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Appendix
A. Multicuts

Proof of Lemma 2 First, we show that for any II € Dg,
the image ¢ (IT) is a multicut of G. Assume the contrary,
i.e. there exists a cycle C' of G such that |C' N ¢ (IT)| = 1.
Let {u,v} = e € C N ¢(II), then for all U € II it holds
that u ¢ U orv ¢ U. However, C \ {e} is a sequence of
edges {wy,wa},...,{wr_1,ws} such that u = wy,v =
wy, and {w;, w1} ¢ ¢pa(II) forall 1 < ¢ < k — 1. Con-
sequently, since II is a partition of V, there exists some
U € IT such that

w1 EUANwy €eUN...Nwi_1 €U ANwy € U.

This contradicts w; = u ¢ U orwy, =v ¢ U.

To show injectivity of ¢¢, let IT = {Uy,..., Ui}, II' =
{U1,...,U;} be two decompositions of G. Suppose II #
IT'. Then (w.l.o.g.) there exist some u, v € V with {u,v} €
E and some U; € IT such that u, v € U; and for all UJ’» elr
it holds that u ¢ U or v ¢ UJ. Thus, {u,v} € ¢g(II') but
{u,v} ¢ ¢ (1), which means ¢ (I1) # P (IT').

For surjectivity, take some multicut M C E of G. Let
IT = {Uy, ..., Uy} collect the node sets of the connected
components of the graph (V, E'\ M). Apparently, II defines
a decomposition of G. We have {u,v} € ¢¢(II) if and
only if for all U € II it holds that v ¢ U or u ¢ U. The
latter holds true if and only if {u, v} is not contained in any
connected component of (V, E'\ M), which is equivalent
to {v,w} € M. Hence, ¢ (II) = M.

Proof of Lemma 4 First, we show that for any M €
Mk, the image ¢ (M) is an equivalence relation on V.
Since Ky is simple, we trivially have {v,v} ¢ M for any
v € V. Therefore, (v,v) € (M), which means (M)
is reflexive. Symmetry of (M) follows from {u,v} =
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{v,u} for all u,v € V. Now, suppose (u,v), (v, w) €
Y(M). Then {u,v, },{v,w} ¢ M and thus {u,w} ¢ M
(otherwise C' = {u, v, w} would be a cycle contradicting
the definition of a multicut). Hence, (u,w) € ¥ (M), which
gives transitivity of ¢ (M).

Let M, M’ be two multicuts of Ky with ¢)(M) = ¢(M’).
Then

{u,v} e M <= (u,v) & (M)
= (u,v) ¢ P(M')
— {u,v} € M.

Hence M = M’, so 1 is injective.
Let R be an equivalence relation on V" and define M by
{u,v} € M <= (u,v) ¢ R.

Transitivity of R implies that M is a multicut of Ky . More-
over, by definition, it holds that v)(M) = R. Hence, v is
also surjective.

B. Lifted Multicuts

Proof of Lemma 5 Let z € {0,1}7 be such that M’ =
271(1) is a multicut of G lifted from G. Every cycle in G is
a cycle in G’. Moreover, for any path vw = f € Fggr and
any vw-path P in G, it holds that P U {f} is a cycle in G.
Therefore, x satisfies all inequalities (4) and (5). Assume
z violates some inequality of (6). Then there is an edge
vw € Fge and some vw-cut C in G such that 2., = 0
and for all e € C we have z. = 1. Let II be the partition
of V' corresponding to M’ according to Lemma 2. There
exists some U € Il withv € U and w € U. However, for
any uu' = e € C it holds that u ¢ U or v/ ¢ U. This
means the subgraph (U, E N (g)) is not connected, as C' is
a vw-cut. Hence, II is not a decomposition of GG, which is a
contradiction, because G is connected.

Now, suppose x € E’ satisfies all inequalities (4)—(6). We
show first that M’ = 2~1(1) is a multicut of G’. Assume
the contrary, then there is a cycle C’ in G’ and some edge
e’ such that C' N M’ = {e’}. For every vw = f € Fga N
C’ \ {€'} there exists a vw-path P in G such that z. = 0
for all e € P. Otherwise there would be some vw-cut in G
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Figure 1. To show that the consistency problem is NP-hard, we
reduce 3-SAT to this problem. Shown above is the instance of the
consistency problem constructed for the instance of 3-SAT given by
the form (aVbVE) A(aVeVd)A(@aveVe)A(aVeVe). Solid
and dashed lines depict edges in F and E' \ E, respectively. Black

means Z. = 0. Red means . = 1. Grey means e ¢ dom Z.

violating (6), as G is connected. If we replace every such
f with its associated path P in G, then the resulting cycle
violates either (4) (if ¢’ € E) or (5) (if ¢ € Fgg). Thus,
M’ is a multicut of G’. By connectivity of G, the partition
¢ (M) is a decomposition of both G’ and G. Therefore,
M = Moo (M) = pa(dg) (M')) is a multicut of G and
hence M’ = z~1(1) is indeed lifted from G.

