
Supplementary Material for
Decoupled Neural Interfaces using Synthetic Gradients

A. Unified View of Synthetic Gradients
The main idea of this paper is to learn a synthetic gradi-
ent, i.e. a separate prediction of the loss gradient for every
layer of the network. The synthetic gradient can be used
as a drop-in replacement for the backpropagated gradient.
This provides a choice of two gradients at each layer: the
gradient of the true loss, backpropagated from subsequent
layers; or the synthetic gradient, estimated from the activa-
tions of that layer.

In this section we present a unified algorithm, BP (�), that
mixes these two gradient estimates as desired using a pa-
rameter �. This allows the backpropagated gradient to be
used insofar as it is available and trusted, but provides a
meaningful alternative when it is not. This mixture of gra-
dients is then backpropagated to the previous layer.

A.1. BP(0)

We begin by defining our general setup and consider the
simplest instance of synthetic gradients, BP (0). We con-
sider a feed-forward network with activations h

k

for k 2
{1, . . . , K}, and parameters ✓

k

corresponding to layers
k 2 {1, . . . , K}. The goal is to optimize a loss function
L that depends on the final activations h

K

. The key idea
is to approximate the gradient of the loss, g

k

⇡ @L

@h

k

, us-
ing a synthetic gradient, g

k

. The synthetic gradient is es-
timated from the activations at layer k, using a function
g

k

= g(h

k

, �

k

) with parameters �

k

. The overall loss can
then be minimized by stochastic gradient descent on the
synthetic gradient,

@L

@✓

k

=

@L

@h

k

@h

k

@✓

k

⇡ g

k

@h

k

@✓

k

.

In order for this approach to work, the synthetic gradient
must also be trained to approximate the true loss gradient.
Of course, it could be trained by regressing g

k

towards @L

@h

k

,
but our underlying assumption is that the backpropagated
gradients are not available. Instead, we “unroll” our syn-
thetic gradient just one step,

g

k

⇡ @L

@h

k

=

@L

@h

k+1

@h

k+1

@h

k

⇡ g

k+1
@h

k+1

@h

k

,

and treat the unrolled synthetic gradient z

k

= g

k+1
@h

k+1

@h

k

as a constant training target for the synthetic gradient g

k

.

Specifically we update the synthetic gradient parameters �

k

so as to minimise the mean-squared error of these one-step
unrolled training targets, by stochastic gradient descent on
@(z

k

�g

k

)2

@�

k

. This idea is analogous to bootstrapping in the
TD(0) algorithm for reinforcement learning (Sutton, 1988).

A.2. BP(�)

In the previous section we removed backpropagation alto-
gether. We now consider how to combine synthetic gra-
dients with a controlled amount of backpropagation. The
idea of BP(�) is to mix together many different estimates
of the loss gradient, each of which unrolls the chain rule for
n steps and then applies the synthetic gradient,

g

n

k

= g

k+n

@h

k+n

@h

k+n�1
...

@h

k+1

@h

k

⇡ @L

@h

k+n

@h

k+n

@h

k+n�1
...

@h

k+1

@h

k

=

@L

@h

k

.

We mix these estimators together recursively using a
weighting parameter �

k

(see Figure 1),

ḡ

k

= �

k

ḡ

k+1
@h

k+1

@h

k

+ (1 � �

k

)g

k

.

The resulting �-weighted synthetic gradient ḡ

k

is a geomet-
ric mixture of the gradient estimates g

1
k

, ..., g

2
K

,

ḡ

k

=

KX

n=k

c

n

k

g

n

k

.

where c

n

k

= (1��

n

)

Q
n�1
j=k

�

j

is the weight of the nth gra-
dient estimator g

n

k

, and c

K

k

= 1 �
P

K�1
n=1 c

n

k

is the weight
for the final layer. This geometric mixture is analogous to
the �-return in TD(�) (Sutton, 1988).

