A. Supplementary materials

A.1. Notation and Lemmas

We provide some additional notations for the proof. First, for $X \in \mathcal{X}$, we denote an overlapped Schatten sup-norm as

$$|||X|||_{s,\infty} := \max_{k} \max_{r} \sigma_r(X_{(k)}).$$

With the norm, we introduce a following Lemma.

Lemma 7. (Lemma 1 in Tomioka et al. (2011)) For $X \in \mathcal{X}$, consider the infimum of the maximum mode-k spectral norm for $\|\cdot\|_{s^*}$ as

$$|||X|||_{s^*} = \inf_{\frac{1}{K} \sum_{k=1}^K Y^{(k)} = X} \max_{k} ||Y_{(k)}^{(k)}||_{s,\infty},$$

where $Y^{(k)} \in \mathcal{X}$ and $Y^{(k)}_{(k)}$ is the mode-k unfolding of $Y^{(k)}$ for all k. Then, $\| \| \cdot \| \|_{s^*}$ is the dual norm of the overlapped Schatten 1-norm $\| \| \cdot \| \|_{s}$. Moreover, the following inequality is valid:

$$|||X|||_{s^*} \le |||X|||_m$$
.

Proof is provided in Tomioka et al. (2011). By Lemma 7, we obtain the following Holder-type inequality as

$$|\langle X, X' \rangle| \le ||X||_{\mathfrak{s}} ||X'||_{\mathfrak{s}^*} \le ||X||_{\mathfrak{s}} ||X'||_{\mathfrak{m}}. \tag{13}$$

We also discuss a rank restriction for tensor and provide Lemma for the restriction.

We introduce another result to bound the the effect of the noise tensor such as $\|\mathfrak{X}^*(\mathcal{E})\|_{m}$.

Lemma 8. (Lemma 3 in Tomioka et al. (2011)) Let \mathfrak{X} and \mathcal{E} be as the defined above. Then, with high probability, we have

$$\|\|\mathfrak{X}^*(\mathcal{E})\|\|_m \leq \frac{\sigma}{K} \sum_{k=1}^K \left(\sqrt{I_k} + \sqrt{I_{\setminus k}}\right).$$

A.2. Proof of Lemma 2

The notation \lesssim denotes that the left-hand side is bounded by the right-hand side up to a constant. Also, by the setting of the basis functions, we define a finite positive constant C_P satisfying $C_P \ge |||W|||_F/||X|||_F$.

By the definition of \hat{X} , we obtain the following basis inequality:

$$\frac{1}{2n} \|Y - \mathfrak{X}(\hat{X})\|^2 + \lambda_n \|W_{\hat{X}}\|_s + \mu_n \|W_{\hat{X}}\|_F
\leq \frac{1}{2n} \|Y - \mathfrak{X}(X^*)\|^2 + \lambda_n \|W_{X^*}\|_s + \mu_n \|W_{X^*}\|_F.$$

Let $\Delta_X := X^* - \hat{X}$ and $\Delta_W := W_{X^*} - W_{\hat{X}}$, and some calculation yields

$$\frac{1}{2n} \|\mathfrak{X}(\Delta_X)\|^2 \le \frac{1}{n} \langle \mathcal{E}, \mathfrak{X}(\Delta_X) \rangle
+ \lambda_n (\|W_{\hat{X}} + \Delta_W\|_s - \|W_{\hat{X}}\|_s)
+ \mu_n (\|W_{\hat{X}} + \Delta_W\|_F^2 - \|W_{\hat{X}}\|_F^2).$$
(14)

Remind that \mathfrak{X} satisfies the linearity properties.

Here, we evaluate each of the terms on the right-hand side of (14). About the first term, we obtain

$$\frac{1}{n}\langle \mathcal{E}, \mathfrak{X}(\Delta_X) \rangle = \frac{1}{n}\langle \mathfrak{X}^*(\mathcal{E}), \Delta \rangle$$

$$\leq \frac{1}{n} \| \| \mathfrak{X}^*(\mathcal{E}) \|_{s^*} \| \Delta_X \|_s \leq \frac{1}{n} \| \| \mathfrak{X}^*(\mathcal{E}) \|_m \| \Delta_X \|_s.$$

by the definition of adjoint operators, the Holder's inequality, and Lemma 7. Let $\lambda^* = \frac{1}{n} |||\mathfrak{X}^*(\mathcal{E})|||_m$ for brevity. Here, we discuss the relation between $\Delta_{X,(k)}$ and $\Delta_{W,(k)}$.

