently

That is, for any x, at least one of following holds:

o [VI(x)] =0.
i)‘min(VQf(X)) < —7.

e x is (-close to X'* — the set of local minima.

Intuitively, the strict saddle assumption states that the R¢
space can be divided into three regions: 1) a region where
the gradient is large; 2) a region where the Hessian has a
significant negative eigenvalue (around saddle point); and
3) the region close to a local minimum. With this assump-
tion, we immediately have the following corollary:

Corollary 4. Let f(-) satisfy Al and A2. Then, there
exists an absolute constant cyax such that, for any 6 >
0,Ar > f(x0) — f* constant ¢ < cpax, and letting
¢ = min(0,v?/p), PGD(xo, Y, p,€,c, 8, As) will output a
point (-close to X*, with probability 1 — §, and terminate
in the following number of iterations:

o ()= 1) s (42,

e €20

Corollary 4 shows after finding é-second-order stationary
point by Theorem 3 where € = min(6,~v2/p), the output is
also in the (-neighborhood of some local minimum.

Note although Corollary 4 only explicitly asserts that the
output will lie within some fixed radius ¢ from a local
minimum. In many real applications, we further have that
¢ can be written as a function ((#) which decreases lin-
early or polynomially depending on 8, while ~ will be non-
decreasing w.r.t f. In these cases, the above corollary fur-
ther gives a convergence rate to a local minimum.

3.2. Functions with Strong Local Structure

The convergence rate in Theorem 3 is polynomial in e,
which is similar to that of Theorem 2, but is worse than the
rate of Theorem 1 because of the lack of strong convexity.
Although global strong convexity does not hold in the non-
convex setting that is our focus, in many machine learning
problems the objective function may have a favorable local
structure in the neighborhood of local minima (Ge et al.,
2015; Sun et al., 2016a;b; Sun & Luo, 2016). Exploiting
this property can lead to much faster convergence (linear
convergence) to local minima. One such property that en-
sures such convergence is a local form of smoothness and
strong convexity:

Assumption A3.a. In a (-neighborhood of the set of local
minima X™*, the function f(-) is a-strongly convex, and
(-smooth.

Here we use different letter 5 to denote the local smooth-
ness parameter (in contrast to the global smoothness pa-
rameter £). Note that we always have 5 < /.

Algorithm 3 Perturbed Gradient Descent with Local Im-
provement: PGDIi(xo, ¢, p, €,¢,6, Ay, 3)
Xo < PGD(xq, 4, p,€,¢,0,Ay)
fort=0,1,...do
X1 < X¢ — %Vf(xt)

However, often even local a-strong convexity does not
hold. We thus introduce the following relaxation:

Assumption A3.b. In a ¢-neighborhood of the set of local
minima X*, the function f(-) satisfies a («, 3)-regularity
condition if for any x in this neighborhood:

(90 x=Pa () = G 1x = Pres () P+ 55197) -
ey

Here P~ (-) is the projection on to the set X*. Note (a, ()-
regularity condition is more general and is directly implied
by standard -smooth and a-strongly convex conditions.
This regularity condition commonly appears in low-rank
problems such as matrix sensing and matrix completion,
and has been used in Bhojanapalli et al. (2016); Zheng &
Lafferty (2016), where local minima form a connected set,
and where the Hessian is strictly positive only with respect
to directions pointing outside the set of local minima.

Gradient descent naturally exploits local structure very
well. In Algorithm 3, we first run Algorithm 2 to output
a point within the neighborhood of a local minimum, and
then perform standard gradient descent with step size .

B
We can then prove the following theorem:

Theorem 5. Let f(-) satisfy Al, A2, and A3.a (or
A3.b). Then there exists an absolute constant cpax such
that, for any § > 0,¢ > 0,Ay > f(xo) — f*
constant ¢ < Cmax, and letting € = min(6,v2/p),
PGDIi(x¢,4, p, € ¢, 0, Ay, B) will output a point that is e-
close to X*, with probability 1 — ¢, in the following number
of iterations:

0 (B =1 o (A1) 510,

é2 23 o

Theorem 5 says that if strong local structure is present,
the convergence rate can be boosted to linear convergence
(log %). In this theorem we see that sequence of iterations
can be decomposed into two phases. In the first phase, per-
turbed gradient descent finds a (-neighborhood by Corol-
lary 4. In the second phase, standard gradient descent takes
us from (to e-close to a local minimum. Standard gradi-
ent descent and Assumption A3.a (or A3.b) make sure that
the iterate never steps out of a {-neighborhood in this sec-
ond phase, giving a result similar to Theorem 1 with linear
convergence.

