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Abstract
Undirected graphical models are applied in ge-
nomics, protein structure prediction, and neuro-
science to identify sparse interactions that under-
lie discrete data. Although Bayesian methods for
inference would be favorable in these contexts,
they are rarely used because they require dou-
bly intractable Monte Carlo sampling. Here, we
develop a framework for scalable Bayesian in-
ference of discrete undirected models based on
two new methods. The first is Persistent VI,
an algorithm for variational inference of discrete
undirected models that avoids doubly intractable
MCMC and approximations of the partition func-
tion. The second is Fadeout, a reparameteri-
zation approach for variational inference under
sparsity-inducing priors that captures a posteri-
ori correlations between parameters and hyper-
parameters with noncentered parameterizations.
We find that, together, these methods for varia-
tional inference substantially improve learning of
sparse undirected graphical models in simulated
and real problems from physics and biology.

1. Introduction
Hierarchical priors that favor sparsity have been a central
development in modern statistics and machine learning,
and find widespread use for variable selection in biology,
engineering, and economics. Among the most widely used
and successful approaches for inference of sparse models
has been L1 regularization, which, after introduction in
the context of linear models with the LASSO (Tibshirani,
1996), has become the standard tool for both directed and
undirected models alike (Murphy, 2012).

Despite its success, however, L1 is a pragmatic compro-
mise. As the closest convex approximation of the idealized
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L0 norm, L1 regularization cannot model the hypothesis
of sparsity as well as some Bayesian alternatives (Tipping,
2001). Two Bayesian approaches stand out as more ac-
curate models of sparsity than L1. The first, the spike and
slab (Mitchell & Beauchamp, 1988), introduces discrete la-
tent variables that directly model the presence or absence
of each parameter. This discrete approach is the most di-
rect and accurate representation of a sparsity hypothesis
(Mohamed et al., 2012), but the discrete latent space that
it imposes is often computationally intractable for models
where Bayesian inference is difficult.

The second approach to Bayesian sparsity uses the scale
mixtures of normals (Andrews & Mallows, 1974), a fam-
ily of distributions that arise from integrating a zero mean-
Gaussian over an unknown variance as

p(θ) =

∫ ∞
0

1√
2πσ

exp

{
− θ2

2σ2

}
p(σ)dσ. (1)

Scale-mixtures of normals can approximate the discrete
spike and slab prior by mixing both large and small val-
ues of the variance σ2. The implicit prior of L1 regulariza-
tion, the Laplacian, is a member of the scale mixture family
that results from an exponentially distributed variance σ2.
Thus, mixing densities p(σ2) with subexponential tails and
more mass near the origin more accurately model sparsity
than L1 and are the basis for approaches often referred to
as “Sparse Bayesian Learning” (Tipping, 2001). Both the
Student-t of Automatic Relevance Determination (ARD)
(MacKay et al., 1994) and the Horseshoe prior (Carvalho
et al., 2010) incorporate these properties.

Applying these favorable, Bayesian approaches to sparsity
has been particularly challenging for discrete, undirected
models like Boltzmann Machines. Undirected models pos-
sess a representational advantage of capturing ‘collective
phenomena’ with no directions of causality, but their like-
lihoods require an intractable normalizing constant (Mur-
ray & Ghahramani, 2004). For a fully observed Boltzmann
Machine with x ∈ {0, 1}D the distribution1 is

p(x|J) = 1

Z(J)
exp

∑
i<j

Jijxixj

 , (2)

1We exclude biases for simplicity.
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Figure 1. Bayesian inference for discrete undirected graphical
models with sparse priors is triply intractable, as the space of
possible models spans: (i) all possible sparsity patterns, each of
which possesses its own (ii) parameter space, for which every dis-
tinct set of parameters has its own (iii) intractable normalizing
constant.

where the partition function Z(J) depends on the cou-
plings. Whenever a new set of couplings J are considered
during inference, the partition function Z(J) and corre-
sponding density p(x|J) must be reevaluated. This require-
ment for an an intractable calculation embedded within
already-intractable nonconjugate inference has led some
to term Bayesian learning of undirected graphical models
“doubly intractable” (Murray et al., 2006). When all 2(

D
2)

patterns of discrete spike and slab sparsity are added on
top of this, we might call this problem “triply intractable”
(Figure 1). Triple-intractability does not mean that this
problem is impossible, but it will typically require expen-
sive approaches based on MCMC-within-MCMC (Chen &
Welling, 2012).

