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Abstract
Real data tensors are typically high dimensional;
however, their intrinsic information is preserved
in low-dimensional space, which motivates the
use of tensor decompositions such as Tucker
decomposition. Frequently, real data tensors
smooth in addition to being low dimensional,
which implies that adjacent elements are similar
or continuously changing. These elements typi-
cally appear as spatial or temporal data. We pro-
pose smoothed Tucker decomposition (STD) to
incorporate the smoothness property. STD lever-
ages smoothness using the sum of a few basis
functions; this reduces the number of parameters.
An objective function is formulated as a convex
problem, and an algorithm based on the alternat-
ing direction method of multipliers is derived to
solve the problem. We theoretically show that,
under the smoothness assumption, STD achieves
a better error bound. The theoretical result and
performances of STD are numerically verified.

1. Introduction
A tensor (i.e., a multi-way array) is a data structure that is a
generalization of a matrix, and it can represent higher-order
relationships. Tensors appear in various applications such
as image analysis (Jia et al., 2014), data mining (Kolda &
Sun, 2008), and medical analysis (Zhou et al., 2013). For
instance, functional magnetic resonance imaging (fMRI)
records brain activities in each time period as voxels, which
are represented as 4-way tensors (X-axis ⇥ Y-axis ⇥ Z-axis
⇥ time). Frequently, data tensors in the real world con-
tain several missing elements and/or are corrupted by noise,
which leads to the tensor completion problem for predict-
ing missing elements and the tensor recovery problem for
removing noise.
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To solve these problems, the low-rank assumption, i.e.,
given tensor is generated from a small number of latent
factors, is widely used. If the number of observed ele-
ments is sufficiently larger than the number of latent fac-
tors (i.e., rank) and noise level, we can estimate latent fac-
tors and reconstruct the entire structure. The methods of
estimating latent factors are collectively referred to as ten-

sor decompositions. There are several formulations of ten-
sor decompositions such as Tucker decomposition (Tucker,
1966) and the CANDECOMP/PARAFAC(CP) decomposi-
tion (Harshman, 1970). While these methods were orig-
inally formulated as nonconvex problems, several authors
have studied their convex relaxations in recent years (Liu
et al., 2009; Tomioka et al., 2010; Signoretto et al., 2011;
Gandy et al., 2011).

Another important, yet less explored, assumption is the
smoothness property. Consider fMRI data as a ten-
sor X . As fMRI data are spatiotemporal, each ele-
ment of X is expected to be similar to its adjacent el-
ements with every way, i.e., x

i,j,k,t

should be close to
x
i±1,j,k,t, xi,j±1,k,t, xi,j,k±1,t, and x

i,j,k,t±1. In statistics,
this kind of smoothness property has been studied through
functional data analysis (Ramsay, 2006; Hsing & Eubank,
2015). Studies show that the smoothness assumption in-
creases sample efficiency, i.e., estimation is more accu-
rate with small sample size. Another advantage is that
the smoothness assumption makes interpolation possible,
i.e., we can impute an unobserved value using its adjacent
observed values. This interpolation ability is particularly
useful for solving a specific tensor completion problem re-
ferred to as the tensor interpolation problem, as known as
the “cold-start” problem (Gantner et al., 2010). Suppose
a case in which fMRI tensor X is completely missing at
t = t0. In this case, standard tensor decompositions cannot
predict missing elements because there is no information
to estimate the latent factor at t = t0. However, using the
smoothness property, we can estimate the missing elements
from the elements at t = t0 � 1 and t = t0 + 1.

A fundamental challenge of tensor completion and recov-
ery methods is to analyze their performance. Tomioka et al.
(2011) extensively studied the statistical performance of
low-rank tensor decompositions. On the contrary, the per-
formance of tensor decompositions incorporating smooth-
ness (Yokota et al., 2015b;a; Amini et al., 2013) has never
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been addressed. The most important barrier is that all meth-
ods are formulated as nonconvex problems, which hinders
the use of the tools developed in the convex tensor decom-
positions (Liu et al., 2009; Signoretto et al., 2010; Tomioka
et al., 2010).

Contributions In this paper, we propose a simple tensor
decomposition model incorporating the smoothness prop-
erty, which we refer to as Smoothed Tucker Decomposition

(STD). Following the notions of functional data analysis,
STD approximates an observed tensor by a small number
of basis functions, such as Fourier series, and decomposes
them through Tucker decomposition (Figure 1). STD is for-
mulated as a convex optimization problem that regularizes
the ranks and degree of smoothness. To solve this prob-
lem, we derive an algorithm based on the alternating direc-
tion method of multipliers (ADMM), which always finds
the global optimum.