To update the network parameters ✓, we use the �-weighted
synthetic gradient estimate in place of the loss gradient,

@L

@✓

k

=

@L

@h

k

@h

k

@✓

k

⇡ ḡ

k

@h

k

@✓

k

To update the synthetic gradient parameters �

k

, we un-
roll the �-weighted synthetic gradient by one step, z̄

k

=

Decoupled Neural Interfaces using Synthetic Gradients

@h4
@h3
✏✏

�3
@h4
@h3
✏✏

h3

✓4

OO

�3

//
g3

@L

@h3

@h3
@h2

✏✏

@L

@h3
g3

oo @L

@h3

�2
@h3
@h2

✏✏

g3
(1��3)oo

h2

✓3

OO

�2

//
g2

@L

@h2

@h2
@h1

✏✏

@L

@h2
g2

oo @L

@h2

�1
@h2
@h1

✏✏

g2
(1��2)oo

h1

✓2

OO

�1

//
g1

@L

@h1

@L

@h1
g1

oo @L

@h1
g1

(1��1)oo

BP (1) BP (0) BP (�)

� Forward computation � � Backward computation �

Figure 8. (Left) Forward computation of synthetic gradients. Arrows represent computations using parameters specified in label. (Right)
Backward computation in BP(�). Each arrow may post-multiply its input by the specified value in blue label. BP(1) is equivalent to
error backpropagation.

ḡ

k+1
@h

k+1

@h

k

, and treat this as a constant training target
for the synthetic gradient g

k

. Parameters are adjusted by
stochastic gradient descent to minimise the mean-squared
error between the synthetic gradient and its unrolled target,
@(z̄

k

�g

k

)2

@�

k

.

The two extreme cases of BP (�) result in simpler algo-
rithms. If �

k

= 0 8k we recover the BP (0) algorithm from
the previous section, which performs no backpropagation
whatsoever. If �

k

= 1 8k then the synthetic gradients are
ignored altogether and we recover error backpropagation.
For the experiments in this paper we have used binary val-
ues �

k

2 {0, 1}.

A.3. Recurrent BP (�)

We now discuss how BP (�) may be applied to RNNs. We
apply the same basic idea as before, using a synthetic gra-
dient as a proxy for the gradient of the loss. However, net-
work parameters ✓ and synthetic gradient parameters � are
now shared across all steps. There may also be a separate
loss l

k

at every step k. The overall loss function is the sum
of the step losses, L =

P1
k=1 l

k

.

The synthetic gradient g

k

now estimates the cumulative
loss from step k + 1 onwards, g

k

⇡ @

P1
j=k+1 l

j

@h

k

. The �-
weighted synthetic gradient recursively combines these fu-
ture estimates, and adds the immediate loss to provide an
overall estimate of cumulative loss from step k onwards,

ḡ

k

=

@l

k

@h

k

+ �

k

ḡ

k+1
@h

k+1

@h

k

+ (1 � �

k

)g

k

.

Network parameters are adjusted by gradient descent on the

cumulative loss,

@L

@✓

=

1X

k=1

@L

@h

k

@h

k

@✓

=

1X

k=1

@

P1
j=k

l

j

@h

k

@h

k

@✓

⇡
1X

k=1

ḡ

k

@h

k

@✓

.

To update the synthetic gradient parameters �, we again
unroll the �-weighted synthetic gradient by one step, z̄

k

=

@l

k

@h

k

+ ḡ

k+1
@h

k+1

@h

k

, and minimise the MSE with respect to

this target, over all time-steps,
P1

k=1
@(z̄

k

�g

k

)2

@�

.

We note that for the special case BP (0), there is no back-
propagation at all and therefore weights may be updated in
a fully online manner. This is possible because the syn-
thetic gradient estimates the gradient of cumulative future
loss, rather than explicitly backpropagating the loss from
the end of the sequence.

Backpropagation-through-time requires computation from
all time-steps to be retained in memory. As a result, RNNs
are typically optimised in N-step chunks [mN, (m+1)N].
For each chunk m, the cumulative loss is initialised to
zero at the final step k = (m + 1)N , and then errors
are backpropagated-through-time back to the initial step
k = mN . However, this prevents the RNN from mod-
elling longer term interactions. Instead, we can initialise
the backpropagation at final step k = (m + 1)N with a
synthetic gradient g

k

that estimates long-term future loss,
and then backpropagate the synthetic gradient through the
chunk. This algorithm is a special case of BP (�) where
�

k

= 0 if k mod N = 0 and �

k

= 1 otherwise. The
experiments in Sect. 3.1 illustrate this case.