C. Partial Lifted Multicuts

Proof of Theorem 1 Firstly, we show that the consistency
problem is in NP. For that, we show that verifying, for
any given x € {0, l}El, that x is a completion of Z and a
characteristic function of a multicut of G’ lifted from G is
a problem of polynomial time complexity. To verify that
is a completion of z, we verify for every e € dom z that
Te = Z.. This takes time O(|E|). To verify that z71(1)
is a multicut of G’ lifted from G, we employ a disjoint set
data structure initialized with singleton sets V. For any
{v,w} € 271(0), we call union(v, w). Then, we verify for
every {v,w} € x71(1) that find(v) # find(w). This takes
time O(|E| + |V |log |V]).

To show that the consistency problem is NP-hard, we reduce
3-SAT to this problem. For that, we consider any instance of
3-SAT defined by a propositional logic formula A in 3-SAT
form. An example is shown in Fig. 1. Let m be the number
of variables and n the number of clauses in A.

In order to define an instance of the consistency prob-
lem w.r.t. this instance of 3-SAT, we construct in poly-
nomial time a connected graph G = (V,E), a graph
G' = (V,E') with E C E’, and a partial characteristic
function z € {0, 1, *}El as described below. An example
of this construction is shown in Fig. 1.

e There are 3n 4 2 nodes in V. Two nodes are denoted
by s and t. Additional nodes are organized in n layers.
For j € {1,...,n}, the j-th layer corresponds to the

j-th clause in A, containing one node for each of the
three literals' in the clause. Every node is labeled with
its corresponding literal. Layer O contains only the
node s. Layer n 4 1 contains only the node ¢.

e Any two consecutive layers are connected such that
their nodes together induce a complete bipartite sub-
graph of G. Additionally, any nodes v and w la-
beled with conflicting literals, a and a, that are not
already connected in G are connected in G’ by an edge
{v,w} € E'\ E.

e For any edge {v,w} € E’ whose nodes v and w are
labeled with conflicting literals, we set Z,,, = 1. In
addition, we introduce the edge {s,t} € E'\ F and
define Z5; = 0. No other edges are in the domain of 7.

Observe that Z is consistent iff there exists an st-path P in G
such that no edge or chord {v, w} of P is such that Z,,, = 1.
Any such path is called feasible. All other st-paths in G are
called infeasible.

Now, we show firstly that the existence of a feasible path
implies the existence of a solution to the given instance of
3-SAT. Secondly, we show that the existence of a solution
to the given instance of 3-SAT implies the existence of a
feasible path. That suffices.

1. Let P be a feasible path and let Vp its node set. An
assignment Y to the variables of the instance of 3-SAT
is constructed as follows: For any node v € Vp whose
label is a variable a, we define x(a) := true. For
any node v € Vp whose label is a negated variable a,
we define x(a) := false. All remaining variables are
assigned arbitrary truth values. By the properties of P,
X is well-defined and A[x] is true.

2. Let x be a solution to the given instance of 3-SAT.
As every clause of A contains one literal that is true,
and by construction of GG, we can choose an st-path in
G along which all nodes are labeled with literals that
are true for the assignment y. By virtue of x being a
solution to the instance of 3-SAT, any pair of literals
that are both true are non-conflicting. Thus, P has no
edge or chord {v, w} such that Z,,, = 1.

Proof of Lemma 6 Firstly, suppose that £ C dom z. In
this case, it is clear that  is consistent iff z satisfies all
cycle inequalities (4) w.r.t. the graph (V, E'N dom Z). This
can be checked in time O(|V'| + |E’|) as follows: Label the
maximal components of the subgraph Gz of G induced by
the edge set {e € E : . = 0}. Then, for every {v, w} €
E’ with Z,,, = 1, check if v and w are in distinct maximal

'A literal is either a variable a or a negated variable .
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components of Gz. If so, & is consistent, otherwise T is
inconsistent.

Now, suppose € {0, 1, *}E/ satisfies (10). We show that,
similar to the first case, & is consistent iff all inequalities (4)
and (5) are satisfied w.r.t. the graph (V, E' N dom ). This
can be checked analogously to the first case.