Based on the convex formulation, we provide a few theo-
retical guarantees of STD, namely, we derive error bounds
for tensor recovery and interpolation problems. We show
that the error bounds for smooth tensors are improved and
better than those for other methods. In addition, to the best
of our knowledge, this is the first analysis that establishes
an error bound for tensor interpolation. These results are
empirically confirmed through experiments using synthetic
and real data.

To summarize, STD has the following advantages.

• Sample efficiency: STD achieves the same error with
less sample size.

• Interplation ability: STD can solve the tensor interpo-
lation problem.

• Convex formulation: STD ensures that a global solu-
tion is obtained.

Related Works A few authors have investigated the
smoothness property for tensor decompositions. Amini
et al. (2013) proposed a kernel method, and Yokota et al.
(2015a;b) developed a smooth decomposition method for
matrices and tensors using basis functions. These stud-
ies demonstrated that the smoothness assumption signifi-
cantly improves the performance of tensor decompositions
for actual applications such as noisy image reconstruc-
tion (Yokota et al., 2015b). However, these performance
gains were confirmed only in an empirical manner.

Several authors have addressed the tensor interpolation
problem by extending tensor decompositions; however, in-
stead of smoothness, these methods utilize additional in-
formation such as network structures (Hu et al., 2015)
or side information (Gantner et al., 2010; Narita et al.,
2011). Moreover, the performance of the tensor interpo-
lation problem has never been analyzed theoretically.

Figure 1. Comparison of Tucker decomposition and STD. In
STD, the mode-wise smoothness of the observed tensor is pre-
served via basis functions.

2. Preliminaries
Given K 2 N natural numbers, I1, . . . , IK 2 N, let X ⇢
RI1⇥...⇥IK be the space of a K-way tensor, and X 2 X be
the K-way tensor that belongs to X . For practical use, we
define I\k :=

Q

k

0=k

I
k

. Each way of a tensor is referred
to as mode; I

k

is the dimensionality of the k-th mode for
k = 1, . . . ,K. For vector Y 2 Rd, [Y ]

j

denotes its j-th el-
ement. Similarly, [X]

j1j2...jK denotes the (i1, i2, . . . , iK)-
th element of X . The inner product in X is defined as
hX,X 0i =

P

I1,I2,...,IK

j1,j2,...,jK=1[X]

j1,j2,...,jK [X 0
]

j1,j2,...,jK for
X,X 0 2 X . This induces the Frobenius norm, |||X|||

F

=

p

hX,Xi. For vectors Z 2 Rd, let kZk =

p
ZTZ denote

the norm. In addition, we introduce the L2 norm for func-
tions as kfk22 =

R

I

f(t)2dt for function f : I ! R with
some domain I ⇢ R. C↵

(I) denotes a set of an ↵-times
differentiable function on I .

2.1. Tucker Decomposition

With a set of finite positive integers (R1, . . . , RK

), the
Tucker decomposition of X is defined as

X =

R1,...,RK
X

r1,...,rK=1

g
r1...rKu(k)

r1
⌦ u(k)

r2
⌦ . . . u(k)

rK
, (1)

where g
r1...rK 2 R is a coefficient for each r

k

, ⌦ de-
notes the tensor product, and u

rk 2 RIk denotes vector
for each r

k

(k = 1, . . . ,K), which are orthogonal to each
other for r

k

= 1, . . . , R
k

. Here, we refer to (R1, . . . , RK

)

as the Tucker rank, and X is an (R1, . . . , RK

)-rank ten-

sor. In addition, we let tensor G 2 RR1⇥...⇥RK with
[G]

r1,...,rK = g
r1...rK be a core tensor and matrix U(k) =

(u
(k)
r1 . . . u

(k)
rK ) 2 RIk⇥Rk is a set of the vectors for all

k = 1, . . . ,K. Using this notation, Tucker decomposition
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(1) can be written as

X = G⇥1 U(1) ⇥1 U(2) ⇥2 . . .⇥K

U(K), (2)

where ⇥
k

denotes the k-mode matrix product (see Kolda
& Bader (2009) for more details).

