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Abstract

Modeling temporal sequences plays a fundamen-
tal role in various modern applications and has
drawn more and more attentions in the machine
learning community. Among those efforts on
improving the capability to represent temporal
data, the Long Short-Term Memory (LSTM) has
achieved great success in many areas. Although
the LSTM can capture long-range dependency
in the time domain, it does not explicitly model
the pattern occurrences in the frequency domain
that plays an important role in tracking and pre-
dicting data points over various time cycles. We
propose the State-Frequency Memory (SFM), a
novel recurrent architecture that allows to sepa-
rate dynamic patterns across different frequency
components and their impacts on modeling the
temporal contexts of input sequences. By jointly
decomposing memorized dynamics into state-
frequency components, the SFM is able to offer
a fine-grained analysis of temporal sequences by
capturing the dependency of uncovered patterns
in both time and frequency domains. Evaluations
on several temporal modeling tasks demonstrate
the SFM can yield competitive performances, in
particular as compared with the state-of-the-art
LSTM models.

1. Introduction
Research in modeling dynamics of time series has a long
history and is still highly active due to its crucial role in
many real world applications (Lipton et al., 2015). In re-
cent years, the advancement of this area has been dramat-
ically pushed forward by the success of recurrent neural
networks (RNNs) as more training data and computing re-
sources are available (Mikolov et al., 2010; Bahdanau et al.,
2014; Graves et al., 2013). Although some sophisticated
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RNN models such as Long Short-term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997) have been proven as
powerful tools for modeling the sequences, there are some
cases that are hard to handle by RNNs. For instance, (Mit-
telman, 2015) demonstrates that RNN models either per-
form poorly on predicting the optimal short-term invest-
ment strategy for the high frequency trading or diverge,
making them less preferred than other simpler algorithms.

One of the possible reasons for such situations is that RNN
models like LSTM only consider the pattern dependency
in the time domain, which is insufficient if we want to pre-
dict and track the temporal sequences over time at vari-
ous frequencies. For example, in phonemes classification,
some phonemes like ‘p’, ‘t’ are produced by short, high-
frequency signals, while others like ‘iy’, ‘ey’ are related
to longer, low-frequency signals. Thus modeling such fre-
quency patterns is quite helpful for correctly identifying
phonemes in a sentence. Similarly, music clips are often
composed of note sequences across a rich bands of frequen-
cies. Automatically generating music clips often requires
us to model both short and long-lasting notes by properly
mixing them in a harmonic fashion. These examples show
the existence of rich frequency components in many natural
temporal sequences, and discovering them plays an impor-
tant role in many prediction and generation tasks.

Thus, we strive to seamlessly combine the capacity of
multi-frequency analysis with the modeling of long-range
dependency to capture the temporal context of input se-
quences. For this purpose, we propose the State-frequency
Memory (SFM), a novel RNN architecture that jointly de-
composes the memory states of an input sequence into a
set of frequency components. In this fashion, the tempo-
ral context can be internally represented by a combination
of different state-frequency basis. Then, for a prediction
and generation task, a suitable set of state-frequency com-
ponents can be selected by memory gates deciding which
components should be chosen to predict and generate the
target outputs. For example, the high-frequency patterns
will be chosen to make very short-term prediction of asset
prices, while the low-frequency patterns of price fluctua-
tions will be selected to predict returns in deciding low-
term investment. Even more, we also allow the model to
automatically adapt its frequency bands over time, result-
ing in an Adaptive SFM that can change its Fourier bases
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to more accurately capture the state-frequency components
as the dynamics of input sequences evolves.

First we demonstrate the effectiveness of the proposed
SFM model by predicting different forms of waves that
contain rich periodic signals. We also conduct experiments
on several benchmark datasets to model various genres of
temporal sequences, showing the applicability of the pro-
posed approach in the real world, non-periodic situations.
Our results suggest the SFM can obtain competitive perfor-
mance as compared with the state-of-the-art models.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews relevant literature on different RNN-based
architectures and their applications. Then we introduce the
proposed SFM model in Section 3 with its formal defini-
tions and mathematical analysis. Section 4 demonstrates
the experiment results for different evaluation tasks. Fi-
nally, we conclude the paper in section 5.