How to Escape Saddle Points Efficiently

4. Example — Matrix Factorization

As a simple example to illustrate how to apply our gen-
eral theorems to specific non-convex optimization prob-
lems, we consider a symmetric low-rank matrix factoriza-
tion problem, based on the following objective function:

1

i U)=_|UU" - M*|? 2

plin f(U) =3 £ 2)

where M* € R9X4 For simplicity, we assume
rank(M*) = r, and denote o := o0;(M*), of =

o(M*). Clearly, in this case the global minimum of func-
tion value is zero, which is achieved at V* = TD'/? where
TDT is the SVD of the symmetric real matrix M*.

The following two lemmas show that the objective function
in Eq. (2) satisfies the geometric assumptions Al, A2,and
A3.b. Moreover, all local minima are global minima.

Lemma 6. For any I' > 0%, the function f(U) defined in
Eq. (2) is 8T-smooth and 121'"/?-Hessian Lipschitz, inside
the region {U|||U||? < T'}.

Lemma 7. For function f(U) defined in Eq. (2), all lo-
cal minima are global minima. The set of global minima
is X* = {V'R|[RR"T = R'R = I}. Furthermore,
F(U)is (&5 (01)3/2, tor, %(a;‘.)l/Q)-strict saddle; and sat-
isfies a (2 1

207, 100%)-regularity condition in a (o%)'/2-

neighborhood of X*.

One caveat is that since the objective function is actually
a fourth-order polynomial with respect to U, the smooth-
ness and Hessian Lipschitz parameters from Lemma 6 nat-
urally depend on ||U||. Fortunately, we can further show
that gradient descent (even with perturbation) does not in-
crease | U|| beyond O(max{||Uy||, (¢F)'/?}). Then, ap-
plying Theorem 5 gives:

Theorem 8. There exists an absolute constant cp .y such
that the following holds. For the objective function in
Eq. (2), for any § > 0 and constant ¢ < Cmax
and for TV/2 := 2max{|Uy||,3(c7)'/2}, the output of
PGDIi(Uy, 8T, 12I'1/2, (&7 ¢ 5 112 100%), will be -
close to the global minimum set X*, with probability 1 — 9§,
after the following number of iterations:

r* dr x x
0] <r (> log* (> + ﬂlog UT) .
ox ook oX €
Theorem 8 establishes global convergence of perturbed
gradient descent from an arbitrary initial point Uy, includ-

ing exact saddle points. Suppose we initialize at Uy = 0,
then our iteration complexity becomes:

O (r(k*)* log*(dk* /) + K* log(ay/e)),

where k* = o7 /o is the condition number of the matrix
M*. We see that in the first phase, to move from a neigh-
borhood of the solution, our method requires a number of

iterations scaling as O(r(x*)*). We suspect that this strong
dependence on condition number arises from our generic
assumption that the Hessian Lipschitz is uniformly upper
bounded; it may well be the case that this dependence can
be reduced in the special case of matrix factorization via a
finer analysis of the geometric structure of the problem.

5. Proof Sketch for Theorem 3

In this section we will present the key ideas underlying
the main result of this paper (Theorem 3). We will first
argue the correctness of Theorem 3 given two important
intermediate lemmas. Then we turn to the main lemma,
which establishes that gradient descent can escape from
saddle points quickly. We present full proofs of all these
results in Appendix A. Throughout this section, we use
7,7, Gthres, Jihres and tres as defined in Algorithm 2.

5.1. Exploiting Large Gradient or Negative Curvature

Recall that an e-second-order stationary point is a point
with a small gradient, and where the Hessian does not
have a significant negative eigenvalue. Suppose we are
currently at an iterate x; that is not an e-second-order sta-
tionary point; i.e., it does not satisfy the above proper-
ties. There are two possibilities: (1) The gradient is large:
IV f(x¢)]l > Ginres; Or (2) Around the saddle point we have

va(xt)H S Gthres and)\min(v2f(xt)) S _\/ﬁ-

The following two lemmas address these two cases respec-
tively. They guarantee that perturbed gradient descent will
decrease the function value in both scenarios.

Lemma 9 (Gradient). Assume that f(-) satisfies Al. Then
for gradient descent with stepsize n < %, we have

Flxesn) < fxe) = VI

Lemma 10 (Saddle). (informal) Assume that f(-) sat-
isfies Al, If x; satisfies ||Vf(x)|| < Gihes and
Amin(V2f(x4)) < —\/P€, then adding one perturbation
step followed by ty,.s steps of gradient descent, we have
f(Xtqtg) — F(Xt) < — frnwes with high probability.