2.2. Application Problems for Tensors

Let S ⇢ {(j1, j2, . . . , jK)}I1,I2,...,IK
j1,j2,...,jK=1 be an index set and

n := |S|. Let j(i) be the i-th element of S for i = 1, . . . , n.
Then, we consider the following observation model:

y
i

= [X⇤
]

j(i) + ✏
i

, (3)

where X⇤ 2 X is an unobserved true tensor, {y
i

}n
i=1 is

the set of observed values, and ✏
i

is noise, where the mean
is zero and the variance is �2. We define an observation
vector Y := (y1 . . . yn)

T 2 Rn, and a noise vector E :=

(✏1 . . . ✏n)
T 2 Rn. Additionally, we define a rearranging

operator X : X ! Rn via [X(X)]

i

= [X]

j(i). Using this
notation, observation model (3) is written as

Y = X(X⇤
) + E . (4)

When all the elements are observed, i.e., n =

Q

k

I
k

, the
problem of estimating X⇤ is referred to as the tensor re-

covery problem. When a few elements of X are missing,
i.e., n <

Q

k

I
k

, the problem is referred to as the tensor

completion problem. Specifically, for any mode k, if there
exists an index j0

k

2 [I
k

] that S does not contain, we refer
to the problem of estimating [X⇤

]

I1
j1=1 · · ·jk=j

0
k
· · ·IK

jK=1 as
the tensor interpolation problem.

Using observation model (4), we provide an estimator for
the unknown true tensor X⇤. The estimator of ˆX is ob-
tained by solving the following optimization problem:

min

X2⇥



1

2n
kY � X(X)k2 + ⌦(X)

�

, (5)

where ⇥ ⇢ X is a convex subset of X , and ⌦ : ⇥ ! R+

is a regularization term. For the regularization ⌦(X), the
overlapped Schatten 1-norm is frequently used (Liu et al.,
2009; Tomioka et al., 2010; Signoretto et al., 2011; Gandy
et al., 2011); is is defined as

|||X|||
s

:=

1

K

K

X

k=1

kX(k)ks :=
1

K

K

X

k=1

Rk
X

rk=1

�
rk(X(k)),

where X(k) 2 RIk⇥
Q

k0 6=k Ik denotes the unfolding matrix
obtained by concatenating the mode-k fibers of X as col-
umn vectors and �

rk(X(k)) denotes the r
k

-th largest eigen-
value of X(k). This penalty term regularizes the Tucker
rank of X (Negahban & Wainwright, 2011; Tomioka et al.,
2011).

To solve the problem (5) using the Schatten regulariza-
tion, ADMM is frequently employed (Boyd et al., 2011;
Tomioka et al., 2010). ADMM generates a sequence of
variables and Lagrangian multipliers by iteratively mini-
mizing the augmented Lagrangian function. It is known
that ADMM can easily solve an optimization problem with
a non-differentiable regularization term such as |||·|||

s

.

3. STD: Smoothed Tucker Decomposition
3.1. Smoothness on Tensors

Before explaining the proposed approach, we introduce the
notion of smoothness on tensors. We start with the idea that
a data tensor is obtained as a result of the discretization of
a multivariate function. For example, consider an observa-
tion model of the wind power on a land surface. Suppose
that the land surface is described by a plain [0, 1]2 (i.e., lon-
gitude and latitude) and the observation model is given by
a function f : [0, 1]2 ! R. Assume that we have infi-
nite memory space so that we can record the wind power
y = f(a, b) for any points a, b 2 [0, 1]. In such an unre-
alistic case, it is possible to handle the entire information
about f . However, only finite memory space is available;
we resort to retain finite observations {f(a

i

, b
i

)}n
i=1. If the

points (a
i

, b
i

) are considered as a grid, the observations can
be considered as a matrix.

This idea is generalized to tensors as follows. Consider a
K-variate function f

X

: [0, 1]K ! R, and a set of points
{(j1, . . . , jK) 2 [0, 1]K}I1...Ik

j1...jK=1 as grid points in [0, 1]K .
Then, each element of X is represented as

[X]

j1...jK = f
X

(g
j1 , . . . , gjK ), (6)

for j
k

= 1, 2, . . . with each k = 1, . . . ,K.

As the smoothness of the function, we assume that f
X

is
differentiable with respect to all K arguments, which al-
lows for the expansion of the basis function to a few use-
ful basis functions (for example, Tsybakov (2008)) and the
decomposition of multivariate functions by the basis (see
Hackbusch (2012) for detail). Let {�(k)

m

: [0, 1] ! R}
m

be a set of orthonormal basis functions, such as Fourier se-
ries or wavelet series, and {w

m1,...,mK 2 R}
m1,...,mK be

a set of coefficients. Because of the differentiability, f
X

is
written as the weighted sum of the basis functions as

f
X

=

1
X

m1=1

· · ·
1
X

mK=1

w
m1...mK�(1)

m1
· · ·�(K)

mK
. (7)

Combining (6) and (7) yields a formulation of the elements
of the smooth tensor as

[X]

j1,...,jK (8)

=

1
X

m1=1

· · ·
1
X

mK=1

w
m1...mK�(1)

m1
(g

j1) · · ·�(K)
mK

(g
jK ).
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Hereafter, we say that X is smooth if it follows (8).