2. Related works
Recurrent Neural Networks (RNNs), which is initially pro-
posed by (Elman, 1990; Jordan, 1997), extend the standard
feed forward multilayer perceptron networks by allowing
them to accept sequences as inputs and outputs rather than
individual observations. In many sequence modeling tasks,
data points such as video frames, audio snippets and sen-
tence segments, are usually highly related in time, making
RNNs as the indispensable tools for modeling such tempo-
ral dependencies. Unfortunately, some research works like
(Bengio et al., 1994), has pointed out that training RNNs to
capture the long-term dependencies is difficult due to the
gradients vanishing or exploding during the back propaga-
tion, making the gradient-based optimization struggle.

To overcome the problem, some efforts like (Bengio et al.,
2013), (Pascanu et al., 2013) and (Martens & Sutskever,
2011), aim to develop better learning algorithms. While
others manage to design more sophisticated structures. The
most well-known attempt in this direction is the Long
Short-Term Memory (LSTM) unit, which is initially pro-
posed by (Hochreiter & Schmidhuber, 1997). Compared to
the vanilla RNN structures, LSTM is granted the capacity
of learning long-term temporal dependencies of the input
sequences by employing the gate activation mechanisms.
In the realistic applications, LSTM has also been proved
to be very effective in speech and handwriting recognition
(Graves et al., 2005; Graves & Schmidhuber, 2009; Sak
et al., 2014). Recently, (Cho et al., 2014) introduce a mod-
ification of the conventional LSTM called Gated Recurrent
Unit, which combines the the forget and input gates into a
single update gate, and also merges the cell state and hid-
den state to remove the output gate, resulting in a simpler
architecture without sacrificing too much performance.

Besides LSTM and its variations, there are a lot of other
efforts to improve RNN’s sequence modeling ability. For
example, Hierarchical RNN (El Hihi & Bengio, 1995) em-
ploys multiple RNN layers to model the sequence in differ-
ent time scale. Moreover, (Schuster & Paliwal, 1997) and
(Graves & Schmidhuber, 2005) connect two hidden layers
of RNN and LSTM with opposite directions to the same
output, respectively. Such bidirectional structures allow the
output layer to access information from both past and future
states. In addition, Clockwork RNN (Koutnik et al., 2014)
and Phased LSTM (Neil et al., 2016), attempt to design new
schema to allow updating hidden states asynchronously.

Instead of developing novel structures, many researchers
focus on applying existing RNN model to push the bound-
ary of the real-world applications. For example, (Bah-
danau et al., 2014) and (Sutskever et al., 2014) have reached
the same level performance as the well-developed systems
in machine translation with RNN-encoder-decoder frame-
work; (Fernández et al., 2007) proposes the hierarchi-
cal Connectionist Temporal Classification (CTC) (Graves
et al., 2006) network and its deep variants has achieved the
state-of-the-art performance for phoneme recognition on
TIMIT database (Graves et al., 2013). Lastly, (Boulanger-
lewandowski et al., 2012) reports that RNN yields a better
prior for the polyphonic music modeling and transcription.

3. State-Frequency Memory Recurrent
Neural Networks

To introduce the State-Frequency Memory (SFM) recur-
rent neural networks, we begin with the definition of sev-
eral notations. Suppose we are given a sequence X1:T =
[x1,x2, · · · ,xT ] of T observations, where each observa-
tion belongs to a N -dimensional space, i.e., xt ∈ RN for
t = 1, · · · , T . Then we use a sequence of memory cells
of the same length T to model the dynamics of the input
sequence.

Like the conventional LSTM recurrent networks, each
memory cell of the SFM contains D-dimensional memory
states; however, unlike the LSTM, we decompose these
memory states into a set of frequency components, say-
ing {ω1, · · · , ωK} of K discrete frequencies. This forms
a joint state-frequency decomposition to model the tempo-
ral context of the input sequence across different states and
frequencies. For example, in modeling the human activi-
ties, action patterns can be performed at different rates.

For this purpose, we define a SFM matrix St ∈ CD×K
at each time t, the rows and columns of which correspond
to D dimensional states and K frequencies. This provides
us with a finer-grained multi-frequency analysis of mem-
ory states by decomposing them into different frequencies,
modeling the frequency dependency patterns of input se-
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quences.