Also, using the setting on Φ and the Holder's inequality, we have

$$\|\Delta_X\|_s = \frac{1}{K} \sum_{k=1}^K \|\Delta_{X,(k)}\|_s$$

$$\leq \frac{1}{K} \sum_{k=1}^K \|\Gamma_{(k)}\| \|\Delta_{W,(k)}\|$$

$$K$$
(15)

$$\leq \|\Delta_W\|_F \frac{1}{K} \sum_{k=1}^K \|\Gamma_{(k)}\|$$

$$=: \|\Delta_W\|_F C_{\Gamma}. \tag{16}$$

About the third term in (14), since we have we have

$$\lambda_n(\|W_{\hat{X}} + \Delta_X\|_s - \|W_{\hat{X}}\|_s) \le \lambda_n \|\Delta_W\|_s,$$

by the triangle inequality. The third term in (14) is bounded as

$$\mu_{n}(\|W_{X^{*}}\|_{F}^{2} - \|W_{\hat{X}}\|_{F}^{2})$$

$$= \frac{\mu_{n}}{K} \left(\sum_{k=1}^{K} \sum_{m_{k}=1}^{\infty} \left(w_{m_{1}...m_{K}}^{*} \right)^{2} - \sum_{k=1}^{K} \sum_{m_{k}=1}^{M^{(k)}} \hat{w}_{m_{1}...m_{K}}^{2} \right)$$

$$= \frac{\mu_{n}}{K} \left(\sum_{k=1}^{K} \sum_{m=1}^{M^{(k)}} \left\{ \left(w_{m_{1}...m_{K}}^{*} \right)^{2} - \hat{w}_{m_{1}...m_{K}}^{2} \right) \right\} + \sum_{k=1}^{K} \sum_{m_{k} > M^{(k)}} \left(w_{m_{1}...m_{K}}^{*} \right)^{2} \right).$$

Here, we let $A:=\frac{1}{K}\sum_{k=1}^K\sum_{m_k>M^{(k)}}\left(w_{m_1...m_K}^*\right)^2$ for brevity. To bound the term $\sum_{k=1}^K\sum_{m=1}^{M^{(k)}}\left\{\left(w_{m_1...m_K}^*\right)^2-\hat{w}_{m_1...m_K}^2\right)\right\}$, we define a projection $\Pi:\mathbb{R}^{M^{(1)}\times\cdots\times M^{(K)}}\to\Theta$ is smooth and low-rank, and let $\overline{\Delta}_W:=\Pi(W_{X^*})-W_{\hat{X}}$. Then, we have

$$\begin{split} &\frac{1}{K} \sum_{k=1}^{K} \sum_{m=1}^{M^{(k)}} \left\{ \left(w_{m_1 \dots m_K}^* \right)^2 - \hat{w}_{m_1 \dots m_K}^2 \right) \right\} \\ &= \left\| \left\| \Pi(W_{X^*}) \right\|^2 - \left\| W_{\hat{X}} \right\|^2 \\ &= \left\| \left\| W_{\hat{X}}^2 + \overline{\Delta}_W \right\|^2 - \left\| W_{\hat{X}} \right\|_F^2 \le \left\| \overline{\Delta}_W \right\|_F^2. \end{split}$$

Then we have

$$\mu_n(\|W_{X^*}\|_F^2 - \|W_{\hat{X}}\|_F^2) \le \mu_n(\|\overline{\Delta}_W\|_F^2 + A).$$

About the second term in (14), we obtain

$$\begin{aligned} & \|\Delta_{W}\|_{s} \\ & \leq \frac{1}{K} \sum_{k=1}^{K} \|\Delta'_{W,(k)}\|_{s} + \frac{1}{K} \sum_{k=1}^{K} \|\Delta''_{W,(k)}\|_{s} \\ & \leq 4 \frac{1}{K} \sum_{k=1}^{K} \|\Delta'_{W,(k)}\|_{s} + \frac{1}{K} \sum_{k=1}^{K} \sum_{r_{k} > R_{k}^{W}} \sigma_{r_{k}}(W_{(k)}^{*}), \end{aligned}$$

where the inequalities follow the same discussion with Lemma 2 in Tomioka et al. (2011) and Lemma 1 in Negahban & Wainwright (2011). Let $B := \frac{1}{K} \sum_{k=1}^K \sum_{r_k > R_k^W} \sigma_{r_k}(W_{X^*,(k)})$ for brevity. Then, by the Holder-type inequality, we have following inequalities as

$$\|\Delta'_{W}\|_{s} \leq \frac{1}{K} \sum_{k=1}^{K} \sqrt{2R_{k}^{W}} \|\Delta_{W,(k)}\|_{F}$$
$$\leq \|\Delta_{W}\|_{F} \frac{1}{K} \sum_{k=1}^{K} \sqrt{2R_{k}^{W}}.$$