3.2. Objective Function

Model (8) is not directly applicable because it requires an
infinite number of basis functions. To prevent this, we con-
sider their truncation. Let M (k) < 1 be the basis functions
for mode k, which represents a degree of smoothness of X
in terms of mode k. For example, when M (k) is large, such
as M (k)

= I
k

for all k, the basis function formulation can
represent any X , which implies that it neglects the smooth
structure. Then, we consider X such that it satisfies the
following relation:

[X]

j1,...,jK (9)

=

M

(1)
X

m1=1

· · ·
M

(K)
X

mK=1

w
m1···mK�(1)

m1
(g

j1) · · ·�(K)
mK

(g
jK ).

For practical use, let W
X

2 RM

(1)⇥···⇥M

(K)

be a coeffi-
cient tensor that satisfies

[W
X

]

m1...mK = w
m1...mK ,

with given X .

Using the representation, we propose an objective function
of STD. Based on the same convex optimization approach
as (5), we define the objective function as

min

X2⇥



1

2n
kY � X(X)k2 + �

n

|||W
X

|||
s

+ µ
n

|||W
X

|||2
F

�

,

(10)

where �
n

, µ
n

� 0 are regularization coefficients that de-
pend on n and �

n

, µ
n

! 0 as n ! 1. Here, regularization
terms |||W

X

|||
s

and |||W
X

|||2
F

are employed.

There are three primary advantages of the formulation
given by (10). Firstly, (10) is written as a convex optimiza-
tion problem. Thus, it is ensured that to obtain the global
solution of W

X

will be obtained. Secondly, regularization
term |||W

X

|||
s

determines the Tucker rank of W
X

appropri-
ately. Even though we must select �

n

, this is considerably
easier than selecting the values of K. Thirdly, the regular-
ization |||W

X

|||2
F

penalizes the smoothness of f
X

. Note that
the smoothness of f

X

is related to M (k), and we introduce
|||W

X

|||2
F

to select an appropriate degree of smoothness.

3.3. Algorithm

To optimize (10), we first reformulate it through vectoriza-
tion and matricization. We define x 2 R

Q
k Ik as the vector-

ized tensor of X , and Q is a
Q

k

I
k

⇥n matrix, which is the
matricized version of the rearranging operator X. We de-
fine M (\k)

:=

Q

k

0 6=k

M (k), and Z
k

2 RMk⇥M

(\k)

is the
mode-k unfolding matrix of W

X

. Let w 2 R
Q

k M

(k)

be the

vectorized tensor of W
X

. Let � : R
Q

k M

(1)⇥···⇥M

(K) !
RI1⇥···⇥IK be an operator that converts W

X

to X as given
by (9) using {�

m

(g
j

)}
m,j

. Let � be a
Q

k

I
k

⇥
Q

k

M (k)

matrix that satisfies �(w) = �w. As �(w) is a linear map-
ping by (9), the existence of � is ensured. Then, (10) is
rewritten as follows:

min

x,w,{Zk}K
k=1

1

2n
kY �Qxk2 + �

n

K

K

X

k=1

kZ
k

k
s

+ µ
n

kwk2,

s.t. x = �(w), P
k

(w) = Z
k

, 8k (11)

where P
k

: R
Q

k M

(k) ! RM

(k)⇥M

(\k)

is a rearranging
operator from the vector to the unfolding matrix. Note that
|||W |||

F

= kwk
F

holds by the definition of w.

We use the ADMM approach to solve (11). Maximizing
the augmented Lagrangian function for (11), we obtain the
following iteration steps. Here, ⌘ > 0 is a step size and
{↵

k

2 R
Q

k M

(k)}K
k=1 and � 2 R

Q
k Ik are Lagrangian

multipliers. Let (x0, w0, {Zk,0}K
k=1, {↵k,0}K

k=1,�0) be an
initial point. The ADMM step at the `-th iteration is written
as follows:

x`+1
=

�

QTQ+ n⌘I
��1 �

QTY � n�`

+ n⌘�w`

�

w`+1
= (2µ

n

I + ⌘KI + ⌘�T

�)

�1

⇥
 

K

X

k=1

�

⌘P�1
k

(Z`

k

)� ↵`

k

 

+ �

T�`

+ ⌘�Tx`+1

!