Here we present an alternative to MCMC-based approaches
for learning undirected models with sparse priors based
on stochastic variational inference (Hoffman et al., 2013).
We combine three ideas: (i) stochastic gradient variational
Bayes (Kingma & Welling, 2014; Rezende et al., 2014;
Titsias & Lázaro-Gredilla, 2014)2, (ii) persistent Markov
chains (Younes, 1989), and (iii) a noncentered parameteri-
zation of scale-mixture priors, to inherit the benefits of hier-
archical Bayesian sparsity in an efficient variational frame-
work. We make the following contributions:

• We extend stochastic variational inference to undi-
rected models with intractable normalizing constants
by developing a learning algorithm based on persis-
tent Markov chains, which we call Persistent Varia-

2This is also a type of noncentered parameterization, but of the
variational distribution rather than the posterior.

tional Inference (PVI) (Section 2).

• We introduce a reparameterization approach for varia-
tional inference under sparsity-inducing scale-mixture
priors (e.g. the Laplacian, ARD, and the Horseshoe)
that significantly improves approximation quality by
capturing scale uncertainty (Section 3). When com-
bined with Gaussian stochastic variational inference,
we call this Fadeout.

• We demonstrate how a Bayesian approach for learn-
ing sparse undirected graphical models with PVI and
Fadeout yields significantly improved inferences of
both synthetic and real applications in physics and bi-
ology (Section 4).

2. Persistent Variational Inference
Background: Learning in undirected models Undi-
rected graphical models, also known as Markov Random
Fields, can be written in log-linear form as

p(x|θ) = 1

Z(θ)
exp

{
k∑
i=1

θifi(x)

}
, (3)

where i indexes a set of k features {fi(x)}ki=1 and the
partition function Z(θ) =

∑
x exp {

∑
i θifi(x)} normal-

izes the distribution (Koller & Friedman, 2009). Maximum
Likelihood inference selects parameters θ that maximize
the probability of dataD = {x(1), . . . ,x(N)} by ascending
the gradient of the (averaged) log likelihood

∂

∂θi

1

N
log p(D|θ) = ED [fi(x)]− Ep(x|θ) [fi(x)] . (4)

The first term in the gradient is a data-dependent average
of feature fi(x) over D, while the second term is a data-
independent average of feature fi(x) over the model distri-
bution that often requires sampling (Murphy, 2012)3.

Bayesian learning for undirected models is confounded by
the partition function Z(θ). Given the dataD, a prior p(θ),
and the log potentials H[x|θ] = −

∑
i θifi(x) , the poste-

rior distribution of the parameters is

p(θ|D) =
p(θ)

∏
i e
−H[x(i)|θ]/Z(θ)∫

p(θ′)
∏
i e
−H[x(i)|θ′]/Z(θ′)dθ′

, (5)

which contains an intractable partition function Z(θ)
within the already-intractable evidence term. As a result,
most algorithms for Bayesian learning of undirected mod-
els require either doubly-intractable MCMC and/or approx-
imations of the likelihood p(x|θ).

3Depending on the details of the MCMC and the community
these approaches are known as Boltzmann Learning, Stochas-
tic Maximum Likelihood, or Persistent Contrastive Divergence
(Tieleman, 2008).
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Figure 2. Variational inference for sparse priors with noncentered reparameterizations. Several sparsity-inducing priors such as the
Laplacian, Student-t, and Horseshoe (shown here) can be derived as scale-mixture priors in which each model parameter θ is drawn from
a zero-mean Gaussian with random variance σ2 (top row). The dependency of θ on σ2 gives rise to a strongly curved “funnel” distribution
(blue, top left and right) that is poorly modeled by a factorized variational distribution (not shown). A noncentered reparameterization
with θ̃ = θ/σ trades independence of θ and σ2 in the likelihood (blue, top center) for independence in the prior (blue, bottom left),
allowing a factorized variational distribution over noncentered parameters (black contours, bottom right) to implicitly capture the a priori
correlations between θ and σ2 (black contours, top right). As a result, the variational distribution can more accurately model the bottom
of the “funnel”, which corresponds to sparse estimates.