Decoupled Neural Interfaces using Synthetic Gradients

A.4. Scalar and Vector Critics

One way to estimate the synthetic gradient is to first es-
timate the loss using a critic, v(h

k

, �) ⇡ E [L|h
k

], and
then use the gradient of the critic as the synthetic gradient,
g

k

=

@v(h
k

,�)
@h

k

⇡ @L

@h

k

. This provides a choice between a
scalar approximation of the loss, or a vector approximation
of the loss gradient, similar to the scalar and vector critics
suggested by Fairbank (Fairbank, 2014).

These approaches have previously been used in control
(Werbos, 1992; Fairbank, 2014) and model-based rein-
forcement learning (Heess et al., 2015). In these cases the
dependence of total cost or reward on the policy parame-
ters is computed by backpropagating through the trajectory.
This may be viewed as a special case of the BP (�) algo-
rithm; intermediate values of � < 1 were most successful
in noisy environments (Heess et al., 2015).

It is also possible to use other styles of critics or error ap-
proximation techniques such as Feedback Alignment (Lil-
licrap et al., 2016), Direct Feedback Alignment (Nøkland,
2016), and Kickback (Balduzzi et al., 2014)) – interestingly
Czarnecki et al. (2017) shows that they can all be framed in
the synthetic gradients framework presented in this paper.

B. Synthetic Gradients are Sufficient
In this section, we show that a function f(h

t

, ✓

t+1:T),
which depends only on the hidden activations h

t

and down-
stream parameters ✓

t+1:T , is sufficient to represent the gra-
dient of a feedforward or recurrent network, without any
other dependence on past or future inputs x1:T or targets
y1:T .
In (stochastic) gradient descent, parameters are updated ac-
cording to (samples of) the expected loss gradient,

E
x1:T ,y1:T


@L

@✓
t

�
= E

x1:T ,y1:T


@L

@h
t

@h
t

@✓
t

�

= E
x1:T ,y1:T


E
x

t+1:T ,y

t:T |x1:t,y1:t�1


@L

@h
t

@h
t

@✓
t

��

= E
x1:T ,y1:T


E
x

t+1:T ,y

t:T |h
t


@L

@h
t

�
@h

t

@✓
t

�

= E
x1:T ,y1:T


g(h

t

, ✓
t+1:T)

@h
t

@✓
t

�

where g(h

t

, ✓

t+1:T) = E
x

t+1:T ,y

t:T |h
t

h
@L

@h

t

i
is the ex-

pected loss gradient given hidden activations h

t

. Pa-
rameters may be updated using samples of this gradient,
g(h

t

, ✓

t+1:T)

@h

t

@✓

t

.

The synthetic gradient g(h

t

, v

t

) ⇡ g(h

t

, ✓

t+1:T) approxi-
mates this expected loss gradient at the current parameters
✓

t+1:T . If these parameters are frozen, then a sufficiently
powerful synthetic gradient approximator can learn to per-
fectly represent the expected loss gradient. This is similar
to an actor-critic architecture, where the neural network is

MNIST (% Error) CIFAR-10 (% Error)

Layers

N
o

B
pr

op

B
pr

op

D
N

I

cD
N

I

N
o

B
pr

op

B
pr

op

D
N

I

cD
N

I

FC
N

3 9.3 2.0 1.9 2.2 54.9 43.5 42.5 48.5
4 12.6 1.8 2.2 1.9 57.2 43.0 45.0 45.1
5 16.2 1.8 3.4 1.7 59.6 41.7 46.9 43.5
6 21.4 1.8 4.3 1.6 61.9 42.0 49.7 46.8

C
N

N 3 0.9 0.8 0.9 1.0 28.7 17.9 19.5 19.0
4 2.8 0.6 0.7 0.8 38.1 15.7 19.5 16.4

DNI
cDNI

Bprop
3 4 5 6
Layers

DNI
cDNI

Bprop
3 4 5 6

Layers

Table 2. Using DNI between every layer for FCNs and CNNs on
MNIST and CIFAR-10. Left: Summary of results, where values
are final test error (%) after 500k iterations. Right: Test error dur-
ing training of MNIST FCN models for regular backpropagation,
DNI, and cDNI (DNI where the synthetic gradient model is also
conditioned on the labels of the data).

the actor and the synthetic gradient is the critic.