Combining the results, we evaluate the inequality (14) as

$$\frac{1}{2n} \|\mathfrak{X}(\Delta_X)\|^2
\leq \frac{1}{n} \|\mathfrak{X}^*(\mathcal{E})\|_m \|\Delta_X\|_s + \lambda_n \|\Delta_W\|_s + \mu_n (\|\overline{\Delta_W}\|_F^2 + A)
\leq \lambda^* C_\Gamma \|\Delta_W\|_F
+ \lambda_n \left(\|\Delta_W\|_F \frac{1}{K} \sum_{k=1}^K \sqrt{2R_k^W} + B \right)
+ \mu_n (\|\overline{\Delta}_W\|_F^2 + A).$$

By the RSC condition and the same result in (15), we have

$$\|\Delta_{X}\|_{F}^{2} \leq \frac{1}{2n} \|\mathfrak{X}(\Delta_{X})\|^{2}$$

$$\leq (\lambda^{*}C_{\Gamma}' + \lambda_{n}) \|\Delta_{W}\|_{F} \frac{1}{K} \sum_{k=1}^{K} \sqrt{R_{k}^{W}} + \mu_{n} \|\Delta_{W}\|_{F}^{2} + \lambda_{n}B + \mu_{n}A$$

$$\leq C_{P} (\lambda^{*}C_{\Gamma}' + \lambda_{n}) \|\Delta_{X}\|_{F} \frac{1}{K} \sum_{k=1}^{K} \sqrt{R_{k}^{W}} + C_{P}\mu_{n} \|\Delta_{X}\|_{F}^{2} + \lambda_{n}B + \mu_{n}A.$$

where $C'_{\Gamma}=C_{\Gamma}(\frac{1}{K}\sum_{k=1}^K\sqrt{R_k^W})^{-1}$. When A=0 and B=0, using the condition of the constant, we have

$$(1 - C_P \mu_n) \|\Delta_X\|_F^2 \le \kappa_n \|\Delta_X\|_F \frac{1}{K} \sum_{k=1}^K \sqrt{R_k^W},$$

by the setting of κ_n . Then we have

$$\|\Delta_X\|_F \lesssim \frac{\kappa_n}{K} \sum_{k=1}^K \sqrt{R_k^W}. \tag{17}$$

Then the claim holds.

A.3. Proof of Lemma 4

Proof. This proof start from the inequality (17) used in the proof of Lemma 2. By the settings of Lemma 4, we have A=0 and B=0. Using the setting of the basis functions, we have

$$\||\Delta_W||_F^2 \le C_P^2 \||\Delta_X||_F^2. \tag{18}$$

To evaluate the convergence, we bound the following term. For all $g \in [0,1]^K$, we have

$$|f_{\hat{X}}(g) - f_{X^*}(g)|$$

$$= \left| \sum_{k=1}^K \sum_{m_k=1}^{M^{(k)}} (\hat{w}_{m_1...m_K} - w^*_{m_1...m_K}) \phi^{(1)}_{m_1}(g_1) \cdots \phi^{(K)}_{m_K}(g_K) \right|$$

$$\leq \left(\sum_{k=1}^K \sum_{m_k=1}^{M^{(k)}} (\hat{w}_{m_1...m_K} - w^*_{m_1...m_K})^2 \right)^{1/2}$$

$$\times \left(\sum_{k=1}^K \sum_{m_k=1}^{M^{(k)}} (\phi^{(1)}_{m_1}(g_1) \cdots \phi^{(K)}_{m_K}(g_K))^2 \right)^{1/2},$$

by the boundedness property of $\{\phi_m\}_m$.

Then, we obtain

$$\sup_{g \in [0,1]^K} |f_{\hat{X}}(g) - f_{X^*}(g)| \le C_g |||\Delta_W|||,$$

where C_g is a positive constant. Combining the result in (18), we obtain the claim.

A.4. Proof of Theorem 5 and Theorem 6

Proof. Using Lemma 8, we obtain the regularization parameter bounding $\|\mathfrak{X}^*(\mathcal{E})\|_m$. Then, we substitute the parameter into the result of Lemma 2 and 6, thus we obtain the claim.