Necessity of this condition is clear. To show sufficiency,
assume this condition holds true. We construct some x €
Xaa[] as follows. For all e € dom Z, set z, := Z.. For
all {v,w} = f € E’\ E such that f{ ¢ domZ and such
that there is a vw-path P in G with £, = O foralle € P,
set xy := 0. For all remaining edges e, set . := 1. By
construction, x satisfies (4), (5) and (6).

Proof of Theorem 2 To show that the maximal specificity
problem is NP-hard, we reduce 3-SAT to this problem: For
any given instance of 3-SAT we construct in polynomial
time a connected graph G = (V, E), a graph G’ = (V, E’)
with E C FE’, and a partial characteristic function & €
{0, 1, *}E/ as in the proof of Thm. 1, except that now, we
let st ¢ dom Z.

We know that 7 is consistent because 1 € Xgo[Z]. We
show that Z is maximally specific iff the given instance of
3-SAT has a solution:

Firstly, every e € E’ \ (dom & U {st}) is undecided, by
the following argument: (i) There exists an z € Xg¢r[Z]
with z, = 1, namely 1. (i) There exists an z € Xgg[7]
with z. = 0, namely the x € {0, 1}El with 2z, = 0 and
Vf e E' \{e}:xy =1 Toseethatz € Xg¢[Z], observe
that e € F and 271(0) = (). Thus, st is the only edge in
E'’\ dom Z that is possibly decided. That is:

E'[#] C {st} Udom (42)

Thus, 2 is maximally specific iff Z is undecided. More
specifically, Z is maximally specific iff there exists an x €
X ] with zg; = 0, as we know of the existence of
1 € Xgq[Z]. Thus, & is maximally specific iff the given
instance of 3-SAT has a solution, by the arguments made in
the proof of Thm. 1.

Proof of Lemma 7 Observe that 2 is maximally specific
iff clggr T = . Thus, Lemma 7 follows from Lemma 11.

Proof of Lemma 8 Reflexivity is obvious. Antisymmetry:
(<N <Z)= (domz = domZ’ AVe € domZ :
Ze = &.). Transitivity: Let £ < &’ < Z”. Then dom & C

dom#’ C domZ” and Ve € dom % : &, = &, = /.

Proof of Lemma 9 We show first that Z’ is maximal w.r.t.

< in Xqgr[#] iff it is maximally specific. This implies

existence and uniqueness of the maximum of X [Z] by
construction via dom &’ = F’[Z].

Let i’ € X [#] be maximally specific and suppose #/ <
#" for some i € Xge[#]. Then domi” = dom i,
since Xgor [T'] # Xaer [2"'] if dom 3" \ E'[Z] # (. Thus,
# = #", which means #’ is maximal w.r.t. < in Xga/[Z].

Conversely, any maximal element Z’ of Xoor [Z] wrt. <
must satisfy F’[Z] C dom 2/, which means it is maximally
specific.

Hence, the unique maximum ' € Xqe|[#] is obtained
as follows. For an arbitrary z € Xg¢[Z] define ' via
Z. := z. for all decided edges e € E'[Z].

Proof of Theorem 3 Letus have 7,3’ € XGG/.

e The implication Xgar[Z] = Xaar[2'] = ):(GG/ (7] =
Xca[#] : follows from the definition of X [Z] in
Lemma 9.

e The implication X ¢ [Z] = Xaor [#] = clgg & =
clggr 7' follows from the definition of the closure of &
as the maximum of Xgq-[Z].

e The implication clgg' & = clge &' = Xao[Z] =
Xag[#'] follows from clggr = clgard’ €
Xeo[Z].

Proof of Lemma 10 Let x € X and define y = clggr .
Since dom z = E, it holds that E'[z] = F’, i.e. all edges
are decided. Therefore, 3y~ 1(1) is a multicut of G’ and for
all {v,w} = f € E'\ Eitholds that y, = 0 iff there is a
vw-path P in G such that ., = 0 for all e € P. By Lemma
5, this implies y =1 (1) = Agg (z71(1)).

Proof of Theorem 4 Computing closures is at least as
hard as deciding maximal specificity: To decide maximal
specificity of Z € Xaors compute its closure clggs . Then
Z is maximally specific iff dom Z = dom clgg 7, i.e., if
T = clgg’ ©. By Theorem 2, this means computing closures
is NP-hard.

Proof of Lemma 11 Letz € XGG/ and §y = clgg 7.

