
Tensor Decomposition with Smoothness

A. Supplementary materials
A.1. Notation and Lemmas

We provide some additional notations for the proof. First, for X 2 X , we denote an overlapped Schatten sup-norm as

|||X|||
s,1 := max

k

max

r

�
r

(X(k)).

With the norm, we introduce a following Lemma.

Lemma 7. (Lemma 1 in Tomioka et al. (2011)) For X 2 X , consider the infimum of the maximum mode-k spectral norm

for |||·|||
s

⇤ as

|||X|||
s

⇤ = inf

1
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PK
k=1 Y

(k)=X

max

k

kY (k)
(k) ks,1,

where Y (k) 2 X and Y
(k)
(k) is the mode-k unfolding of Y (k)

for all k. Then, |||·|||
s

⇤ is the dual norm of the overlapped

Schatten 1-norm |||·|||
s

. Moreover, the following inequality is valid:

|||X|||
s

⇤  |||X|||
m

.

Proof is provided in Tomioka et al. (2011). By Lemma 7, we obtain the following Holder-type inequality as

|hX,X 0i|  |||X|||
s

|||X 0|||
s

⇤  |||X|||
s

|||X 0|||
m

. (13)

We also discuss a rank restriction for tensor and provide Lemma for the restriction.

We introduce another result to bound the the effect of the noise tensor such as |||X⇤
(E)|||

m

.

Lemma 8. (Lemma 3 in Tomioka et al. (2011)) Let X and E be as the defined above. Then, with high probability, we have

|||X⇤
(E)|||

m

 �

K

K

X
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⇣
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I
k

+

q
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⌘

.

A.2. Proof of Lemma 2

The notation . denotes that the left-hand side is bounded by the right-hand side up to a constant. Also, by the setting of
the basis functions, we define a finite positive constant C

P

satisfying C
P

� |||W |||
F

/|||X|||
F

.

By the definition of ˆX , we obtain the following basis inequality:

1
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.

Let �
X

:= X⇤ � ˆX and �

W

:= W
X

⇤ �W
X̂

, and some calculation yields
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Remind that X satisfies the linearity properties.

Here, we evaluate each of the terms on the right-hand side of (14). About the first term, we obtain

1

n
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)i = 1

n
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 1

n
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by the definition of adjoint operators, the Holder’s inequality, and Lemma 7. Let �⇤
=

1
n

|||X⇤
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m

for brevity. Here, we
discuss the relation between �

X,(k) and �

W,(k).

Also, using the setting on � and the Holder’s inequality, we have
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About the third term in (14), since we have we have
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by the triangle inequality. The third term in (14) is bounded as
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Here, we let A :=

1
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K
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. Then, we have
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Then we have
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About the second term in (14), we obtain
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where the inequalities follow the same discussion with Lemma 2 in Tomioka et al. (2011) and Lemma 1 in Negahban &
Wainwright (2011). Let B :=

1
K

P

K
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W
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⇤
,(k)) for brevity. Then, by the Holder-type inequality, we have

following inequalities as
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Combining the results, we evaluate the inequality (14) as
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By the RSC condition and the same result in (15), we have
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where C 0
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�1. When A = 0 and B = 0, using the condition of the constant, we have
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. Then we have
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Then the claim holds.

A.3. Proof of Lemma 4

Proof. This proof start from the inequality (17) used in the proof of Lemma 2. By the settings of Lemma 4, we have A = 0

and B = 0. Using the setting of the basis functions, we have
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To evaluate the convergence, we bound the following term. For all g 2 [0, 1]K , we have
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by the boundedness property of {�
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.

Then, we obtain

sup
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(g)� f
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where C
g

is a positive constant. Combining the result in (18), we obtain the claim.

A.4. Proof of Theorem 5 and Theorem 6

Proof. Using Lemma 8, we obtain the regularization parameter bounding |||X⇤
(E)|||

m

. Then, we substitute the parameter
into the result of Lemma 2 and 6, thus we obtain the claim.