In practice, we allow the parameters to change over the
course of training, and therefore the synthetic gradient must
learn online to track the gradient g(h

t

, ✓

t+1:T)

C. Additional Experiments
Every layer DNI We first look at training an FCN for
MNIST digit classification (LeCun et al., 1998b). For an
FCN, “layer” refers to a linear transformation followed by
batch-normalisation (Ioffe & Szegedy, 2015) and a recti-
fied linear non-linearity (ReLU) (Glorot et al., 2011). All
hidden layers have the same number of units, 256. We use
DNI as in the scenario illustrated in Fig. 3 (d), where DNIs
are used between every layer in the network. E.g. for a four
layer network (three hidden, one final classification) there
will be three DNIs. In this scenario, every layer can be
updated as soon as its activations have been computed and
passed through the synthetic gradient model of the layer
above, without waiting for any other layer to compute or
loss to be generated. We perform experiments where we

Decoupled Neural Interfaces using Synthetic Gradients

fi+1

fi

…

…

Mi+1

ˆ

�

i

hi

fi

Mi+1

ˆ

�

ihi
�

i

hi

fi+1

fi

Mi+1

Mi+2

hi+1 ˆ

�

i+1

fi+2

…

…

Mi+2

hi+1
hi+1

ˆ

�

i+1�

i+1

fi+1

fi

Mi+1

fi+2 Mi+2

Update fi Update fi+1 & Mi+1 Update fi+2 & Mi+2

Figure 9. The execution during training of a feed-forward network. Coloured modules are those that have been updated for this batch of
inputs. First, layer i executes it’s forward phase, producing hi, which can be used by Mi+1 to produce the synthetic gradient �̂i. The
synthetic gradient is pushed backwards into layer i so the parameters ✓i can be updated immediately. The same applies to layer i + 1
where hi+1 = fi+1(hi), and then �̂i+1 = Mi+2(hi+1) so layer i+1 can be updated. Next, �̂i+1 is backpropagated through layer i+1
to generate a target error gradient �i = f 0

i+1(hi)�̂i+1 which is used as a target to regress �̂i to, thus updating Mi+1. This process is
repeated for every subsequent layer.

vary the depth of the model (between 3 and 6 layers), on
MNIST digit classification and CIFAR-10 object recogni-
tion (Krizhevsky & Hinton, 2009). Full implementation
details can be found in Sect. D.1.

Looking at the results in Table 2 we can see that DNI does
indeed work, successfully update-decoupling all layers at
a small cost in accuracy, demonstrating that it is possi-
ble to produce effective gradients without either label or
true gradient information. Further, once we condition the
synthetic gradients on the labels, we can successfully train
deep models with very little degradation in accuracy. For
example, on CIFAR-10 we can train a 5 layer model, with
backpropagation achieving 42% error, with DNI achieving
47% error, and when conditioning the synthetic gradient on
the label (cDNI) get 44%. In fact, on MNIST we success-
fully trained up to 21 layer FCNs with cDNI to 2% error
(the same as with using backpropagation). Interestingly,
the best results obtained with cDNI were with linear syn-
thetic gradient models.

As another baseline, we tried using historical, stale gradi-
ents with respect to activations, rather than synthetic gra-
dients. We took an exponential average historical gradient,
searching over the entire spectrum of decay rates and the
best results attained on MNIST classification were 9.1%,
11.8%, 15.4%, 19.0% for 3 to 6 layer FCNs respectively –
marginally better than using zero gradients (no backpropa-
gation) and far worse than the associated cDNI results of
2.2%, 1.9%, 1.7%, 1.6%. Note that the experiment de-
scribed above used stale gradients with respect to the ac-
tivations which do not correspond to the same input exam-

ple used to compute the activation. In the case of a fixed
training dataset, one could use the stale gradient from the
same input, but it would be stale by an entire epoch and
contains no new information so would fail to improve the
model. Thus, we believe that DNI, which uses a parametric
approximation to the gradient with respect to activations, is
the most desirable approach.