A tractable estimator for∇ELBO of undirected models
Here we consider how to approximate the intractable pos-
terior in (5) without approximating the partition function
Z(θ) or the likelihood p(x|θ) by using variational infer-
ence. Variational inference recasts inference with p(θ|D)
as an optimization problem of finding a variational distri-
bution q(θ|φ) that is closest to p(θ|D) as measured by KL
divergence (Jordan et al., 1999). This can be accomplished
by maximizing the Evidence Lower BOund

L(φ) , Eq [log p(D,θ)− log q(θ|φ)] ≤ log p(D). (6)

For scalability, we would like to optimize the ELBO with
methods that can leverage Monte Carlo estimators of the
gradient ∇φL(φ). One possible strategy for this would be
would be to develop an estimator based on the score func-
tion (Ranganath et al., 2014) with a Monte-Carlo approxi-
mation of

∇φL = Eq
[
∇φ log q(θ|φ) log

p(D,θ)
q(θ|φ)

]
. (7)

Naively substituting the likelihood (3) in the score func-
tion estimator (7) nests the intractable log partition func-
tion logZ(θ) within the average over q(θ|φ), making this
an untenable (and extremely high variance) approach to in-
ference with undirected models.

We can avoid the need for a score-function estimator with
the ‘reparameterization trick’ (Kingma & Welling, 2014;

Rezende et al., 2014; Titsias & Lázaro-Gredilla, 2014) that
has been incredibly useful for directed models. Consider a
variational approximation q(θ|φ) =

∏
i q(θi|µi, si) that is

a fully factorized (mean field) Gaussian with means µ and
log standard deviations s. The ELBO expectations under
q(θ|φ) can be rewritten as expectations wrt an independent
noise source ε ∼ N (0, I) where4 θ(ε) = µ+exp {s}� ε.
Then the gradients are

∇µL = Eε [∇θ log p(D,θ(ε))] , (8)
∇sL = Eε [∇θ log p(D,θ(ε))� (θ(ε)− µ)] + 1. (9)

Because these expectations require only the gradient of the
likelihood ∇θ log p(D|θ), the gradient for the undirected
model (4) can be substituted to form a nested expectation
for ∇φL(φ). This can then be used as a Monte Carlo gra-
dient estimator by sampling ε ∼ N (0, I),x ∼ p(x|θ(ε)).

Persistent gradient estimation In Stochastic Maximum
Likelihood estimation for undirected models, the in-
tractable gradients of (4) are estimated by sampling p(x|θ).
Although sampling-based approaches are slow, they can
be made considerably more efficient by running a set of
Markov chains in parallel with state that persists between
iterations (Younes, 1989). Persistent state maintains the
Markov chains near their equilibrium distributions, which
means that they can quickly re-equilibrate after perturba-
tions to the parameters θ during learning.

4The � operator is an element-wise product.
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We propose variational inference in undirected models
based on persistent gradient estimation of ∇θ log p(D|θ)
and refer to this as Persistent Variational Inference (PVI)
(Algorithm in Appendix). Following the notation of PCD-
n (Tieleman, 2008), PVI-n refers to using n sweeps of
Gibbs sampling with persistent Markov chains between it-
erations. This approach is generally compatible with any
estimators of∇ELBO that are based on the gradient of the
log likelihood, several examples of which are explained in
(Kingma & Welling, 2014; Rezende et al., 2014; Titsias &
Lázaro-Gredilla, 2014).

Behavior of the solution for Gaussian q When the
variational approximation is a fully factorized Gaussian
q(θ|µ,σ) and the prior is flat p(θ) ∝ 1, the solution to
µ?,σ? = argmaxµ,σ L(µ,σ) will satisfy

ED [fi(x)] = Ep̃ [fi(x)] , σ?i =
1

N Ep̃ [εifi(x)]
(10)

where p̃ = p(x|θ(ε))p(ε) is an extended system of the
original undirected model in which the parameters θi =
µi + εiσi fluctuate according to the variational distribu-
tion. This bridges to the Maximum Likelihood solution as
N → ∞ and σ?i → 0, while accounting for uncertainty
in the parameters at finite sample sizes with the inverse of
‘sensitivity’ Ep̃ [εifi(x)].