Z`+1
k

= prox
�n/⌘

(P
k

(w`+1
+ ↵`

k

))

↵`+1
k

= ↵`

k

+ (w`+1 � P�1
k

(Z`+1
k

))

�`+1
= �`

+ (x`+1 � �w`+1
),

where prox
�n/⌘

(·) denotes the shrinkage operation of
the singular values, which is defined as prox

⌘

(Z) =

U max(S � ⌘I, 0)V T , where S,U , and V are obtained
through the singular value decomposition as Z = USV T .
Note that the ADMM steps for Z

k

and ↵
k

are required for
every k = 1, . . . ,K. For ⌘, Tomioka et al. (2010) suggest
setting ⌘ = ⌘0/

p

Var(y
i

) with some constant ⌘0. As the
regularization terms are convex, the sequence of the vari-
ables of ADMM is ensured to converge to the optimal so-
lution of (10) (Gandy et al., 2011, Theorem 5.1).

3.4. Practical Issues

STD has several hyperparameters, i.e., �
n

, µ
n

, {M (k)},
and {�

m

}. �
n

and µ
n

can be determined through cross
validation. {M (k)} is initialized as a large value and re-
duced during the algorithm depending on µ

n

. As M (k)

does not exceed I
k

because of an identification reason, the
initial value of M (k) is bounded. Practically, M (k) is con-
siderably less than I

k

. Thus, we can start the iteration with
small values.
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One can criticize that a few data tensors are smooth with
one mode, but not with others. We emphasize that STD
can address such a situation by controlling M (k) for each k.
As STD can represent tensors without the smooth structure
when M (k)

= I
k

, setting M (k)
= I

k

for some mode k
and M (k)  I

k

for other modes is sufficient to address the
situation.

In this study, selecting the form of the basis functions
{�

m

}
m

is not our primary interest because it does not
specifically affect the theoretical result. However, there
are a few typical choices. For instance, when the data ten-
sor is periodic, such as audio, the Fourier basis is appro-
priate. Even through other functions, such as wavelet or
spline functions, provide the theoretical guarantees of ap-
proximating f .

4. Theoretical Analysis
We introduce a few notations for convenience. Let
|||X|||

m

:=

1
K

P

K

k=1 max

r

�
r

(X(k)) be a norm of a tensor,
which is necessary for evaluating the penalty parameters.
Let X⇤ be an adjoint operator of X, namely, hX(z), z0i =

hz,X⇤
(z0)i holds for all z, z0 2 X . For theoretical require-

ment, we let the basis functions {�
j

: [0, 1] ! R}
j

be
uniformly bounded for all j � 1. All proofs of this section
are provided in the supplemental material.

4.1. Error Bound with X⇤

First, we impose the following assumption on X.

Assumption 1 (Restricted Strong Convexity (RSC) condi-
tion). A finite constant C

X

> 0 depending on {I
k

}
k

exists,

then the rearranging operator X satisfies

1

2n
kX(X)k2 � C

X

|||X|||2
F

,

for all X 2 ⇥.

Intuitively, this assumption requires that X is sufficiently
sensitive to the perturbation of X . A similar type of condi-
tion has been used in previous studies on sparse regression,
such as LASSO (Bickel et al., 2009; Raskutti et al., 2010),
i.e., the restricted isometry condition. The RSC condition is
weaker than the isometry condition because the RSC con-
dition requires only the lower bound.

We provide the following lemma regarding the error bound
when true tensor X⇤ can be neither smooth nor low-rank.
Let (RW

1 , . . . , RW

K

) be the Tucker rank of W
X

.

Lemma 2. Consider X⇤ 2 ⇥, and the rearranging

operator X that satisfies the RSC condition. Suppose

there exist sequences �
n

, µ
n

, and 
n

that satisfy 
n

�
c( 2

n

|||X⇤
(E)|||

m

+ �
n

) and 1� cµ
n

< 3/4 with a constant

c > 0. Then, with some constants C1, C2, C3 > 0, we have

||| ˆX �X⇤|||
F

 max {I, II, III} ,

where I, II , and III are:

I =

C1n

K

K

X

k=1

q

RW

k

,

II =

0

@

C2�n

K

K

X

k=1

X

r>R

W
k

�
r

(W
X

⇤(k))

1

A

1
2

,

III =

0

@

C3µn

K

X

{mk>M

(k)}k

�

w⇤
m1...mk

�2

1

A

1
2

,

respectively; w⇤
m1...mk

is the coefficient of X⇤
.

Lemma 2 states that the estimation error of ˆX is bounded
by three types of values, where (I) indicates the error re-
sulting from estimating a tensor that is smooth and low-
rank; (II) indicates the error resulting from introducing
the low-rank; and (III) indicates the error resulting from
approximating by the smooth tensor.