This framework can be easily applied to CNNs (LeCun
et al., 1998a). The spatial resolution of activations from
layers in a CNN results in high dimensional activations,
so we use synthetic gradient models which themselves
are CNNs without pooling and with resolution-preserving
zero-padding. For the full details of the CNN models please
refer to Sect. D.1. The results of CNN models for MNIST
and CIFAR-10 are also found in Table 2, where DNI and
cDNI CNNs perform exceptionally well compared to true
backpropagated gradient trained models – a three layer
CNN on CIFAR-10 results in 17.9% error with backpropa-
gation, 19.5% (DNI), and 19.0% (cDNI).

Single DNI We look at training an FCN for MNIST digit
classification using a network with 6 layers (5 hidden lay-
ers, one classification layer), but splitting the network into
two unlocked sub-networks by inserting a single DNI at a
variable position, as illustrated in Fig. 3 (c).

Fig. 11 (a) shows the results of varying the depth at which
the DNI is inserted. When training this 6 layer FCN with
vanilla backpropagation we attain 1.6% test error. Incorpo-
rating a single DNI between two layers results in between
1.8% and 3.4% error depending on whether the DNI is af-

Decoupled Neural Interfaces using Synthetic Gradients

…

…

…

…

…

…

…

…

Lt Lt+1 Lt+2
ˆ

�

t

ˆ

�

t+6

…

…
…

…

…

…

Lt+4 Lt+5Lt+3 Lt+6

……

…

…

…

…

…

…

Lt Lt+1 Lt+2ˆ

�

t

…

Lt+3

Lt+3 ˆ

�

t+6

…

…

…

…
Lt+4 Lt+5 Lt+6

…

�

t+3

Update f

ˆ

�

t+3

ˆ

�

t+3

Figure 10. The execution during training of an RNN, with a core function f , shown for T = 3. Changes in colour indicate a weight
update has occurred. The final core of the last unroll is kept in memory. Fresh cores are unrolled for T steps, and the synthetic gradient
from step T (here �̂t+3 for example) is used to approximate the error gradient from the future. The error gradient is backpropagated
through the earliest T cores in memory, which gives a target error gradient for the last time a synthetic gradient was used. This is used to
generate a loss for the synthetic gradient output of the RNN, and all the T cores’ gradients with respect to parameters can be accumulated
and updated. The first T cores in memory are deleted, and this process is repeated. This training requires an extra core to be stored in
memory (T + 1 rather than T as in normal BPTT). Note that the target gradient of the hidden state that is regressed to by the synthetic
gradient model is slightly stale, a similar consequence of online training as seen in RTRL (Williams & Zipser, 1989).

ter the first layer or the penultimate layer respectively. If
we decouple the layers without DNI, by just not backprop-
agating any gradient between them, this results in bad per-
formance – between 2.9% and 23.7% error for after layer 1
and layer 5 respectively.

One can also see from Fig. 11 (a) that as the DNI mod-
ule is positioned closer to the classification layer (going up
in layer hierarchy), the effectiveness of it degrades. This
is expected since now a larger portion of the whole sys-
tem never observes true gradient. However, as we show in
Sect. 3.3, using extra label information in the DNI module
almost completely alleviates this problem.

We also plot the synthetic gradient regression error (L2 dis-
tance), cosine distance, and the sign error (the number of
times the sign of a gradient dimension is predicted incor-
rectly) compared to the true error gradient in Fig. 12. Look-
ing at the L2 error, one can see that the error jumps initially
as the layers start to train, and then the synthetic gradient
model starts to fit the target gradients. The cosine similarity
is on average very slightly positive, indicating that the di-
rection of synthetic gradient is somewhat aligned with that
of the target gradient, allowing the model to train. How-
ever, it is clear that the synthetic gradient is not tracking
the true gradient very accurately, but this does not seem to
impact the ability to train the classifiers.