Suppose first that £ = E’. We describe how to compute
gy efficiently. Obviously, we must set y. = . for all e €
dom Z. Furthermore, we must set ,,, = 0 for all {v,w} €
E \ dom 7 such that there is a vw-path P in G with . = 0
for all e € P. Moreover, we must set 7,,, = 1 for all
{v,w} € E\ dom 7 that satisfy

JP € vw-paths(G) Jle € P :
Fo=1AVeeP\{e}:dw=0. (43
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Therefore, initialize a disjoint-set data structure with sin-
gleton sets V. Apply the union operation on all edges
e € dom = where ., = 0, i.e. contract all 0-labeled edges.
Then, set y. = O for all edges that connect nodes of the
same component. If there is an edge e’ between two compo-
nents such that .- = 1, then for all edges e between those
components set y. = 1. The remaining edges are undecided
by z. In case we only want to decide maximal specificity,
we can stop upon finding the first edge ¢ € dom ¢ \ dom Z.

Now suppose that £ C dom Z. In this case, all edges are
decided, because Z|g € Xg. According to Lemma 10, the
closure § corresponds to the lifting of Z| g to G’. Therefore,
to obtain ¢, compute the decomposition of G associated to
Z| g using, e.g., a disjoint-set data structure. Set . = O if e
is an edge within a component. Set . = 1 if e is an edge
between components.

D. Metrics

Proof of Theorem 5 Symmetry and non-negativity follow
directly from the definition, and so does d, (x, z) = 0 for
allz € Xggr. For any e € E', the form d! on E' x E' is
a Hamming metric on words of length 1 from the alphabet
{0, 1}. Therefore, it satisfies the triangle inequality. Hence,
forany z,y,z € Xggr:

= Y pedi(a.2) (44)
eckE’
< pe(di(@,y) + di(y, 2)) (45)
ecE’

=Y pedi(my) + D pedi(y,z)  (46)
ecE’ eckE’

= dl]f;/ (xa y) + d%’ (y7 Z)7 (47)

Thus, d%, is a pseudo-metric on X .

If E C E', then G’ = G" and thus, Xqg» = Xag C
Xgr. For any two z,7' € Xggr C Xg, it holds that
A (z,2") = 0iff di(z,2’) = O forall e € E, ie. iff
x = z’. Conversely, suppose there exists some e € E \ E'.
Define 2,2’ € Xggr viaze = 2, = 1forall ¢ €
E"\ {e} and x. = 1, 2, = 0. It holds that z # 2’ but
d (z,2") = 0.

Proof of Theorem 6 We first prove that d%., is a metric
on XGG/ Forany = € XGGf we have clggr T = Z. Thus,
for all ,7 € Xgqr, we have d, (2,3') = d%,(z,#).
Therefore, positive definiteness and symmetry are obvious
from the definition of d%, (%, #'). To establish the triangle
inequality for d%,, we prove it for 0d’ and any edge e € E'.

Let 2,9, Z € Xgg’ and consider the inequality

0d:(%,2) < 0dL(Z,9) + 0dS(F, ). (48)

Table 1. The left- and right-hand side of the inequality 8d_ (%, 2) <
0dL (%, ) + 0dL(§, 2) for all possible combinations of values
Te,Ye, Ze Where T,7, 2 € XGG/. The right-hand side is always
greater or equal the left-hand side iff 0.5 < 6.

Ze Ye Ze lhs rths
0 0 0 0 0
1 1 1 0 0
0 * 1 1 20
0 10 1 1 1
0 o/ = 0 0
1 /% * 0 0

In Tab. 1, the left-hand side and right-hand side of (48) are
evaluated for all possible assignments of values to Z, Y., Ze.
It is apparent form this table that (48) holds iff & > 0.5.

We now show that d%, is a pseudo-metric on Xaor. Sym-
metry and non-negativity are obvious from the definition.
For all # € Xger, we have df,(Z,Z) = 0. Since
dE’(~ ) = d%, (CIGG/ Z,clgg T ) and clggr T € XGG’
forany & € X¢cv, the triangle inequality follows from the
fact that dE, is a metric on X¢gq.

Finally, it holds that d(’E,(~ t') = 0iff clger © = clggr T/,
which in turn is equivalent to X¢o[Z] = Xgar[#], by
Theorem 3. This proves property (24).

E. Polyhedral Optimization

Proof of Theorem7 The all-one vector 1 € {0,1}% is
such that 1 € Xqqr.

For any e € E, 2¢ € {0,1}¥ such that 2¢ = 0 and

T\ ey = land 2, = 1 holds z¢ € Xcer.

For any f € Fgqr, any f-feasible 2/ € {0, l}El is such
that 7 € Xger. Moreover, 2/ can be chosen such that
one shortest path connecting the two nodes in f is the only
component containing more than one node.