From Lemma 2, we see that (II) and (III) disappear and
(I) remains when X⇤ is low rank and smooth, which we
show in the next proposition. Here, we define ˜

⇥ ⇢ ⇥ as
the set of the tensors represented by (9) with {M (k)}

k

and
the coefficient tensor W

X

with its rank (RW

1 , . . . , RW

K

).
Proposition 3. Suppose the same conditions of Lemma 1

hold and X⇤ 2 ˜

⇥ is smooth and low-rank. Then, with some

constant C
f

> 0 we have

||| ˆX �X⇤|||
F

 C
f


n

K

K

X

k=1

q

RW

k

.

4.2. Error Bound with f
X

⇤

One of the advantages of STD is that it can estimate
X⇤ and the smooth function f

X

defined in (6), which
allows for the interpolation of X⇤. Here, we evaluate
the estimation error of STD with respect to the norm
k · k

L

2 for the functional space. Let us define f
X

⇤
:=

P

M

(1)
,...,M

(K)

m1,...,mK
w⇤

m1,...,mK
�
(1)
m1 · · ·�

(K)
mK which is one of

the smooth function as the limit of X⇤ as I
k

! 1 for
all k 2 {1, . . . ,K}. We define the estimator of f

X

⇤ by the
following:

f
X̂

:=

M

(1)
...M

(K)
X

m1...mK=1

ŵ
m1...mK�(1)

m1
· · ·�(K)

mK
,

where ŵ
m1...mK is an element of W

X̂

. Estimation error is
provided as follows.
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METHOD RECOVERY INTERPOLATION ASSUMPTION
TOMIOKA ET AL. (2011) O(RXI�2) N/A LOW-RANK
TOMIOKA & SUZUKI (2013) O(RXI�2) N/A LOW-RANK
WIMALAWARNE ET AL. (2014) O(RXI�2) N/A LOW-RANK

STD O(RW I�2) O
⇣
n�1/2IK�1

p
RW

⌘
LOW-RANK & SMOOTH

Table 1. Comparison of error bounds under the low-rank and smoothness assumptions. For clarity, the special cases of the error bounds
are shown, where the shape of X is symmetric, i.e., I := I1 = · · · = IK , RX := RX

1 = · · · = RX
K , and RW := RW

1 = · · · = RW
K .

Lemma 4. Suppose that the rearranging operator X that

satisfies the RSC condition and the true tensor X⇤ 2 ˜

⇥.

Then, with some constant C
F

> 0, we have

sup

g2[0,1]K
|f

X̂

(g)� f
X

⇤
(g)|  C

F


n

K

K

X

k=1

q

RW

k

.

When 
n

! 0 by the setting, Lemma 4 shows that f
X̂

estimated by STD uniformly converges to f
X

⇤ .

4.3. Applications and Comparison

To discuss the result of Lemma 2 more precisely, we con-
sider the following two practical settings: tensor recovery
and tensor interpolation. For each setting, we derive rigor-
ous error bounds.

4.3.1. TENSOR RECOVERY

We consider that all the elements of X are observed, and
they are affected by noise, i.e., we set n =

Q

K

k=1 Ik and
X is a vectorization operator. Then, by applying Lemma 2,
we obtain the following result.
Theorem 5. Suppose thatX⇤ 2 ˜

⇥ and the rearranging

operator X that satisfies the RSC condition, and the noise is

i.i.d. Gaussian. Let C10, C11 > 0 be some finite constants.

By setting 
n

= C10�
1

nK

P

K

k=1(
p
I
k

+

p

I\k), with high

probability, we have

||| ˆX �X⇤|||2
F

 C11�
2

 

1

K

K

X

k=1

p

I
k

+

q

I\k

!2 

1

K

K

X

k=1

q

RW

k

!2

.

Note that, in Theorem 5, the first part
⇣

1
K

P

K

k=1

p
I
k

+

p

I\k

⌘2
comes from the noise and

the second part
⇣

1
K

P

K

k=1

q

RW

k

⌘2

comes from the
Tucker rank of W

X

.

4.3.2. TENSOR INTERPOLATION

Lemma 4 shows that STD can estimate the value of f
X

⇤

for all in g 2 [0, 1]K , and not only on the given grids
{(g

j1 , . . . , gjK )} ⇢ [0, 1]K . By tuning 
n

in Lemma 4, we
obtain the error bound for the tensor interpolation problem.

