Fairness in Reinforcement Learning

A. Omitted Proofs
A.1. Omitted Proofs for Section 2

Proof of Lemma 1. Let i7, denote the distribution of 7 on
states of M after following 7 for 1" steps starting from s.
Then we know
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The last inequality is due to the following observations:
) Vi(si) < ﬁ as rewards are in [0,1] and (ii)
22w (ss) — @ (si)] < esince T is at least the e-mixing
time of 7. O

A.2. Omitted Proofs for Section 3

We first state the following useful Lemma about M.

Lemma 11. Let M be the MDP in Definition 6. Then for
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Proof.

V1 (s:) = discounted reward before reaching state n
+ discounted reward from staying at state n
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via two applications of the summation formula for geomet-
ric series. O
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Proof of Theorem 3. We prove Theorem 3 for the special
case of k£ = 2 first. Consider coupling the run of a fair
algorithm £ on both M (0.5) and M (1). To achieve this,
we can fix the randomness of £ up front, and use the same
randomness on both MDPs. The set of observations and

hence the actions taken on both MDPs are identical until
L reaches state s,. Until then, with probability at least
1 —4, £ must play L and R with equal probability in order
to satisfy fairness (since, for M (0.5), the only fair policy
is to play both actions with equal probability at each time
step). We will upper-bound the optimality of uniform play
and lower-bound the number of rounds before which s,, is
visited by uniformly random play.

Let f, = [ﬁ} and 7 = 2"~2/5 for n > 100(f,)2.
First observe that the probability of reaching a fixed state s;
forany ¢ > n— f,, from a random walk of length 7" is upper
bounded by the probability that the random walk takes ¢ >
n — f, consecutive steps to the right in the first 7 steps.
This probability is at most p = 2"~ 2/ (1)n=fr = 2=/
for any fixed 7. Since reaching any state i > i’ requires
reaching state 4/, the probability that the 7 step random
walk arrives in any state s; for ¢ > n — f, is also upper
bounded by p.

Next, we observe that V}(s;) is a nondecreasing function
of i for both MDPs. Then the average V; values of the vis-
ited states of any fair policy can be broken into two pieces:
the average conditioned on (the probability at least 1 — §
event) that the algorithm plays uniformly at random before
reaching state s,, and never reaching a state beyond s, ,
and the average conditioned on (the probability at most §
event) that the algorithm does not make uniformly random
choices or the uniform random walk of length 7 reaches a
state beyond s,,— fo So, we have that
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The first inequality follows from the fact that V};(s;) <
li for all 4, and the second from Lemma 11 along with
Vr values being nondecreasing in 4. Putting it all together,
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However, if € < % we get

2¢ < 1-004—-1/4 {1_1+2xe3}
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where the third inequality follows when § < % and v >

%. This means € < % makes e-optimality impossible, as

desired.

Throughout we considered the special case of k£ = 2 and
proved a lower bound of 2(2") time steps for any fair al-
gorithm satisfying the e-optimality condition. However, it
is easy to see that MDP M in Definition 6 can be easily
modified in a way that k& — 1 of the actions from state s;
reach state s; and only one action in each state s; reaches
states Smin{i+1,n}- Hence, a lower bound of (k™) time
steps can be similarly proved. O

Proof of Theorem 4. We mimic the argument used to prove
Theorem 3 with the difference that, until visiting s,,, £
may not play R with probability more than % + « (as
opposed to 3 in Theorem 3). Let f, = fﬁﬁ] and
T = (1+20)" 2/~ for n > 100(f,)%. By a similar pro-
cess as in Theorem 3, the probability of reaching state s;
for any i > n — f7 from a random walk of length 7 is
bounded by p = (17 T5a)” f+, and so the probability that the
T steps random walk arrives in any state s; fori > n — f,
is bounded by p. Carrying out the same process used to
prove Theorem 3 then once more implies that e-optimality
requires Equation 4 to hold when § < %, a < 1 andy > 1.
Hence, ¢ < é violates this condition as desired.

Finally, throughout we considered the special case of k =
2. The same trick as in the proof of Theorem 3 can be used
to prove the lower bound of Q(( % ~%a)") time steps for any
fair algorithm satisfying the e-optimality condition. O

Proof of Theorem 5. We also prove Theorem 5 for the spe-
cial case of £k = 2 first, again considering the MDP in
Definition 6. We set the size of the state space in M to

1
be n = [%W Then given the parameter ranges, for
any i, Q3,(si, R) — Q%;(si, L) > « in M(1). Therefore,
any approximate-action fair algorithm should play actions

R and L with equal probability.