Forany e € E, let y¢ € RE such that

y*=1—-2a°. (49)

For any f € F}, choose an f-feasible z/ and let y/ € RE’

such that
yf:]lf:cfnye. (50)
{ecE|zf=0}

For any n € N such that n > 1 and any f € F},, choose an
f-feasible =7 and let y/ € R such that

>y - >y . (D

{f'€Fgar|f'#fnal, =0} {e€Blel=0}

yf:]l—mf
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Here, £(f") < £(f) < n, by definition of f-feasibility. Thus,
all 57" are well-defined by induction (over n).

Observe that {y¢ | e € FE'} is the unit basis in RZ
Moreover, each of its elements is a linear combination of
{1 — z¢ | e € E'} which is therefore linearly independent.

Thus, {1} U {z¢ | e € E'} is affine independent. It is also
a subset of X5+ and, therefore, a subset of =g . Thus,
dim EG’G’ = |El|

Proof of Lemma 12 Let {v,w} = f € Fgg and let
d(v,w) the length of a shortest vw-path in G. Then,
d(v,w) > 1 because Fger N E = .

If d(v, w) = 2, there exists au € V such that {v,u} € F
and {u,w} € E. Moreover, {v,u} ¢ Fge and {u,w} ¢
Fogr,as Foor NE = (. Thus, feF.

If d(v,w) = m with m > 2, consider any shortest vw-
path P in G. Moreover, let I’ C Fgg such that, for any
{V,w'}=f € Fge, f € F'iffv € Pand w’ € P and
f'# f.If F' = D then f € F. Otherwise:

V{v' w'}eF : db,w')<m (52)
and thus:
Vf € F'3np eN: feF,, (53)
by induction (over m). Let
n = max ng . 54)

f/eF/

Then, f € Fn+1.

Proof of Lemma 13 For any {v,w} = f € Fgg, let P
be a shortest vw-path in G and let

Foo ={{V, W'} € Fge' |V € PAw € P} (55)

Moreover, let z € {0,1}*" with zp = 0 and rp\p = land
TpL o, = 0 and Tpy ., = 1. P has no chord in F, because
it is a shortest path. Thus, z € Xg¢-.

Proof of Theorem 8 LetS = {z € Xg¢ | z. = 1} and
put ¥ = conv S.

To show necessity, suppose there is some vw = f € Fga
such that e connects a pair of v-w-cut-vertices. Then, for
any vw-path P in G, either e € P or e is a chord of P.
We claim that we have x5 = 1 for any x € S. This gives
dim ¥ < |E’| — 2, so the inequality =, < 1 cannot define
a facet of Zg . If there are no vw-paths that have e as a
chord, then {e} is a vw-cut and the claim follows from the
corresponding inequality of (6). Otherwise, every vw-path

P that has e as a chord contains a subpath P’ such that
P’ U {e} is acycle. Thus, for any x € S, the inequalities
(4) or (5) for e € E or e € Fgq, respectively) imply
the existence of some epr € P’ such that ZTe,, = 1. Let
P denote the set of all such paths P’. Apparently, the
collection Jp,cp{ep } U {e} is a v-w-separating set of
edges. Therefore, it contains some subset C' that is a vw-cut.
This gives xy = 1 via the inequality of (6) corresponding
to C.

We turn to the proof of sufficiency. Assume there is no vw =
f € Fggr such that e connects a pair of v-w-cut-vertices in
G. The construction of an affine independent | E’|-element-
subset of S C X is analogous to the proof of Theorem
7. The assumption guarantees for any f € Fgg with f # e
the existence of an f-feasible z € S such that there is a
vw-path P with zp = 0. In particular, the hierarchy on
Fe defined by the level function ¢ remains unchanged
(ife € Fger, then £(e) > £(f) for all f € Fgar). Hence,
dim ¥ = |E’| — 1, which means ¥ is a facet of Zg¢r.

Proof of Theorem 9 LetS = {z € X¢g¢ | vz =0} and
put X = conv S.

Consider the case that e € E. Let G|, and G{e] be the
graphs obtained from G and G, respectively, by contracting
the edge e. The lifted multicuts x=1(1) for z € S corre-
spond bijectively to the multicuts of G, lifted from G}
This implies dim > = dim EG[e]GEC]' The claim follows
from Theorem 7 and the fact that G{,, has [E’| — 1 many
edges if and only if e is not contained in any triangle in G'.