C.1. Underfitting of Synthetic Gradient Models

If one takes a closer look at learning curves for DNI model
(see Fig. 15 for training error plot on CIFAR-10 with CNN
model) it is easy to notice that the large test error (and its
degradation with depth) is actually an effect of underfitting
and not lack of ability to generalise or lack of convergence
of learning process. One of the possible explanations is the
fact that due to lack of label signal in the DNI module, the
network is over-regularised as in each iteration DNI tries to
model an expected gradient over the label distribution. This
is obviously a harder problem than modelling actual gradi-
ent, and due to underfitting to this subproblem, the whole
network also underfits to the problem at hand. Once label
information is introduced in the cDNI model, the network
fits the training data much better, however using synthetic
gradients still acts like a regulariser, which also translates
to a reduced test error. This might also suggest, that the
proposed method of conditioning on labels can be further
modified to reduce the underfitting effect.

D. Implementation Details
D.1. Feed-Forward Implementation Details

In this section we give the implementation details of the
experimental setup used in the experiments from Sect. 3.3.

Decoupled Neural Interfaces using Synthetic Gradients

(a)

(b)

Figure 11. Test error during training of a 6 layer fully-connected network on MNIST digit classification. Bprop (grey) indicates tra-
ditional, synchronous training with backpropagation, while DNI (blue) shows the use of a (a) single DNI used after a particular layer
indicated above, and (b) every layer using DNI up to a particular depth. Without backpropagating any gradients through the connection
approximated by DNI results in poor performance (red).

Figure 12. Error between the synthetic gradient and the true backpropagated gradient for MNIST FCN where DNI is inserted at a single
position. Sign error refers to the average number of dimensions of the synthetic gradient vector that do not have the same sign as the
true gradient.

Conditional DNI (cDNI) In order to provide DNI mod-
ule with the label information in FCN, we simply concate-
nate the one-hot representation of a sample’s label to the
input of the synthetic gradient model. Consequently for
both MNIST and CIFAR-10 experiments, each cDNI mod-
ule takes ten additional, binary inputs. For convolutional
networks we add label information in the form of one-hot
encoded channel masks, thus we simply concatenate ten
additional channels to the activations, nine out of which
are filled with zeros, and one (corresponding to sample’s
label) is filled with ones.

Common Details All experiments are run for 500k it-
erations and optimised with Adam (Kingma & Ba, 2014)
with batch size of 256. The learning rate was initialised
at 3 ⇥ 10

�5 and decreased by a factor of 10 at 300k and
400k steps. Note the number of iterations, learning rate,
and learning rate schedule was not optimised. We perform
a hyperparameter search over the number of hidden layers

in the synthetic gradient model (from 0 to 2, where 0 means
we use a linear model such that ˆ

� = M(h) = �

w

h + �

b

)
and select the best number of layers for each experiment
type (given below) based on the final test performance. We
used cross entropy loss for classification and L2 loss for
synthetic gradient regression which was weighted by a fac-
tor of 1 with respect to the classification loss. All input data
was scaled to [0, 1] interval. The final regression layer of all
synthetic gradient models are initialised with zero weights
and biases, so initially, zero synthetic gradient is produced.

MNIST FCN Every hidden layer consists of fully-
connected layers with 256 units, followed by batch-
normalisation and ReLU non-linearity. The synthetic gra-
dient models consists of two (DNI) or zero (cDNI) hid-
den layers and with 1024 units (linear, batch-normalisation,
ReLU) followed by a final linear layer with 256 units.

Decoupled Neural Interfaces using Synthetic Gradients

MNIST FCN

CIFAR-10 FCN

MNIST CNN CIFAR-10 CNN

count(odd) = 2

count(odd) = 1 count(3s) = 2

M

A

A

A

A

B

B

M

t=1

t=2

t=3

t=4

A

B

A A A

B

t=4t=3t=2t=1

M

M

count(odd)=2 count(odd)=1

count(3s)=2

Figure 13. Corresponding test error curves during training for the results in Table 2. (a) MNIST digit classification with FCNs, (b)
CIFAR-10 image classification with FCNs. DNI can be easily used with CNNs as shown in (c) for CNNs on MNIST and (d) for CNNs
on CIFAR-10.

Figure 14. Linear DNI models for FCNs on MNIST.