3. Fadeout
3.1. Noncentered Parameterizations of Hierarchical

Priors

Hierarchical models are powerful because they impose
a priori correlations between latent variables that reflect
problem-specific knowledge. For scale-mixture priors that
promote sparsity, these correlations come in the form of
scale uncertainty. Instead of assuming that the scale of a
parameter in a model is known a priori, we posit that it
is normally distributed with a randomly distributed vari-
ance p(σ2). The joint prior p(θ|σ2)p(σ2) gives rise to a
strongly curved ‘funnel’ shape (Figure 2) that illustrates a
simple but profound principle about hierarchical models:

Table 1. Common priors as scale-mixtures of normal distributions

Prior Hyperprior p(log σ)

Gaussian (L2) σ2 = 1
2λ constant

Laplacian (L1) σ2 ∼ Exponential 2λe−λσ
2

σ2

Student-t (ARD) σ2 ∼ Inv. Gamma 2βα

Γ(α)
e
− β

σ2 σ−2α

Horseshoe σ ∼ Half-Cauchy 2s
π

σ
s2+σ2

Algorithm 1 Computing ∇ELBO for Fadeout
Require: Global parameters {µτ , sτ}
Require: Local parameters {µθ̃, µlogσ, sθ̃, slogσ}
Require: Hyperprior gradient∇logσ,τ log p(logσ, τ )
Require: Likelihood gradient∇θp(x|θ)
// Sample from variational distribution
z1 ∼ N (0, I|τ |), z2 ∼ N (0, I|θ̃|), z3 ∼ N (0, I|σ|)

τ ← µτ + exp{sτ} � z1
θ̃ ← µθ̃ + exp{sθ̃} � z2
σ ← exp {µlog σ + exp {slog σ} � z3}
θ ← θ̃ � σ
// Centered global parameters
∇µτL ← ∇τ log p(log σ, τ )
∇sτL ← exp {sτ} � z1 �∇µτL+ 1
// Noncentered local parameters
∇µθ̃L ← σ �∇θ log p(x|θ)− θ̃
∇µlog σ

L ← θ �∇θ log p(x|θ) +∇log σ log p(log σ, τ )

∇sθ̃L ← exp
{
sθ̃
}
� z2 �∇µθ̃L+ 1

∇slog σL ← exp {slog σ} � z3 �∇µlog σ
L+ 1

as the hyperparameter log σ decreases and the prior accepts
a smaller range of values for θ, normalization increases the
probability density at the origin, favoring sparsity. This
normalization-induced sharpening has been called called a
Bayesian Occam’s Razor (MacKay, 2003).

While normalization-induced sharpening gives rise to spar-
sity, these extreme correlations are a disaster for mean-
field variational inference. Even if a tremendous amount of
probability mass is concentrated at the base of the funnel,
an uncorrelated mean-field approximation will yield esti-
mates near the top. The result is a potentially non-sparse
estimate from a very-sparse prior.

The strong coupling of hierarchical funnels also plagues
exact methods based on MCMC with slow mixing, but
the statistics community has found that these geometry
pathologies can be effectively managed by transformations.
Many models can be rewritten in a noncentered form where
the parameters and hyperparmeters are a priori indepen-
den (Papaspiliopoulos et al., 2007; Betancourt & Girolami,
2013). For the scale-mixtures of normals, this change of
variables is

{θ, log σ} →
{
θ

σ
, log σ

}
(11)

Then θ̃ , θ
σ ∼ N(0, 1) while preserving θ̃σ ∼ N(0, σ2).

In noncentered form, the joint prior is independent and well
approximated by a mean-field Gaussian, while the likeli-
hood will be variably correlated depending on the strength
of the data (Figure 2). In this sense, centered parame-
terizations (CP) and noncentered parameterizations (NCP)
are usually framed as favorable in strong and weak data
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Figure 3. An undirected model with a scale mixture prior (fac-
tor graph on left) can be given a priori independence of the la-
tent variables by a noncentered parameterization (factor graph on
right). This is advantageous for mean-field variational inference
that imposes a posteriori independence.

regimes, respectively.5

We propose the use of non-centered parameterizations of
scale-mixture priors for mean-field Gaussian variational in-
ference. For convenience, we like to call this Fadeout (see
next section). Fadeout can be easily implemented by either
(i) using the chain rule to derive the gradient of the Evi-
dence Lower BOund (ELBO) (Algorithm 1) or, for differ-
entiable models, (ii) rewriting models in noncentered form
and using automatic differentiation tools such as Stan (Ku-
cukelbir et al., 2017) or autograd6 for ADVI. The only
two requirements of the user are the gradient of the likeli-
hood function and a choice of a global hyperprior, several
options for which are presented in Table 1.