Now, suppose uv = e € Fgg. We show necessity of
Conditions (a)-(c) by proving that if any of them is violated,
then all z € S satisfy some additional, orthogonal equality
and thus, dim ¥ < |E’| — 2.

First, assume that (a) is violated. Hence, there are edges
e,e’ € E' suchthat T = {e,e’, e’} is a triangle in G'.
Every x € S satisfies the cycle inequalities

Te! < Te + Ter (57)
Telt S Te + Ter (58)

by Lemma 3 applied to the multicut z~1(1) of G’. Every
x € S satisfies xor = x.», by (57) and (58) and z, = 0.

Next, assume that (b) is violated. Consider a violating pair
{v,v'} # {u,v}, v # v of u-v-cut-vertices. For every
x € S, there exists a uv-path P in G with zp = 0, as
. = 0. Any such path P has a sub-path P’ from v’ to v’
because v’ and v’ are u-v-cut-vertices.

o If the distance of v’ and v’ in G’ is 1, then w/v’ € E'. If
u'v' € P, then x,/,» = 0 because xp = 0. Otherwise,
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Zyrr = 0 by xpr = 0 and the cycle/path inequality
Ty’ S Z Te . (59)

Thus z,,» = 0forall x € S.

o If the distance of v’ and v’ in G’ is 2, there is a u'v’-
path in G’ consisting of two distinct edges ¢’, e’ € E.
We show that all x € S satisfy . = zer:

—-Ife € Pande” € P then e = xen = 0
because xrp = 0.

- Ife’ € Pande” ¢ Pthenzo = zor = 0 by
xp = 0 and the cycle/path inequality

d>owe . (60)
eeP'\{e'}

- Ife’ ¢ Pande” ¢ Pthen 2o = 2o by xp =0
and the cycle/path inequalities

Ter S

Ter ST+ ) e (61)
écp’

To STer+ Y T (62)
éep

Now, assume that (c) is violated. Hence, there exists a u-
v-cut-vertex ¢ and a u-v-separating set of vertices {s, s’}
such that {ts, ts’, ss'} is a triangle in G’. We have that all
x € S satisfy x5 = x4 + T1s as follows. At most one of
Z¢s and xye is 1, because ¢ is a u-v-cut-vertex and {s, s’}
is u-v-separating as well. Moreover, x5 + x5 = 0 if and
only if z4¢ = 0.

Proof of Theorem 10 Note that both C and P U {f} are
cycles in G’. We show that, for any chordal cycle C’ of G’
and any e € C’, the inequality

Y we (63)

e’eC’\{e}

ZTe <

is not facet-defining for Zg-. This implies that (63) can-
not be facet-defining for Zg - either, as Eqgr C =g and
dim Zg¢ = dim Z¢g-. Hence, for facet-definingness of (4)
and (5), it is necessary that C and P U { f} be chordless in
G'.

For this purpose, consider some cycle C’ of G’ with a chord
uv = € € E'. We may write C' = P; U P, where P; and
P, are edge-disjoint uv-paths such that C; = P; U {e’} and
Cy = P, U{e'} are cycles in G'. Let e € C, then either
e € Ppore € P,. Wlo.g. we may assume e € P;. The

inequalities
Te S Z Telt, (64)
e”’eCi\{e}
te <Y e (65)
e”’eCs\{e'}

are both valid for Z¢/. Moreover, since ¢/ € C1, (64) and
(65) imply (63) via

,f)je S Z Jj‘e// = Z aj‘e// —|— Jje/
e’eCi\{e} e"eCi\{e,e’}
< Z Ter + Z Ter
e’eCi\{e,e’} e”€Ca\{e'}
= Z Tell. (66)
e//ec/\{e}

Thus, (63) is not facet-defining for Z¢v.

For the proof of sufficiency, suppose the cycle C of G is
chordless in G’ and let e € C. Let X be a facet of Egg-
such that ¥ (e, C') C ¥ and suppose it is induced by the
inequality

Z Qoo < @ (67)

e'ek’

witha € RE and o € R,ie., X = conv S, where

Z QorTor = a}. (68)

S = {IE € Xaor
e'er’

For convenience, we also define the linear space

Z QerTor = a} . (69)

L= {ac c R¥
e'ckE’

As 0 € Sger(e,C) C S, we have « = 0. We show that
(67) is a scalar multiple of (4) and thus X/ (e, C) = X.

Let y € {0,1}7 be defined by

Yyc = Oa Yen\c = 17 (70)

i.e. all edges except C are cut. Then y € Sger(e,C) C S,

since C'is chordless.