MNIST CNN The hidden layers are all convolutional
layers with 64 5 ⇥ 5 filters with resolution preserving
padding, followed by batch-normalisation, ReLU and 3⇥3

spatial max-pooling in the first layer and average-pooling
in the remaining ones. The synthetic gradient model has
two hidden layers with 64 5 ⇥ 5 filters with resolution pre-
serving padding, batch-normalisation and ReLU, followed
by a final 64 5⇥ 5 filter convolutional layer with resolution
preserving padding.

CIFAR-10 FCN Every hidden layer consists of fully-
connected layers with 1000 units, followed by batch-
normalisation and ReLU non-linearity. The synthetic gra-
dient models consisted of one hidden layer with 4000 units
(linear, batch-normalisation, ReLU) followed by a final lin-
ear layer with 1000 units.

CIFAR-10 CNN The hidden layers are all convolutional
layers with 128 5 ⇥ 5 filters with resolution preserving
padding, followed by batch-normalisation, ReLU and 3⇥3

spatial max-pooling in the first layer and avg-pooling in

the remaining ones. The synthetic gradient model has two
hidden layers with 128 5⇥5 filters with resolution preserv-
ing padding, batch-normalisation and ReLU, followed by
a final 128 5 ⇥ 5 filter convolutional layer with resolution
preserving padding.

Complete Unlock. In the completely unlocked model,
we use the identical architecture used for the synthetic gra-
dient model, but for simplicity both synthetic gradient and
synthetic input models use a single hidden layer (for both
DNI and cDNI), and train it to produce synthetic inputs ˆ

h

i

such that ˆ

h

i

' h

i

. The overall training setup is depicted in
Fig. 6. During testing all layers are connected to each other
for a forward pass, i.e. the synthetic inputs are not used.

D.2. RNN Implementation Details

Common Details All RNN experiments are performed
with an LSTM recurrent core, where the output is used
for a final linear layer to model the task. In the case of
DNI and DNI+Aux, the output of the LSTM is also used

Decoupled Neural Interfaces using Synthetic Gradients

(a)

Figure 15. (a) Training error for CIFAR-10 CNNs.

as input to a single hidden layer synthetic gradient model
with the same number of units as the LSTM, with a final
linear projection to two times the number of units of the
LSTM (to produce the synthetic gradient of the output and
the cell state). The synthetic gradient is scaled by a fac-
tor of 0.1 when consumed by the model (we found that
this reliably leads to stable training). We perform a hyper-
parameter search of whether or not to backpropagate syn-
thetic gradient model error into the LSTM core (the model
was not particularly sensitive to this, but occasionally back-
propagating synthetic gradient model error resulted in more
unstable training). The cost on the synthetic gradient re-
gression loss and future synthetic gradient regression loss
is simply weighted by a factor of 1.

Copy and Repeat Copy Task In these tasks we use 256
LSTM units and the model was optimised with Adam with
a learning rate of 7 ⇥ 10

�5 and a batch size of 256. The
tasks were progressed to a longer episode length after a
model gets below 0.15 bits error. The Copy task was pro-
gressed by incrementing N , the length of the sequence to
copy, by one. The Repeat Copy task was progressed by
alternating incrementing N by one and R, the number of
times to repeat, by one.

Penn Treebank The architecture used for Penn Treebank
experiments consists of an LSTM with 1024 units trained
on a character-level language modelling task. Learning
is performed with the use of Adam with learning rate of
7 ⇥ 10

�
5 (which we select to maximise the score of the

baseline model through testing also 1⇥10

�4 and 1⇥10

�6)
without any learning rate decay or additional regularisa-
tion. Each 5k iterations we record validation error (in terms
of average bytes per character) and store the network which
achieved the smallest one. Once validation error starts to
increase we stop training and report test error using previ-
ously saved network. In other words, test error is reported
for the model yielding minimum validation error measured
with 5k iterations resolution. A single iteration consists of
performing full BPTT over T steps with a batch of 256
samples.