3.1. Updating State-Frequency Memory

Like in the LSTM, the SFM matrix of a memory cell is
updated by combining the past memory and the new in-
put. On the other hand, it should also take into account the
decomposition of the memory states into K frequency do-
mains, which can be performed in a Fourier transformation
fashion (see Section 3.2 for a detailed analysis) as:

St = ft ◦ St−1 + (gt ◦ it)

 ejω1t

· · ·
ejωKt

T ∈ CD×K (1)

where ◦ is an element-wise multiplication, j =
√
−1, and

[cosω1t+ j sinω1t, · · · , cosωKt+ j sinωKt] are Fourier
basis of K frequency components for a sliding time win-
dow over the state sequence; ft ∈ RD×K and gt ∈ RD are
forget and input gates respectively, controlling what past
and current information on states and frequencies are al-
lowed to update the SFM matrix at t. Finally, it ∈ RD is
the input modulation that aggregates the current inputs fed
into the current memory cell.

The update of SFM matrix St can be decomposed into the
real and imaginary parts as follows.

ReSt = ft◦ReSt−1+(gt◦it) [cosω1t, · · · , cosωKt] (2)

and

ImSt = ft◦ImSt−1+(gt◦it) [sinω1t, · · · , sinωKt] (3)

Then the amplitude part of St is defined as

At = |St| =
√

(ReSt)2 + (ImSt)2 ∈ RD×K (4)

where (·)2 denotes element-wise square, each entry |St|d,k
captures the amplitude of the dth state on the kth frequency,
and the phase of St is

∠St = arctan(
ImSt
ReSt

) ∈
[
−π
2
,
π

2

]D×K
(5)

where arctan(·) is an element-wise inverse tangent func-
tion. It is well known that the amplitude and phase encode
the magnitude and the shift of each frequency component.

Later, we will feed the amplitude of state-frequency into
the memory cell gates, and use the distribution of memory
states across different frequencies to control which infor-
mation should be allowed to update the SFM matrix. The
phase ∠St of state-frequency is ignored as we found it does
not affect the result in experiments but incurs extra compu-
tational and memory overheads.

The Joint State-Frequency Forget Gate

To control the past information, two types of forget gates
are defined to decide which state and frequency informa-
tion can be allowed to update SFM matrix. They are the
state forget gate

f ste
t = σ(Wstezt−1 +Vstext + bste) ∈ RD (6)

and the frequency forget gate

f fre
t = σ(Wfrezt−1 +Vfrext + bfre) ∈ RK (7)

where σ(·) is an element-wise sigmoid function; zt is an
output vector which will be discussed later; W∗ and V∗

are weight matrices; and b∗ is a bias vector.

Then a joint state-frequency gate is defined as an outer
product ⊗ between f ste

t and f fre
t

ft = f ste
t ⊗ f fre

t = f ste
t · f fre′

t ∈ RD×K (8)

In other words, the joint forget gate is decomposed over
states and frequencies to control the information entering
the memory cell.

Input Gates and Modulations

The input gate can be defined in the similar fashion as

gt = σ(Wgzt−1 +Vgxt + bg) ∈ RD (9)

where the parameter matrices are defined to generate a
compatible result for the input gate. The input gate decides
how much new information should be allowed to enter the
current memory cell to update SFM matrix.

Meanwhile, we can define the following information mod-
ulation modeling the incoming observation xt as well as
the output zt−1 fed into the current memory cell from the
last time

it = tanh(Wizt−1 +Vixt + bi) ∈ RD (10)

which combines xt and zt−1.

Multi-Frequency Outputs and Modulations

To obtain the outputs from the SFM, we produce an output
from each frequency component, and an aggregated out-
put is generated by combing these multi-frequency outputs
modulated with their respective gates.

Specifically, given the amplitude part At of the SFM matrix
St at time t, we can produce an output vector zkt ∈ RM for
each frequency component k as

zkt = okt ◦ fo(Wk
zA

k
z + bkz), for k = 1, · · · ,K (11)
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where Ak
t ∈ RD is the kth column vector of At cor-

responding to frequency component k, fo(·) is an output
activation function, and okt is the output gate controlling
whether the information on frequency component k should
be emitted from the memory cell at time t,

okt = σ(Uk
oA

k
t +Wk

oz
k
t−1 +Vk

ox
k
t + bko) ∈ RM (12)

where Uk
o are weight matrices. These multi-frequency out-

puts {zkt } can be combined to produce an aggregated out-
put vector

zt =

K∑
k=1

zkt =

K∑
k=1

okt ◦ fo(Wk
zA

k
z + bkz) ∈ RM (13)

Then {okt |k = 1, · · · ,K} can be explained as the modu-
lators controlling how the multi-frequency information is
combined to yield the output.