We see that Algorithm 2 is designed so that Lemma 10
can be directly applied. According to these two lem-
mas, perturbed gradient descent will decrease the func-
tion value either in the case of a large gradient, or around
strict saddle points. Computing the average decrease in
function value yields the total iteration complexity. Since
Algorithm 2 only terminate when the function value de-
creases too slowly, this guarantees that the output must be
e-second-order stationary point (see Appendix A for formal
proofs).

How to Escape Saddle Points Efficiently

Figure 2. “Narrow band” stuck region in 2D under gradient flow

5.2. Escaping from Saddle Points Quickly

The proof of Lemma 9 is straightforward and follows from
traditional analysis. The key technical contribution of this
paper is the proof of Lemma 10, which gives a new charac-
terization of the geometry around saddle points.

Consider a point x that satisfies the the preconditions of
Lemma 10 (|Vf(X)|]| < gmwes and Amin(V2f(X)) <
—4/pe). After adding the perturbation (xg = x+¢), we can
view x(as coming from a uniform distribution over Bx (),
which we call the perturbation ball. We can divide this
perturbation ball B (r) into two disjoint regions: (1) an es-
caping region X..,. which consists of all the points x €
Bx(r) whose function value decreases by at least fipes af-
ter tres Steps; (2) a stuck region Xy = Bx (1) — Xescape-
Our general proof strategy is to show that Xk consists of
a very small proportion of the volume of perturbation ball.
After adding a perturbation to X, point Xy has a very small
chance of falling in Xk, and hence will escape from the
saddle point efficiently.

Let us consider the nature of Xyyck. For simplicity, let us
imagine that X is an exact saddle point whose Hessian has
only one negative eigenvalue, and d — 1 positive eigenval-
ues. Let us denote the minimum eigenvalue direction as
e;. In this case, if the Hessian remains constant (and we

have a quadratic function), the stuck region Xk consists
of points x such that x — x has a small e; component. This
is a straight band in two dimensions and a flat disk in high
dimensions. However, when the Hessian is not constant,
the shape of the stuck region is distorted. In two dimen-
sions, it forms a “narrow band” as plotted in Figure 2 on
top of the gradient flow. In three dimensions, it forms a
“thin pancake” as shown in Figure 1.

The major challenge here is to bound the volume of this
high-dimensional non-flat “pancake” shaped region Xck-
A crude approximation of this “pancake” by a flat “disk”
loses polynomial factors in the dimensionalilty, which
gives a suboptimal rate. Our proof relies on the following
crucial observation: Although we do not know the explicit
form of the stuck region, we know it must be very “thin,”
therefore it cannot have a large volume. The informal state-
ment of the lemma is as follows:

Lemma 11. (informal) Suppose X satisfies the precondi-
tion of Lemma 10, and let 1 be the smallest eigendirec-
tion of V2 f(x). For any § € (0,1/3] and any two points
w,u € Bg(r), if w — u = pre; and p > 6/(2V/d), then
at least one of w,u is not in the stuck region Xgck.

Using this lemma it is not hard to bound the volume of
the stuck region: we can draw a straight line along the e;
direction which intersects the perturbation ball (shown as
purple line segment in Figure 2). For any two points on
this line segment that are at least 07 /(2+v/d) away from each
other (shown as red points w, u in Figure 2), by Lemma 11,
we know at least one of them must not be in Xgycx. This
implies if there is one point 1 € Xk on this line segment,
then Xk on this line can be at most an interval of length
or/ v/d around 1. This establishes the “thickness” of Xstuck
in the e; direction, which is turned into an upper bound on
the volume of the stuck region Xk by standard calculus.

6. Conclusion

This paper presents the first (nearly) dimension-free result
for gradient descent in a general non-convex setting. We
present a general convergence result and show how it can
be further strengthened when combined with further struc-
ture such as strict saddle conditions and/or local regular-
ity/convexity.

There are still many related open problems. First, in the
presence of constraints, it is worthwhile to study whether
gradient descent still admits similar sharp convergence re-
sults. Another important question is whether similar tech-
niques can be applied to accelerated gradient descent. We
hope that this result could serve as a first step towards a
more general theory with strong, almost dimension free
guarantees for non-convex optimization.

How to Escape Saddle Points Efficiently

References

Agarwal, Naman, Allen-Zhu, Zeyuan, Bullins, Brian,
Hazan, Flad, and Ma, Tengyu. Finding approximate lo-
cal minima for nonconvex optimization in linear time.
arXiv preprint arXiv:1611.01146, 2016.

Bhojanapalli, Srinadh, Neyshabur, Behnam, and Srebro,
Nathan. Global optimality of local search for low
rank matrix recovery. arXiv preprint arXiv:1605.07221,
2016.