Let 7 = 2" = Q((2'/(=7))¢). First observe that the
probability of reaching a fixed state s; for any ¢ > (¢ +
1)n /2 from a random walk of length 7 is upper bounded by
the probability that the random walk takes ¢ > (¢ + 1)n/2
consecutive steps to the right in the first 7 steps. This prob-
ability is at most p = 2¢72~(c+1)n/2 — 9(e=1)n/2 for any
fixed 7. Then the probability that the 7 steps random walk

arrives in any state s; for ¢ > (¢ + 1)n/2 is also upper
bounded by p.

Next, we observe that V7 (s;) is a nondecreasing function
of ¢, for both MDPs. Then the average Vy; values of the vis-
ited states of any fair policy can be broken into two pieces:
the average conditioned on the 1 — § fairness and never
reaching a state beyond s(.41), /2, and the average when
fairness might be violated or the uniform random walk of
length 7 reaches a state beyond $(.11),/2. So, we have
that
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The first inequality follows from the fact that V},(s;) <
1% for all i, and the second from (the line before the last
in) Lemma 11 along with V3 values being nondecreasing
in 7. Putting it all together,
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Rearranging and using § < i,
quires

we get that e-optimality re-
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(c—1)log(5-)
2(1-7)  is maxi-

mized, and that this quantity is maximized when lo (gl(Qa)) is

minimized (as ¢ — 1 is negative), we get that e-optimality
requires

Noting that x is minimized when 2
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Note that 0.75 — 2% is minimized when + is small, so
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Conversely, 1 —(2y— 1)7% is minimized when v is large,

SO as

lim (2y — 1) ’y =t
~y—1

we get that e-optimality requires
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Finally, the same trick as in the proof of Theorem 3 can be
used to prove the Q((k'/(1=7))¢) lower bound for k > 2
actions. O

A.3. Omitted Proofs for Section 4

Proof of Lemma 8. We first show that either

e there exists an exploitation policy m in M such that

——EZVMF

where the random variables 7/ (s) and 7*(s) denote the
states reached from s after following 7 and 7 for ¢ steps,
respectively, or

e there exists an exploration policy w in M such that the
probability that a walk of 27" steps from s following 7
will terminate in sy exceeds %

%maxEZVM

Let 7 be a policy in M satisfying

T mell

T)<p

—maxIEZVM =V.

For any state s, let p(s’) denote all the paths of length T
in M that start in s’, ¢(s") denote all the paths of length T
in M that start in s’ such that all the states in every path of
length T in ¢(s’) are in T and r(s’) all the paths of length
T in M that start in s’ such that at least one state in every
path of length 7" in r(s") is not in I'. Suppose

]EZVMF )<V —8.

Otherwise, 7 already witnesses the claim. We show that a
walk of 27 steps from s following 7 will terminate in sg
with probability of at least % First,

T T
EY Vii(@'(s), T)=EY_ > NIVar(p((s)))
=1 1=1 p(rt(s))
_IEZ Z Plq NIVar(q(7*(s)))
t= 1q(7ft(5))
+IEZ Z NIVas (r(7t(s)))

t=1 r(xt(s))

since p(wt(s)) = q(w'(s)) U r(xt(s)), which is a disjoint

union. Next,

where the equality is due to Definition 9 and the definition
of ¢, and the inequality follows because Vy; (7*(s), T) is
the sum over all the T-paths in Mr, not just those that avoid
the absorbing state sg. Therefore by our original assump-
tion on T,
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This implies
ES S Blr(e(s)Varlrin'(s)

t=1r(r*(s))
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t= 1q(7rt(5))
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where the last step is the result of applying the previous
inequality. However,

EE: > P

r(r(s))

ey

NIVar(r(7t(s)))

because it is immediate that Vy;(r(nt(s))) < T for all
7t(s). So TS < TIEZf 1 2r(nt(sy) Plr( t(s))]. Finally,
if we let P7, denote the probability that a walk of 27" steps
following 7 terminates in sg, i.e. the probability that 7 es-
capes to an unknown state within 27" steps, then for each
ETLEY., (re(s)) < TPy It follows that

T8 < T*Py;

and rearranging yields P3, > % as desired.