3.2. Fourier Analysis of SFM Matrices

Now we can expand the update equation for the SFM ma-
trix to reveal its temporal structure by induction over t. By
iterating the SFM matrix St over the time t, Eq. 1 can be
written into the following final formulation

St = (ft ◦ ft−1 ◦ · · · ◦ f1) ◦ S0 + (gt ◦ it)

 ejω1t

· · ·
ejωKt

T

+

t∑
t′=2

ft ◦ · · · ◦ ft′ ◦ gt′−1 ◦ it′−1

 ejω1(t
′−1)

· · ·
ejωK(t′−1)

T
(14)

where S0 is the initial SFM matrix at time 0.

By this expansion, it is clear that St is the Fourier transform
of the following sequence

{(ft ◦ ft−1 ◦ · · · ◦ f1) ◦ S0} ∪ {gt ◦ it}
∪ {ft ◦ · · · ◦ ft′ ◦ gt′−1 ◦ it′−1|t′ = 2, · · · , t} (15)

In this sequence,the forget and input gates ft′ and gt′ weigh
the input modulations it′ that aggregates the input informa-
tion from the observation and past output sequences. In
other words, the purpose of these gates is to control how
far the Fourier transform should be applied into the past
input modulations.

If some forget or input gate has a relatively small value,
the far-past input modulations would be less involved in
constituting the frequency components in the current St.
This tends to localize the application of Fourier transform
in a short time window prior to the current moment. Oth-
erwise, a longer time window would be defined to apply

the Fourier transform. Therefore, the forget and input gate
dynamically define time windows to control the range of
temporal contexts for performing the frequency decompo-
sition of memory states by the Fourier transform.

3.3. Adaptive SFM

The set of frequencies {ω1, · · · , ωK} can be set to ωk =
2πk
K for k = 0, · · · ,K−1, i.e., a set ofK discrete frequen-

cies evenly spaced on [0, 2π]. By Eq. 14, this results in the
classical Discrete-Time Fourier Transform (DTFT), yield-
ing K frequency coefficients stored column-wise in SFM
matrix for each of D memory states.

Alternatively, we can avoid prefixing the discrete frequen-
cies ω = [ω1, · · · , ωK ]T by treating them as variables that
can be dynamically adapted to the context of the underlying
sequence. In other words, ω is not a static frequency vector
with fixed values any more; instead they will change over
time and across different sequences, reflecting the changing
frequency of patterns captured by the memory states. For
example, a certain human action (modeled as a memory
state) can be performed at various execution rates chang-
ing over time or across different actors. This inspires us to
model the frequencies as a function of the memory states,
as well as the input and output sequences,

ω = Wωxxt +Wωzzt−1 + bω (16)

where W∗ and bω are the function parameters, and mul-
tiplying 2π with a sigmoid function maps each ωk onto
[0, 2π]. This makes the SFM more flexible in capturing dy-
namic patterns of changing frequencies. We call the Adap-
tive SFM (A-SFM) for brevity.

4. Experiments
In this section, we demonstrate the evaluation results of the
SFM on three different tasks: signal type prediction, poly-
phonic music modeling and phoneme classification. For all
the tasks, we divide the baselines into two groups: the first
one (BG1) contains classic RNN models such as the con-
ventional LSTM (Hochreiter & Schmidhuber, 1997) and
the Gated Recurrent Unit (GRU) (Cho et al., 2014); while
the second group (BG2) includes latest models like Clock-
work RNN (CW-RNN) (Koutnik et al., 2014), Recurrent
Highway Network (RHN) (Zilly et al., 2016), Adaptive
Computation Time RNNs (ACT-RNN) (Graves, 2016), As-
sociative LSTM (A-LSTM) (Danihelka et al., 2016) and
Phased LSTM (P-LSTM) (Neil et al., 2016). Compared to
the proposed SFM, baselines in BG2 share similarities like
hierarchical structures and complex representation. How-
ever, they either don’t contain any modules aiming to learn
frequency dependencies (RHN, ACT-RNN, A-LSTM), or
only have implicit frequency modeling abilities that are not
enough to capture the underlying frequency patterns in the
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Table 1. Hidden neuron numbers of different networks for each
task. The total number of parameters (weights) will keep the same
for all the networks in each task. Task 1, 2 and 3 stand for signal
type prediction (sec 4.1), polyphonic music prediction (sec 4.2)
and phone classification (sec 4.3), respectively. The last column
indicates the unique hyperparameters of each network.