Estimators for the centered posterior. Fadeout opti-
mizes a mean-field Gaussian variational distribution over
the noncentered parameters q(θ̃, logσ). As an estimator
for the centered parameters, we use the mean-field prop-
erty to compute the centered posterior mean as Eq[θ] =

Eq[θ̃]� Eq[σ], giving 7

θ̂ = µθ̃ � exp

{
µlogσ +

1

2
e2slog σ

}
(12)

5Although “weak data” may seem unrepresentative of typical
problems in machine learning, it is important to remember that a
sufficiently large and expressive model can make most data weak.

github.com/HIPS/autograd
7The term 1

2
e2slog σ is optional in the sense that including it

corresponds to averaging over the hyperparameters, whereas dis-
carding it corresponds to optimizing the hyperparameters (Empir-
ical Bayes). We included it for all experiments.
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Figure 4. Inverse Ising. Combining Persistent VI with a noncen-
tered Horseshoe prior (Half-Cauchy hyperprior) attains lower er-
ror on simulated Ising systems than standard methods for point
estimation including: Pseudolikelihood (PL) with L1 or deci-
mation regularization (Schmidt, 2010; Aurell & Ekeberg, 2012;
Decelle & Ricci-Tersenghi, 2014), Minimum Probability Flow
(MPF) (Sohl-Dickstein et al., 2011), and Persistent Contrastive
Divergence (PCD) (Tieleman, 2008). For the spin glass, error
bars are two logarithmic standard deviations across 5 simulated
systems.

3.2. Connection to Dropout

Dropout regularizes neural networks by perturbing hidden
units in a directed network with multiplicative Bernoulli or
Gaussian noise (Srivastava et al., 2014). Although it was
originally framed as a heuristic, Dropout has been subse-
quently interpreted as variational inference under at least
two different schemes (Gal & Ghahramani, 2016; Kingma
et al., 2015). Here, we interpret Fadeout the reverse way,
where we introduced it as variational inference and now no-
tice that it looks similar to lognormal Dropout.8 If we take
the uncertainty in θ̃ as low and clamp the other variational
parameters, the gradient estimator for Fadeout is:

z ∼ N (0, I|θ|)

σ ← exp {µlog σ + exp {slog σ} � z}
θ ← θ̃ exp {µlog σ + exp {slog σ} � z}

∇µθ̃L ← σ �∇θ log p(x|θ)− θ̃
8Rather than attempting to explain Dropout, the intent is to

lend intuition about noncentered scale-mixture VI.
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Figure 5. Synthetic protein. For reconstructing interactions in a synthetic 20-letter spin-glass, a hierarchical Bayesian approach based
on Persistent VI and a noncentered group Horseshoe prior (Half-Cauchy hyperprior) identifies true interactions with more accuracy and
less shrinkage than Group L1. Each i, j pair is the norm of a 20 × 20 factor coupling the amino acid at position i to the amino acid at
position j.

This is the gradient estimator for a lognormal version of
Dropout with an L2 weight penalty of 1

2 . At each sample
from the variational distribution, Fadeout introduces scale
noise rather than the Bernoulli noise of Dropout. The con-
nection to Dropout would seem to follow naturally from
the common interpretation of scale mixtures as continuous
relaxations of spike and slab priors (Engelhardt & Adams,
2014) and the idea that Dropout can be related to variational
spike and slab inference (Louizos, 2015).

4. Experiments
4.1. Physics: Inferring Spin Models

Ising model The Ising model is a prototypical undirected
model for binary systems that includes both pairwise inter-
actions and (potentially) sitewise biases. It can be seen as
the fully observed case of the Boltzmann machine, and is
typically parameterized with signed spins x ∈ {−1, 1}D
and a likelihood given by

p(x|h,J) = 1

Z(h,J)
exp

{∑
i

hixi +
∑
i<j

Jijxixj

}
. (13)

Originally proposed as a minimal model of how long range
order arises in magnets, it continues to find application in
physics and biology as a model for phase transitions and
quenched disorder in spin glasses (Nishimori, 2001) and
collective firing patterns in neural spike trains (Schneidman
et al., 2006; Shlens et al., 2006).