Next, note that the exploitation policy (if it exists) can be
derived by computing the optimal policy in M. Moreover,
the exploration policy (if it exists) in the exploitation MDP
Mt can indeed be derived by computing the optimal policy
in the exploration MDP M|\ r as observed by (Kearns and
Singh, 2002). Finally, by Observation 5, any optimal policy
in MIQ‘ (M[Oﬁ]\r) is an optimal policy in MF (M[n]\p) ]

To prove Lemma 10, we need some useful background
adapted from Kearns and Singh (2002).

Definition 8 (Definition 7, Kearns and Singh (2002)). Let
M and M be two MDPs with the same set of states and
actions. We say M is a B-approximation of M if

e [or any state s,
Ra(s) — B < Ry (s) < Ru(s) + B.
e For any states s and s' and action a,

Py(s,a,8") — B < Py(s,a,8") < Puy(s,a,s") + 5.

Lemma 12 (Lemma 5, Kearns and Singh (2002)). Let M
be an MDP and T the set of known states of M. For any
s,s' € T and action a € A, let P]w(&a,sl) denote the
empirical probability transition estimates obtained from
the visits to s. Moreover, for any state s € T let R(s)
denote the empirical estimates of the average reward ob-
tained from visits to s. Then with probability at least 1 — 6,

N , N min{e, a}?
Puca.s) = P )] = 0 (PEEE).

0 (min{e, 02}2 ) .
n2H]

Lemma 12 shows that Mp and M[n]\[‘ are O(%ﬁ’ff)-

approximation MDPs for M and M, \r, respectively.

Lemma 13 (Lemma 4, Kearns and Singh (2002)). Let M

be an MDP and M its O(%@f)-appmximation. Then

for any policy m € 11 and any state s and action a

and

|Ras(s) — Rar(s)] =

Vir(s) —min{e, a} < VZ(s) < Vi (s) + min{e, %},
and
QFi(s,) —min{ .} < QF,(s.a)

< Q%y(s,a) + min{%, €}

Proof of Lemma 10. By Definition 7 and Lemma 12, My is

a O(m“;{flﬁ} )-approximation of Mr. Then the statement

directly follows by applying Lemma 13. O

Rest of the Proof of Theorem 6. The only remaining part
of the proof of Theorem 6 is the analysis of the probability
of failure of Fair-E3. To do so, we break down the prob-
ability of failure of Fair-E® by considering the following
(exhaustive) list of possible failures:

1. At some known state the algorithm has a poor ap-
proximation of the next step, causing Mr to not be a
O( %65‘4}2 )-approximation of M.

2. At some known state the algorithm has a poor approxi-
mation of the 0}, values for one of the actions.

3. Following the exploration policy for 277" steps fails to
yield enough visits to unknown states.

4. At some known state, the approximation value of that
state in M, T 1s not an accurate estimate for the value of
the state in Mr.

We allocate % of our total probability of failure to each of
these sources:
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1. Setd’ = 4% in Lemma 10.

2. Setd' = 421« in Theorem 7.

3. By Lemma 8, each attempted exploration is a Bernoulli
trial with probability of success of at least ;7. In the
worst case we might need to make every state known
before exploiting, leading to the nmy, trajectories (mgq
as Equation 3 in Definition 7) of length H. Therefore,
the probability of taking fewer than nm( trajectories of
length HY would be bounded by % if the number of 277

steps explorations is at least

T*
oy =0 (T 2105 (). )
€ )
4, Set & = %Lexp (mexp as defined in Equation 5) in

Lemma 10, as Fair-E® might make 2T} steps explo-
rations up to Mmexp times.

O

A.4. Relaxing Assumption 2

Throughout Sections 4.3 and 4.4 we assumed that 77", the
e-mixing time of the optimal policy 7*, was known (see
Assumption 2). Although Fair-E? uses the knowledge of
T to decide whether to follow the exploration or exploita-
tion policy, Lemma 8 continues to hold even without this
assumption. Note that Fair-E3 is parameterized by 77 and
for any input 7 runs in time poly(7.). Thus if T is
unknown, we can simply run Fair-E® for 7" = 1,2,...
sequentially and the running time and sample complexity
will still be poly(77*). Similar to the analysis of Fair-E?
when T is known we have to run the new algorithm for
sufficiently many steps so that the possibly low V7 values
of the visited states in the early stages are dominated by
the near-optimal Vy; values of the visited states for large
enough guessed values of 7.

B. Observations on Optimality and Fairness

Observation 1. For any MDP M, there exists an optimal
policy 7* such that 7 is fair.