Theorem 6. Suppose thatX⇤ 2 ˜

⇥ and the rearranging

operator X that satisfies the RSC condition, and the noise

is i.i.d. Gaussian. By setting C20, C21 > 0 and 
n

=

C20p
nK

�
P

K

k=1(
p
I
k

+

p

I\k), with high probability, we have

sup

g2[0,1]K
|f

X̂

(g)� f
X

⇤
(g)|

 C21�p
n

 

1

K

K

X

k=1

p

I
k

+

q

I\k

! 

1

K

K

X

k=1

q

RW

k

!

.

4.4. Comparison to Related Studies

Several studies have derived an error bound for ||| ˆX �
X⇤|||2

F

/n in each situation. Tomioka et al. (2011) inves-
tigated the tensor decomposition problem with an over-
lapped Schatten-norm and derived the error bound as

||| ˆX �X⇤|||
F

=

O

  

1

K

K

X

k=1

p

I
k

+

q

I\k

! 

1

K

K

X

k=1

q

RX

k

!!

, (12)

where (RX

1 , . . . , RX

K

) is the Tucker of X⇤. The error bound
in Proposition 3 is obtained by replacing the part RX

k

in
(12) by RW

k

. Tomioka & Suzuki (2013) and Wimalawarne
et al. (2014) introduced modified norms with the Schatten-
norm and derived other error bounds.

Table 1 compares the main coefficients for the convergence.
When the tensor is sufficiently smooth, i.e., RW

k

< RX

k

case, the bound of STD is tighter than those of the other
methods.

5. Experiment
5.1. Theoretical Validation

Firstly, we verify the theoretical bound derived in Section
4 through experiments for the tensor recovery problem.
We generate data tensors by following data generating pro-
cesses and investigate the relation between a mean squared
error (MSE) and other factors. We set K = 3 and pre-
pare two different sizes: (I1, I2, I3) = (10, 10, 20) and
(50, 50, 20). We set the Tucker rank as (R1, R2, R3) and
select R

k

from {2, 3, 4} for each k = 1, 2, 3. In addition,
we generate the core tensor and its elements are obtained
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Figure 2. Result for tensor recovery problem. �n and µn are 0.2
(red circle), 0.4 (green triangle), 0.6 (blue square), 0.8 (purple
diamond), and 1.0 (yellow star). Each dashed line is the linear
fitting to the errors.

using the standard normal distribution. Then, we gener-
ate vectors u(k)

rk in the following manner and obtain X us-
ing (1). To make X smooth, we set u(k)

rk as a discretized
smooth functions f

k

, i.e., [u(k)
rk ]

i

= f
k

(i/I
k

): {f
k

}
k=1,2,3

is defined as follows: f1(z) = ✓1z, f2(z) = ✓2z
2, and

f3(z) = ✓3z
0.5 with random parameters (✓1, ✓2, ✓3). The

scale of noise is varied as � 2 {0.01, 0.1}.

To investigate the MSE ||| ˆX � X⇤|||2
F

/n, we de-
fine the STD rank as follows: STD rank :=

⇣

1
K

P

K

k=1
1p
Ik

⌘2 ⇣
1
K

P

K

k=1

q

RW

k

⌘2

. According to
the theoretical result, the upper bounds for the MSEs
for STD have a linear relation with the STD rank (see
Theorem 5).

Figure 2 shows a lot of the MSEs against the STD rank.
The results show that the MSE and STD rank have a linear
relationship for each panel and each value of the penalty
parameters. This result supports Theorem 5; the bound for
MSE in Theorem 5 varies linearly with the STD rank. In
addition, we can see that the increment in the MSEs against
the STD rank increases with the regularization parameter,
and it decreases as the size of the tensor increases. This
result is explained by the theoretical results, as the MSE is
scaled by the regularization parameter and divided by n.

5.2. Comparison with Other Convex Methods

We compare the performances of convex tensor decompo-
sitions with the tensor recovery problem. To investigate the
performance with smoothness, we generate two types of

Figure 3. Plotted MSEs with the tensor recovery problem against
the noise level. Each symbol shows Schatten (blue circle), STD
(red diamond), latent Schatten (purple left triangle), and matrix
completion (green triangle).

tensors, i.e., a smooth tensor and a non-smooth tensor. The
smooth tensor, which is a discretized smooth function, is
generated using basis vectors. For the non-smooth tensor,
we generate vectors u

(k)
rk using a multivariate normal dis-

tribution, and make X through (1). The scale of noise is
varied as � 2 {0.1, 0.2 . . . , 1.0}.

In the experiment, we compare the following four methods:
STD, Tucker decomposition with Schatten regularization,
Tucker decomposition with latent Schatten regularization,
and matrix decomposition with unfolding X , where the last
three methods were proposed by Tomioka et al. (2011). For
each method, regularization parameters are selected such
that they minimize the generalization error ||| ˆX � X⇤|||

F

with grid search in an interval [0.1, 8.0].