Hierarchical sparsity prior One appealing feature of
the Ising model is that it allows a sparse set of underly-
ing couplings J to give rise to long-range, distributed cor-
relations across a system. Since many physical systems
are thought to be dominated by a small number of rele-
vant interactions, L1 regularization has been a favored ap-
proach for inferring Ising models. Here, we examine how
a more accurate model of sparsity based on the Horseshoe
prior (Figure 3) can improve inferences in these systems.

Each coupling Jij and bias parameter hi is given its own
scale parameter which are in turn tied under a global Half-
Cauchy prior for the scales (Figure 3, Appendix).

Simulated datasets We generated synthetic couplings
for two kinds of Ising systems: (i) a slightly sub-critical
cubic ferromagnet (Jij > 0 for neighboring spins) and (ii)
a Sherrington-Kirkpatrick spin glass diluted on an Erdös-
Renyi random graph with average degree 2. We sampled
synthetic data for each system with the Swendsen-Wang
algorithm (Appendix) (Swendsen & Wang, 1987).

Results On both the ferromagnet and the spin glass, we
found that Persistent VI with a noncentered Horseshoe
prior (Fadeout) gave estimates with systematically lower
reconstruction error of the couplings J (Figure 4) versus a
variety of standard methods in the field (Appendix).

4.2. Biology: Reconstructing 3D Contacts in Proteins
from Sequence Variation

Potts model The Potts model generalizes the Ising model
to non-binary categorical data. The factor graph is the same
(Figure 3), except each spin xi can adopt q different cate-
gories with x ∈ {1, . . . , q}D and each Jij is a q × q matrix
as

p(x|h,J) = 1

Z(h,J)
exp

{∑
i

hi(xi) +
∑
i<j

Jij(xi, xj)

}
.

(14)
The Potts model has recently generated considerable ex-
citement in biology, where it has been used to infer 3D con-
tacts in biological molecules solely from patterns of corre-
lated mutations in the sequences that encode them (Marks
et al., 2011; Morcos et al., 2011). These contacts are have
been sufficient to predict the 3D structures of proteins, pro-
tein complexes, and RNAs (Marks et al., 2012).

Group sparsity Each pairwise factor Jij in a Potts model
contains q × q parameters capturing all possible joint con-
figurations of xi and xj . One natural way to enforce spar-
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Figure 6. Unsupervised protein contact prediction. When inferring a pairwise undirected model for protein sequences in the SH3 domain
family, hierarchical Bayesian approaches based on Persistent VI and noncentered scale mixture priors (Half-Cauchy for Group Horseshoe
and Exponential for a Multivariate Laplace) identify local interactions that are close in 3D structure without tuning parameters. When
group L1-regularized maximum Pseudolikelihood estimation is tuned to give the same largest effect size as the Multivariate Laplace, the
hierarchical approaches based on Persistent VI are more predictive of 3D proximity (right).

sity in a Potts model is at the level of each q×q group. This
can be accomplished by introducing a single scale param-
eter σij for all q × q z-scores J̃ij . We adopt this with the
same Half-Cauchy hyperprior as the Ising problem, giving
the same factor graph (Figure 3) now corresponding to a
Group Horseshoe prior (Hernández-Lobato et al., 2013).
In the real protein experiment, we also consider an ex-
ponential hyperprior, which corresponds to a Multivariate
Laplace distribution (Eltoft et al., 2006) over the groups.

Synthetic protein data We first investigated the per-
formance of Persistent VI with group sparsity on a syn-
thetic protein experiment. We constructed a synthetic Potts
spin glass with a topology inspired by biological macro-
molecules. We generated synthetic parameters based on
contacts in a simulated polymer and sampled 2000 se-
quences with 2× 106 steps of Gibbs sampling (Appendix).