Task 1 Task 2 Task 3 Note

# of Params ≈ 1k ≈ 139k ≈ 80k -
GRU 18 164 141 -

LSTM 15 139 122 -
CW-RNN 30 295 245 Tn ∈ T 1

ACT-RNN 18 164 141 -
RHN 9 94 76 d = 41

A-LSTM 15 139 122 n = 41

P-LSTM 15 139 122 ron = 0.051

SFM 50× 4 50× 4 30× 8 -

input sequences (CW-RNN, P-LSTM).

In order to make a fair comparison, we use different num-
bers of hidden neurons for these networks to make sure
the total numbers of their parameters are approximately the
same. Per the discussion in Section 3, the hidden neuron
number is decided by the size D × K of the SFM ma-
trix St ∈ CD×K , where D stands for the dimension of the
memory states and K is the number of frequency compo-
nents. The hidden neuron setups for three tasks are summa-
rized in Table 1. We implement the proposed SFM model
using Theano Python Math Library (Team et al., 2016).

Unless otherwise specified, we train all the networks
through the BPTT algorithm with the AdaDelta optimizer
(Zeiler, 2012), where the decay rate is set to 0.95. All the
weights are randomly initialized in the range [−0.1, 0.1]
and the learning rate is set to 10−4. The training objective
is to minimize the frame level cross-entropy loss.

4.1. Signal Type Prediction

First, we generate some toy examples of sequences, and ap-
ply the SFM to distinguish between different signal types.
In particular, all signal waves are periodic but contain dif-
ferent frequency components. Without loss of generality,
we choose to recognize two types of signals: square waves
and sawtooth waves. By the Fourier analysis, these two
types of waves can be represented as the following Fourier
series, respectively.

ysquare(t) =
4A

π

∞∑
n=1,3,5,···

1

n
sin(

2nπ

T
(t+P ))+V, t ∈ [0, L]

(17)
1Tn - clock period, T = {20, · · · , 24}; d - recurrent depth; n

- # of copies; ron - open ratio. Please refer to each baseline paper
for more details.

Figure 1. Several examples of the generated waves on the interval
[30, 60] with different periods, amplitudes, and phases. The red
dash lines represent the square waves while the blue solid lines
represent square waves. The ’∗’ markers indicate the sampled
data points that are used for training and testing.

ysawtooth(t) =
A

2
−A
π

∞∑
n=1

1

n
sin(

2nπ

T
(t+P ))+V, t ∈ [0, L]

(18)
whereL, T,A, P, V stand for the length, period, amplitude,
phase and bias, respectively. The square waves contain the
sine base functions only with the odd n’s, while sawtooth
waves contain both the odd and even n’s. This makes their
frequency components quite different from each other, and
thus they are good examples to test the modeling ability of
the proposed SFM network.

We artificially generate 2, 000 sequences, with 1, 000 se-
quences per signal type. Figure 1 illustrates the generated
waves samples. Our goal is to correctly classify each of
the blue solid and red dash signals. We denote by U(a, b)
a uniform distribution on [a, b], then the sequence of each
wave is generated like this: we first decide the length of the
wave L ∼ U(15, 125) and its period T ∼ U(50, 75). Then
we choose amplitude A ∼ U(0.5, 2), phase P ∼ U(0, 15)
and the bias V ∼ U(0.25, 0.75). At the last step, we ran-
domly sample each signal 500 times along with their time
stamps, resulting in a sequence of 2-dimensional vectors.
Specifically, a vector in a sequence has the form of (y, t),
where y is the signal value and t is the corresponding time
stamp. In experiments, we randomly select 800 sequences
per type for training and the remaining are for testing.

We compare the proposed SFM with all BG1 and BG2
baselines and summarize the prediction results in Figure
2. The result shows by explicitly modeling the frequency
patterns of these two types of sequences, both SFM and



State-Frequency Memory Recurrent Neural Networks

Figure 2. Signal type prediction accuracy of each model.

Adaptive SFM achieve best performance. In particular, the
Adaptive SFM has achieved 0.9975 in accuracy – almost
every signal has been classified correctly.