The MSEs and their standard deviations for 100 repli-
cations are shown in Figure 3. For a small tensor size
(10 ⇥ 10 ⇥ 20), STD performs better when the tensor is
smooth, and the latent Schatten approach is better when the
tensor is not smooth. With the large tensor (50⇥ 50⇥ 20)

with the smooth structure, STD outperforms other meth-
ods. For a large tensor is non-smooth, the advantages of
STD reduce, even though it exhibits good performance.
When the tensor is small, the optimization of STD is close
to that of Tucker decomposition, as M (k) and I

k

are simi-
lar. Thus, the performances of the methods are similar for
the small tensor. In contrast, when the tensor is large, STD
can provide a different estimator by letting M (k) ⌧ I

k

,
and STD successfully reduces the MSE. This difference be-
comes evident when the tensor has the smooth structure.
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5.3. Analysis of Real Data

5.3.1. AMINO ACID DATA

We conduct tensor completion and interpolation using
amino acids data (Kiers, 1998). The dataset contains
amounts of tyrosine, dissolved in phosphate water, which
are measured using a spectrofluorometer for each 1 nm in-
terval, and the data are represented by 201⇥ 61 matrices.

We make a few elements of the dataset missing, and com-
plete them using the Schatten method (Tomioka et al.,
2011) and STD. We consider the following four missing
patterns: (A) element-wise missing (20%), (B) element-
wise missing (50%), (C) element-wise missing (80%), and
(D) column-wise and row-wise missing (50%). We employ
the trigonometric basis functions for STD. The hyperpa-
rameters are determined through the cross-validation.

Figure 4 shows the result. For random missing cases (A),
(B), and (C), the Schatten method and STD can complete
the missing elements. In contrast, when rows and columns
are completely missing (D), only STD can interpolate miss-
ing values and achieve the data.

Observed Schatten STD

Figure 4. Completion of missing elements in amino acid data.

5.3.2. HUMAN ACTIVITY VIDEO

We conduct an experiment with a human activity video
dataset (Schuldt et al., 2004). It contains the human run-
ning action; it has a resolution of 160 ⇥ 120 pixels and
an average length for 4 seconds length for average with a
frame rate of 25 fps. First, we downscale the resolution of
each frame to one-fourth so that a 40 ⇥ 30 ⇥ 100 tensor
is obtained. We make a few pixels (50% or 100%) of the
video at t = 0.18 s missing, and complete them from other
frames. The experiments are conducted using matrix com-
pletion, the Schatten method (Tomioka et al., 2011), and
STD. For STD, we set the basis functions as trigonometric
series and �

n

= µ
n

= 0.1.

Figure 5 shows the results of the experiments. We observe
that matrix completion and the Schatten method work well
when the 50% missing case. However, they recover nothing
when 100% pixels are missing. On the contrary, STD suc-
cessfully recovers the background. In addition, the man’s

body and shadow are interpolated at the correct position
at t, even though they are blurred. Note that the comple-
tion result for STD for 50% missing pixels contains block-
noise. This is possibly because of over-fitting by the basis
functions.

Observed frame
(t� 1)

Target frame
(t)

Observed frame
(t+ 1)

Completed results (50% missing)
Matrix Schatten STD

Completed results (100% missing)
Matrix Schatten STD

Figure 5. Completion of missing pixels in the human activity
video.

6. Discussion
The smoothness we focus on is closely related to the stud-
ies of matrix completion. When a tensor is expanded by
the basis functions that are close to independent with each
other, this implies the tensor satisfies the incoherence prop-

erty, which is frequently used as requirement for the ma-
trix completion problem (Candes & Plan, 2010; Candes &
Recht, 2012). Using the similarity, we may apply the for-
mulation of STD to the tensor completion problem and an-
alyze some properties such as the sample complexity.

Note that the focus of this study is primary on the theo-
retical aspect, which provides scope for addressing more
practical requirements. First, the ADMM algorithm is not
scalable when the size of the tensor is large. The pri-
mary computational burden is caused by a matrix of size
Q

k

I
k

⇥
Q

k

M (k), which is essential for the convex for-
mulation. We may use a reduction technique as proposed
by Cheng et al. (2016); this is an important challenge for
future work. Second, the assumed smoothness (i.e., dif-
ferentiability) can be extremely general for a few actual
applications. For example, images possibly contain solid
edges, such as the boundaries of objects, which do not
fit the smoothness assumption. Exploring more domain-
specific smoothness is an open problem.
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