Results for a synthetic protein We inferred couplings
with 400 of the sampled sequences using PVI with group
sparsity and two standard methods of the field: L2 and
Group L1 regularized maximum pseudolikelihood (Ap-
pendix). PVI with a noncentered Horseshoe yielded more
accurate (Figure 5, right), less shrunk (Figure 5, left) esti-
mates of interactions that were more predictive of the 1600
remaining test sequences (Table 2). The ability to gener-
alize well to new sequences will likely be important to the
related problem of predicting mutation effects with unsu-
pervised models of sequence variation (Hopf et al., 2017;
Figliuzzi et al., 2015).

Results for natural sequence variation We applied the
hierarchical Bayesian model from the protein simulation
to model across-species amino acid covariation in the SH3

domain family (Figure 6). Transitioning from simulated to
real protein data is particularly challenging for Bayesian
methods because available sequence data are highly non-
independent due to a shared evolutionary history. We de-
veloped a new method for estimating the effective sam-
ple size (Appendix) which, when combined standard se-
quence reweighting techniques, yielded a reweighted effec-
tive sample size of 1,012 from 10,209 sequences.

The hierarchical Bayesian approach gave highly localized,
sparse estimates of interactions compared to the two pre-
dominant methods in the field, L2 and groupL1 regularized
pseudolikelihood (Figure 6). When compared to solved 3D
structures for SH3 (Appendix), we found that the inferred
interactions were considerably more accurate at predicting
amino acids close in structure. Importantly, the hierarchical
Bayesian approach accomplished this inference of strong,
accurate interactions without a need to prespecify hyper-
parameters such as λ for L2 or L1 regularization. This is
particularly important for natural biological sequences be-
cause the non-independence of samples limits the utility of
cross validation for setting hyperparameters.

5. Related work
5.1. Variational Inference

One strategy for improving variational inference is to intro-
duce correlations in variational distribution by geometric
transformations. This can be made particularly powerful

Table 2. Average log-pseudolikelihood for test sequences.
Method − log PL(x|h,J) Runtime (s)
PL, L2 (5xCV) 67.3 375
PL, Group L1 (5xCV) 59.6 303
PVI-3, Half-Cauchy 54.2 585
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by using backpropagation to learn compositions of trans-
formations that capture the geometry of complex posteriors
(Rezende & Mohamed, 2015; Tran et al., 2016). Noncen-
tered parameterizations of models may be complementary
to these approaches by enabling more efficient representa-
tions of correlations between parameters and hyperparam-
eters.

Most related to this work, (Louizos et al., 2017; Ghosh
& Doshi-Velez, 2017) show how variational inference
with noncentered scale-mixture priors can be useful for
Bayesian learning of neural networks, and how group spar-
sity can act as a form of automatic compression and model
selection.

5.2. Maximum Entropy

Much of the work on inference of undirected graphical
models has gone under the name of the Maximum Entropy
method in physics and neuroscience, which can be equiva-
lently formulated as maximum likelihood in an exponential
family (MacKay, 2003). From this maximum likelihood
interpretation, L1 regularized-maximum entropy model-
ing (MaxEnt) corresponds to the disfavored “integrate-out”
approach to inference in hierarchical models9 (MacKay,
1996) that will introduce significant biases to inferred pa-
rameters (Macke et al., 2011). One solution to this bias was
foreshadowed by methods for estimating entropy and Mu-
tual Information, which used hierarchical priors to integrate
over a large range of possible model complexities (Nemen-
man et al., 2002; Archer et al., 2013). These hierarchical
approaches are favorable because in traditional MAP esti-
mation any top level parameters that are fixed before infer-
ence (e.g. a global pseudocount α) introduce strong con-
straints on allowed model complexity. The improvements
from PVI and Fadeout may be seen as extending this hier-
archical approach to full systems of discrete variables.

6. Conclusion
We introduced a framework for scalable Bayesian sparsity
for undirected graphical models composed of two methods.
The first is an extension of stochastic variational inference
to work with undirected graphical models that uses per-
sistent gradient estimation to bypass estimating partition
functions. The second is a variational approach designed
to match the geometry of hierarchical, sparsity-promoting
priors. We found that, when combined, these two meth-
ods give substantially improved inferences of undirected
graphical models on both simulated and real systems from
physics and computational biology.

9To see this, note that L1-regularized MAP estimation is
equivalent to integrating out a zero-mean Gaussian prior with un-
known, exponentially-distributed variance
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