Proof. In time t, let state s; denote the state from which
7 chooses an action. Let a* = argmax, Q%,(s:, a) and
A*(sg) ={a € A| Qi(st,a) = Qiy(se,a*)}. The pol-
icy of playing an action uniformly at random from A*(s;)
in state s; for all ¢, is fair and optimal. O

Approximate-action fairness, conversely, can be satisfied
by any optimal policy, even a deterministic one.

Observation 2. Let ©* be an optimal policy in MDP M.
Then T* is approximate-action fair.

Proof. Assume that 7* is not approximate-action fair.
Given state s, the action that 7* takes from s is uniquely
determined since 7* is deterministic we may denote it by
a*. Then there exists a time step in which 7* is in state
s and chooses action a*(s) such that there exists another

action a with

Qi (s, a) > Qiy(s,a™(s)) + a,

a contradiction of the optimality of 7*. [

Observations 1 and 2 state that policies with optimal per-
formance are fair; we now state that playing an action uni-
formly at random is also fair.

Observation 3. An algorithm that, in every state, plays
each action uniformly at random (regardless of the history)
is fair.

Proof. Let £ denote an algorithm that in every state
plays uniformly at random between all available actions.
Then L(s,hi—1)a = L(s,ht—1)a regardless of state
s, (available) action a, or history h;_1. @Q%,(s,a) >
Qr(s,d) + a = L(s,hi—1)a > L(S,ht—1)e then
follows immediately, which guarantees both fairness and
approximate-action fairness. O

Observation 4. Let M be an MDP and M® the o-
restricted MDP of M. Let w be a policy in M. Then m
is a-action fair.

Proof. Assume 7 is not a-action fair. Then there must ex-
ist round ¢, state s, and action a such that Q%,(s,a) >
Q3s(s,a') + aand L(s,hy—1)q < L(8,h4—1)q. There-
fore L(s, ht—1)a > 0, so M* must include action a’ from
state s. But this is a contradiction, as in state s M“ only
includes actions a’ such that Q%,(s,a’) + o > Q3,(s,a).
7 is therefore -action fair. L]

Observation 5. Let M be an MDP and M® the «-
restricted MDP of M. Let " be an optimal policy in M“.
Then 7* is also optimal in M.

Proof. If 7©* is not optimal in M, then there ex-
ists a state s and action a such that Q},(s,a) >
Eqx (s)mme(s)@ar(8,a*(s)) where a*(s) is drawn from
7m*(s) and the expectation is taken over choices of a*(s).
This is a contradiction because action a is available from
state s in M“ by Definition 5. O

C. Omitted Details of Fair-E*

We first formally define the exploitation MDP M and the
exploration MDP M)\ r:
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Definition 9 (Definition 9, Kearns and Singh (2002)). Let
M = (Sm, Am, Py, Ry, T,7y) be an MDP with state
space Spy and letT' C Syy. We define the exploration MDP
Mr = (S, Anry Prae, Raiy, T, 7y) on T where

o Sy =T U{s0}.

e For any state s € I, Ry (s) = Ra(s), rewards in My
are deterministic, and Ry, (so) = 0.

e For any action a, Py (so,a,s9) = 1. Hence, sg is an
absorbing state.

e For any states si,ss € I and any action a,
Py (s1,a,82) = Pur(s1,a,82), i.e transitions be-
tween states in I are preserved in Mr.

e Forany state s1 € I' and any action a, Py, (s1,a, sg) =
Ye,¢rPri(s1,a,52). Therefore, all the transitions be-
tween a state in I' and states not in I are directed to s
in Mr.

Definition 10 (Implicit, Kearns and Singh (2002)). Given

MDP M and set of known states T, the exploration MDP

Mp\r on T is identical to the exploitation MDP My ex-

cept for its reward function. Specifically, rewards in M,)\r

are deterministic as in My, but for any state s € T,
RM[n]\F (S) = 0, and RJ\/I[n]\T (80) =1

We next define the approximation MDPs MF and M, [\
which are defined over the same set of states and actions as
in My and M,)\r, respectively.

Let M be an MDP and I' the set of known states of M. For
any s, s’ € I'and action a € A, let Py, (s, a, ) denote the
empirical probability transition estimates obtained from the

visits to s. Moreover, for any state s € T let Ry, (s) de-
note the empirical estimates of the average reward obtained
from visits to s. Then Mt is identical to Mt except that:

e in any known state s € T, RMF (s) = é]y[r(s).

e for any s,s’ € I' and action a € A, Py (s,a,s') =
P (s,a, ).

Also M, [n)\T 1S identical to M,\r except that:

e forany s,s’ € T and action a € A, PMW\F(S, a,s') =

PM[n]\r (s,a,s).