D.3. Multi-Network Implementation Details

The two RNNs in this experiment, Network A and Net-
work B, are both LSTMs with 256 units which use batch-
normalisation as described in (Cooijmans et al., 2016).
Network A takes a 28 ⇥ 28 MNIST digit as input and has a
two layer FCN (each layer having 256 units and consisting
of linear, batch-normalisation, and ReLU), the output of
which is passed as input to its LSTM. The output of Net-
work A’s LSTM is used by a linear classification layer to
classify the number of odd numbers, as well as input to an-
other linear layer with batch-normalisation which produces
the message to send to Network B. Network B takes the
message from Network A as input to its LSTM, and uses
the output of its LSTM for a linear classifier to classify
the number of 3’s seen in Network A’s datastream. The
synthetic gradient model has a single hidden layer of size
256 followed by a linear layer which produces the 256-
dimensional synthetic gradient as feedback to Network A’s
message.

All networks are trained with Adam with a learning rate of
1 ⇥ 10

�5. We performed a hyperparameter search over the
factor by which the synthetic gradient should by multiplied
by before being backpropagated through Network A, which
we selected as 10 by choosing the system with the lowest
training error.

References
Balduzzi, D, Vanchinathan, H, and Buhmann, J. Kick-

back cuts backprop’s red-tape: Biologically plausible
credit assignment in neural networks. arXiv preprint
arXiv:1411.6191, 2014.

Cooijmans, T., Ballas, N., Laurent, C., and Courville,
A. Recurrent batch normalization. arXiv preprint
arXiv:1603.09025, 2016.

Czarnecki, W M, Swirszcz, G, Jaderberg, M, Osindero, S,
Vinyals, O, and Kavukcuoglu, K. Understanding syn-
thetic gradients and decoupled neural interfaces. arXiv
preprint, 2017.

Fairbank, M. Value-gradient learning. PhD thesis, City
University London, UK, 2014.

Decoupled Neural Interfaces using Synthetic Gradients

Glorot, X., Bordes, A., and Bengio, Y. Deep sparse rec-
tifier neural networks. In International Conference on
Artificial Intelligence and Statistics, pp. 315–323, 2011.

Heess, N, Wayne, G, Silver, D, Lillicrap, T P, Erez, T,
and Tassa, Y. Learning continuous control policies by
stochastic value gradients. In Advances in Neural Infor-
mation Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pp. 2944–2952,
2015.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. ICML, 2015.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images, 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998a.

LeCun, Y., Cortes, C., and Burges, C. The mnist database
of handwritten digits, 1998b.

Lillicrap, T P, Cownden, D, Tweed, D B, and Akerman, C J.
Random synaptic feedback weights support error back-
propagation for deep learning. Nature Communications,
7, 2016.

Nøkland, A. Direct feedback alignment provides learning
in deep neural networks. In Lee, D. D., Sugiyama, M.,
Luxburg, U. V., Guyon, I., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems 29, pp.
1037–1045. Curran Associates, Inc., 2016.

Sutton, R S. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9–44, 1988.

Werbos, P J. Approximating dynamic programming
for real-time control and neural modeling. In White,
David A. and Sofge, Donald A. (eds.), Handbook of In-
telligent Control, chapter 13, pp. 493–525. Van Nostrand
Reinhold, New York, 1992.

Williams, R. J. and Zipser, D. A learning algorithm for con-
tinually running fully recurrent neural networks. Neural
computation, 1(2):270–280, 1989.

Decoupled Neural Interfaces using Synthetic Gradients

Figure 16. Test error in bits per character (BPC) for Penn Treebank character modelling. We train the RNNs with different BPTT unroll
lengths with DNI (solid lines) and without DNI (dashed lines). Early stopping is performed based on the validation set. Top shows
results with DNI, and bottom shows results with DNI and future synthetic gradient prediction (DNI+Aux). Bracketed numbers give final
test set BPC.

Decoupled Neural Interfaces using Synthetic Gradients

Repeat Copy

Copy

THIS IS NEW VERSION

Figure 17. The task progression for Copy (top row) and Repeat Copy (bottom row) without future synthetic gradient prediction (left) and
with future synthetic gradient prediction (right). For all experiments the tasks’ time dependency is advanced after the RNN reaches 0.15
bits error. We run all models for 2.5M optimisation steps. The x-axis shows the number of samples consumed by the model, and the
y-axis the time dependency level solved by the model – step changes in the time dependency indicate that a particular time dependency
is deemed solved. DNI+Aux refers to DNI with the additional future synthetic gradient prediction auxiliary task.