4.2. Polyphonic Music Modeling

In this subsection, we evaluate the proposed SFM network
on modeling polyphonic music clips. The task focuses on
modeling the symbolic music sequences in the piano-roll
form like in (Boulanger-lewandowski et al., 2012). Specifi-
cally, each piano roll can be regarded as a matrix with each
column being a binary vector that represents which keys
are pressed simultaneously at a particular moment. This
task of modeling polyphonic music is to predict the prob-
ability of individual keys being pressed at next time t + 1
given the previous keys pressed in a piano roll by captur-
ing their temporal dependencies. Such a prediction model
plays a critical role in polyphonic transcription to estimate
the audible note pitches from acoustic music signals.

The experimental results are obtained on four polyphonic
music benchmarks that have been used in (Boulanger-
lewandowski et al., 2012): MuseData, JSB chorales (Al-
lan & Williams, 2004), Piano-midi.de (Poliner & Ellis,
2007) and Nottingham. In addition to the baselines in
BG1 and BG2, we also compare with the following meth-
ods that have achieved the best performance in (Boulanger-
lewandowski et al., 2012).

• RNN-RBM: Proposed by (Boulanger-lewandowski
et al., 2012), RNN-RBM is a modification of RTRBM
(Sutskever et al., 2009) by combining a full RNN with
the Restrict Boltzmann Machine.

• RNN-NADE-HF: RNN-NADE (Larochelle & Mur-
ray, 2011) model with the RNN layer pretrained by the
Hessian-free (HF) (Martens & Sutskever, 2011)

We directly report the results of these methods from

(Boulanger-lewandowski et al., 2012).

We follow the same protocol (Boulanger-lewandowski
et al., 2012) to split the training and test set to make a fair
comparison on the four datasets. The MIDI format mu-
sic files are publicly available2 and have been preprocessed
into piano-roll sequences with 88 dimensions that span the
range of piano from A0 to C8. Then, given a set of N
piano-roll sequences and Xn = [xn1 , · · · ,xnTn

] is the nth
sequence of length Tn, the SFM uses a softmax output layer
to predict the probability of each key being pressed at time
t based on the previous ones x1:t−1.

The log-likelihood of correctly predicting keys to be
pressed has been used as the evaluation metric in
(Boulanger-lewandowski et al., 2012), and we adopt it to
make a direct comparison across the models. The results
are reported in the Table 2. As it indicates, both SFM
and Adaptive SFM have outperformed the state-of-the-art
baselines except on the Nottingham dataset. On the rest of
three datasets, both SFM and Adaptive SFM consistently
perform 0.2 ∼ 1.0 better than BG1 and BG2 baselines in
terms of the log-likelihood. We also note that the Adaptive
SFM obtains almost the same result as the SFM, suggest-
ing that using static frequencies are already good enough to
model the polyphony.

On the Nottingham dataset, however, the two compared
models, RNN-RBM and RNN-NADE-HF, reach the best
performance. The dataset consists of over 1000 folk tunes,
which are often composed of simple rhythms with few
chords. Figure 3 compares some example music clips from
the Nottingham to the MuseData datasets. Clearly, the Not-
tingham music only contains simple polyphony patterns
that can be well modeled with the RNN-type models with-
out having to capture complex temporal dependencies. On
the contrary, the music in the MuseData is often a mixture
of rich frequency components with long-range temporal de-
pendencies, which the proposed SFM models are better at
modeling as shown in the experiment results.

4.3. Phoneme Classification

Finally, we evaluate the proposed SFM model by conduct-
ing the frame level phoneme classification task introduced
by (Graves & Schmidhuber, 2005). The goal is to assign
the correct phoneme to each speech frame of an input se-
quence. Compared with other speech recognition tasks like
spoken word recognition, phoneme classification focuses
on identifying short-range sound units (phonemes) rather
than long-range units (words) from input audio signals. We
report the frame-level classification accuracy as the evalu-
ation metric for this task.

We perform the classification task on TIMIT speech cor-

2http://www-etud.iro.umontreal.ca/∼boulanni/icml2012



State-Frequency Memory Recurrent Neural Networks

Table 2. Log-likelihood on the four music datasets. The last two columns contain the results from the proposed SFM models.