Forany ¢’ € C'\ {e}, the vector z € {0,1}"" with

To\{e,e'y =0, ZTpnculee) =1 (71)

holds « € Sgar(e,C) C S. Therefore, y — x € L. Thus,

Ve'e C\{e}: ae =—a. . (72)

It remains to show that a. = 0 for alledges ¢’ € E'\C. We
proceed by considering edges from E and Fg - separately.
We consider the nodes u, v € V such that uv = ¢’. W.lo.g.,

we assume that v does not belong to C'. This is possible
because C does not have a chord in G’.

Firstly, consider ¢’ € E and distinguish the following cases:
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®

(i)

If ¢’ connects two nodes not contained in C or it is the
only edge connecting some node in C' to v, then for
z € {0,1}¥, defined by

zec =0, ze =0, zphcuiepn =1, (73)

it holds that z € Sgg/(e,C) C S. Therefore, y — x €
L, which evaluates to a.r = 0.

Otherwise, let Ep, := {{v,v} € FE |
u’ belongs to C'} denote the set of edges in E’ that
connect v to some node in C'. By assumption, we have
that |E; ,| > 2. Now, pick some direction on C' and
traverse C' from one endpoint of e to the other endpoint
of e. We may order the edges £, = {e1,...,ex}
such that the endpoint of e; appears before the endpoint
of e;41 in the traversal of C'. We show that a., = 0 for
all1 <4 < k:

For the vector z € {0, l}E, defined by

0 ifeeC
T =<0 ife’ e E’Cm (74)
1 else,

it holds that z € Sga/(e,C) C S. Therefore, y — x €
L. Thus:

> ae, =0. (75)

1<i<k

Consider the m € {1,...,k} such that ¢’ = e,,. For
any ¢ with 1 < ¢ < m — 1, consider the following
construction that is illustrated also in Fig. 2: Let " €
C be some edge between the endpoints of e; and e; .
If e; € E, define z € {0,1}F via

Te =Ter =1 (76)
T\ {e,ey =0 77
Vi<i: @, =0 (78)
Vi>i: @, =1 (79)

Ife; € Fger, define 2 € {0,1}7 via

Lo =Xen =1 (80)
xo\{e,e”} = 0 (81)
Vi<i: me; =1 (82)
Vj>i: xe; =0 (83)

Either way, it holds that € Sga/ (e, C') C S and thus,
y—ax € L. Ife; € E, this yields

0= > a,,—ac—am= Y a, (84)

1<j<i 1<j<i

€2 .
el

voes

Figure 2. The figure illustrates the argument from case (ii) in the
proof of Theorem 10 for the cycle C = {e,e”,e’}. In this
example, e3 = €', e1 € Fger and ex € E. The left multicut is
chosen for ¢ = 1 and the right one for ¢ = 2.

by (72). If e; € Fggr, we similarly obtain
0= Z Ue; — Qe — Qe = Z ae;. (85)
i+1<j<k i+1<j<k

Together with (75), this yields ZK].Q. ae; = 0 as
well. Applying this argument repeatedly from i = 1 to

1 =m — 1, we conclude thata., = ... =a.,, , =0.
By reversing the order of the edges in Ef, ,, it can
be shown analogously that a., = a., , = ... =
e,,,, = 0. Thus, by (75), aer = a,, = 0.

Next, consider ¢/ € Fgg and distinguish the following
additional cases:

(iii) Suppose there is a uv-path P’ in G that does not con-
tain any node from C. Define z € {0,1}¥ via

ife’ e C

0

O 'f //:/
’ ife e (86)
1

Terr = . .
if e” € P’ or e” is a chord of P’

else.

Then z € Sge/(e,C) C S and thus y — « € L. This
gives

e+ Y aer+ Y aw=0. (87

e’epP’ e’ chord
of P’

We argue that all terms except a. vanish by induction
over the level function £(e’). If ¢(e’) = 1, then P’
does not have any chords from Fgg/, thus a.r = 0,
because a.» = 0 for all ¢’ € F as shown previously
in the cases (i) and (ii). If £(¢’) > 1, then for any chord
e’ € Fger of P it holds that £(e”) < ¢(e’). The
induction hypothesis provides a.» = 0 and hence we
conclude a. = 0.