Bubeck, Sébastien et al. Convex optimization: Algorithms
and complexity. Foundations and Trends®) in Machine
Learning, 8(3-4):231-357, 2015.

Candes, Emmanuel J, Li, Xiaodong, and Soltanolkotabi,
Mahdi. Phase retrieval via wirtinger flow: Theory and
algorithms. IEEFE Transactions on Information Theory,
61(4):1985-2007, 2015.

Carmon, Yair and Duchi, John C. Gradient descent effi-
ciently finds the cubic-regularized non-convex newton
step. arXiv preprint arXiv:1612.00547, 2016.

Carmon, Yair, Duchi, John C, Hinder, Oliver, and Sidford,
Aaron. Accelerated methods for non-convex optimiza-
tion. arXiv preprint arXiv:1611.00756, 2016.

Choromanska, Anna, Henaff, Mikael, Mathieu, Michael,
Arous, Gérard Ben, and LeCun, Yann. The loss surface
of multilayer networks. arXiv:1412.0233, 2014.

Curtis, Frank E, Robinson, Daniel P, and Samadi, Moham-
madreza. A trust region algorithm with a worst-case iter-
ation complexity of\ mathcal {O}(\ epsilon"{-3/2}) for
nonconvex optimization. Mathematical Programming,
pp. 1-32, 2014.

Dauphin, Yann N, Pascanu, Razvan, Gulcehre, Caglar,
Cho, Kyunghyun, Ganguli, Surya, and Bengio, Yoshua.
Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization. In Advances
in Neural Information Processing Systems, pp. 2933—
2941, 2014.

Ge, Rong, Huang, Furong, Jin, Chi, and Yuan, Yang. Es-
caping from saddle points—online stochastic gradient
for tensor decomposition. In COLT, 2015.

Ge, Rong, Lee, Jason D, and Ma, Tengyu. Matrix com-
pletion has no spurious local minimum. In Advances in
Neural Information Processing Systems, pp. 29732981,
2016.

Harman, Radoslav and Lacko, Vladimir. On decomposi-
tional algorithms for uniform sampling from n-spheres
and n-balls. Journal of Multivariate Analysis, 101(10):
2297-2304, 2010.

Jain, Prateek, Jin, Chi, Kakade, Sham M, and Netrapalli,
Praneeth. Computing matrix squareroot via non convex
local search. arXiv preprint arXiv:1507.05854, 2015.

Kawaguchi, Kenji. Deep learning without poor local min-
ima. In Advances In Neural Information Processing Sys-
tems, pp. 586-594, 2016.

Lee, Jason D, Simchowitz, Max, Jordan, Michael I, and
Recht, Benjamin. Gradient descent only converges to
minimizers. In Conference on Learning Theory, pp.
1246-1257, 2016.

Levy, Kfir Y. The power of normalization: Faster evasion of
saddle points. arXiv preprint arXiv:1611.04831, 2016.

Nesterov, Yu. Introductory lectures on convex program-
ming volume i: Basic course. Lecture notes, 1998.

Nesterov, Yurii and Polyak, Boris T. Cubic regularization
of newton method and its global performance. Mathe-
matical Programming, 108(1):177-205, 2006.

Netrapalli, Praneeth, Jain, Prateek, and Sanghavi, Sujay.
Phase retrieval using alternating minimization. In Ad-
vances in Neural Information Processing Systems, pp.
2796-2804, 2013.

Park, Dohyung, Kyrillidis, Anastasios, Caramanis, Con-
stantine, and Sanghavi, Sujay. Non-square matrix
sensing without spurious local minima via the burer-
monteiro approach. arXiv preprint arXiv:1609.03240,
2016.

Rumelhart, David E, Hinton, Geoffrey E, and Williams,
Ronald J. Learning representations by back-propagating
errors. Cognitive modeling, 5, 1988.

Sun, Ju, Qu, Qing, and Wright, John. Complete dictionary
recovery over the sphere i: Overview and the geomet-
ric picture. IEEE Transactions on Information Theory,
2016a.

Sun, Ju, Qu, Qing, and Wright, John. A geometric anal-
ysis of phase retrieval. In Information Theory (ISIT),
2016 IEEE International Symposium on, pp. 2379-2383.
IEEE, 2016b.

Sun, Ruoyu and Luo, Zhi-Quan. Guaranteed matrix com-
pletion via non-convex factorization. IEEE Transactions
on Information Theory, 62(11):6535-6579, 2016.

Zheng, Qinqging and Lafferty, John. Convergence analysis
for rectangular matrix completion using burer-monteiro
factorization and gradient descent. arXiv preprint
arXiv:1605.07051, 2016.