Dataset LSTM GRU CW-
RNN

ACT-
RNN RHN A-

LSTM
P-

LSTM
RNN-
RBM

RNN-
NADE-

HF
SFM A-

SFM

MuseData −5.44 −5.36 −5.35 −5.20 −5.79 −5.03 −5.09 −6.01 −5.60 −4.81 −4.80
JSB chorales −6.24 −6.14 −6.04 −5.89 −5.74 −5.63 −5.65 −6.27 −5.56 −5.47 −5.45
Piano-midi.de −7.27 −7.14 −7.83 −7.41 −7.58 −6.96 −7.02 −7.09 −7.05 −6.76 −6.80
Nottingham −5.60 −5.63 −5.90 −5.82 −5.60 −5.64 −5.70 −2.39 −2.31 −5.67 −5.63

(a) MuseData (b) Nottingham

Figure 3. Piano rolls of the exemplar music clips from the MuseData and Nottingham dataset. Classical musics from MuseData are pre-
sented by complex, high frequently-changed sequences, while folk tunes from Nottingham contains simpler, lower-frequency sequences.

pus (Garofolo et al., 1993). We preprocess the dataset in
the same way as (Graves & Schmidhuber, 2005). First
we perform Short-time Fourier Transform (STFT) with
25ms input windows and 10ms frame size. Then for each
frame, we compute the Mel-Frequency Cepstrum Coeffi-
cients (MFCCs), the log-energy and its first-order deriva-
tives as the frame-level features. Similarly, in order to
maintain the consistency with (Graves & Schmidhuber,
2005), we use the original phone set of 61 phonemes in-
stead of mapping them into a smaller set (Robinson, 1991).

We train the proposed and compared models by following
the standard splitting of training and test sets for the TIMIT
dataset (Garofolo et al., 1993). In addition, we randomly
select 184 utterances from the training set as the validation
set and keep the rest for training.

Figure 4 compares the classification accuracy by different
models. In addition, we include the result of the bidirec-
tional LSTM (Bi-LSTM) (Graves & Schmidhuber, 2005)
for comparison. From the figure, we can see that both
SFM and Adaptive SFM outperform the BG1 and BG2
baselines with approximately the same number of param-
eters. Especially when compared with the conventional
LSTM, CW-RNN and ACT-RNN, the proposed SFM mod-
els have significantly improved the performance by more

Figure 4. Accuracy for frame-level phoneme classification on
TIMIT dataset.

than 5%. This demonstrates the advantages on explicitly
modeling the frequency patterns in short-range windows,
which plays a important role in characterizing the frame-
level phoneme. Besides, the Adaptive SFM also perform
slightly better than the state-of-the-art Bi-LSTM model.

Additionally, we find adapting frequencies, which is the
main difference between the Adaptive SFM and SFM,
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(a) At T
4

(b) At T
2

(c) At 3T
4

(d) At T

Figure 5. The amplitudes of SFM matrices for both the prefixed (SFM) and adaptive (A-SFM) frequencies. For all subfigures, each row
represents a frequency component.

yields improved performance on this dataset. In order to
further analyze such difference, we visualize the SFM ma-
trices of both the SFM and Adaptive SFM by forwarding a
sampled TIMIT sequence. Suppose the length of the sam-
pled sequence is T , Figure 5 illustrates the matrix ampli-
tudes of both the SFM and Adaptive SFM at time T

4 , T2 , 3T
4

and T , from which the two networks demonstrate distinct
ways to model the sequence. Based on section 3.3, the fre-
quency set of the SFM keeps the same across the time. And
in all subfigures of Figure 5, most highlights are around fre-
quency component 1 and 2, indicating the two are the pri-
mary components for modeling the sequence, while other
components are rarely involved. On the contrary, the fre-
quency set of Adaptive SFM is constantly updated and dif-
ferent at each time step. Under such conditions, modeling
the sequence calls for more frequency components, which
are varied dramatically across the time as shown in Figure
5. Compared with the SFM, the Adaptive SFM is able to
model richer frequency patterns.

5. Conclusion
In this paper, we propose a novel State-Frequency Memory
(SFM) Recurrent Neural Network which aims to model the
frequency patterns of the temporal sequences. The key idea
of the SFM is to decompose the memory states into differ-
ent frequency states such that they can explicitly learn the
dependencies of both the low and high frequency patterns.
These learned patterns on different frequency scales can be
separately transferred into the output vectors and then ag-
gregated to represent the sequence point at each time step.
Compared to the conventional LSTM, the proposed SFM
is more powerful in discovering different frequency occur-
rences, which are important to predict or track the temporal
sequences at various frequencies. We evaluate the proposed
SFM model with three sequence modeling tasks. Our ex-
perimental results show the proposed SFM model can out-
perform various classic and latest LSTM models as well
as reaching the competitive performance compared to the
state-of-the-art methods on each benchmark.
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