(iv) Suppose u is contained in C'. Pick a shortest uv-path
P’ in G. We argue inductively over the length of P,
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which we denote by d(P’). If d(P’') = 1, then P’
consists of only one edge from E. This situation is
in fact already covered by case (ii). If d(P’) > 1,
then we employ an argument similar to (ii) as follows.
Let Fc,, = {{v/,v} € Fge' | v belongsto C'} =
{f1,.-., fx} be the set of edges f; € Fgq that con-
nect v to some node in C'. Again, assume they are
ordered such that the endpoint of f; appears before the
endpoint of f;; on C in a traversal from e to itself.
For the vector z € {0,1}7" defined by

0 ife’eC
0 ife” € P ore” isachord of P
0 ife” = u'v where u’ belongs to C,
v’ # v belongs to P’
0 ife” € Fe,
else,

Jj‘e// =

(88)

it holds that x € Sge(e,C) C S and thusy — z € L.
This yields

S ot X

e’’epP’ e’’ chord
of P’
+ E Qe + E Qg1 = O (89)
e =u'v': e"€Fc .y

u’ belongs to C,
v #v belongs to P’

and thus

Y ap= ) aw=0, (90)

1<i<k e"€Fc

as all other terms vanish (apply the induction hypoth-
esis to all u'v' € Fgg: where u' belongs to C' and
v’ # vbelongsto P’). Let m be the highest index
such that the endpoint of f,,, appears before the end-
point of P’ on C. Now, for any ¢ with 1 < ¢ < m, pick
an edge ¢’ € C between the endpoint of f; and the
endpoint of f;11 and before the endpoint of P’ on C.
Define z € {0,1}" by

o

ifge C\{e, e}

0 ifg € P’ orgisachord of P

0 if g =u'v' where

Ty = u’ appears before endpoint of P’ on C,
v’ # v belongs to P’

0 ifg=f;Vj>i

else.

oD

Then, it holds that = € Sgg/(e,C) C S and thus
y — x € L. This yields, after removing all zero terms

(apply the induction hypothesis once more),
> ap =0 (92)
i+1<j<k
Together with (90), we obtain
Z as, = 0. (93)
1< <i

Applying this argument repeatedly for ¢ = 1 to i = m,

we conclude ay, = ... = ay,, = 0. Similarly, we
obtain ay, = ay,_, = ... = ay, = 0, by reversing
the direction of traversal of C' and employing the same
reasoning.

(v) Finally, suppose neither u nor v belong to the cycle
C, but every uv-path in G shares at least one node
with C. Let P’ be such a uv-path. Define the vector
z € {0,1}7 by

0 ife"eC
0 ife’"=¢
_J0 ife” € P'ore”isachord of P’
=0 ife” = u'v' where o’ belongs to C,

v’ belongs to P’

1 else.
%94)

It holds that z € Sggr(e,C) C Sand thusy — z € L.
This gives

aer + Z Qe + Z Qe + Z aer = 0.

e'"epP’ e’ chord e'=u'v":
of P’ u’ belongs to C,
v’ belongs to P’

95)

We argue inductively over the level function £(e’). If
£(e’) = 1, then P’ does not have any chords and our
consideration in cases (i)—(iv) yield that all terms ex-
cept a. vanish. If /(¢) > 1, then we additionally
employ the induction hypothesis to achieve the same
result. Hence, it holds that a., = 0 as well.

The proof of sufficiency in the second assertion is com-
pletely analogous (replace C by P U {f} and e by f). The
chosen multicuts remain valid, because e = f is the only
edge in the cycle that is not contained in E.

Proposition 1 For every connected graph G = (V, E), ev-
ery graph G' = (V, E') with E C F’, every vw € Fgqr
and every C € vw-cuts(Q), the following holds:

(a) Every x € Sga (vw,C) defines a decomposition of
G into (vw, C)-connected components. That is, every
maximal component of the graph (V,{e € E|z. = 0})
is (vw, C)-connected. At most one of these is properly
(vw, C)-connected. It exists iff X, = 0.
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(b) For every (vw,C)-connected component (V*, E*) of
G, the x € {0,1}7 such that¥rs € E'(z,, = 0 <
r € V¥ ANs € V*)is such that x € Sge (vw, C).

Proof of Proposition 1 a)Letz € Sgar (vw, C) arbitrary.
Let Ey := {e € Elz. = 0} and let G,y := (V, Ey).

If £y = 1thenVe € C' : x, = 1, by (35). Thus, every
component of Gy is improperly (vw, C)-connected.

If 2., = O then
Je € C(ze =0AVE € C\ {e}(ze =1)) (96)
by (35). Let (V*, E*) the maximal component of G with
ee E* . L)
Clearly:
Ve' e C\{e}: € ¢ E* (98)

by (96) and definition of Gy. There does not exist a C’ €
vw-cuts(G) with xcr = 1, because this would imply ., =
1, by (6). Thus, there exists a P € vw-paths(G) with
xp = 0, as G is connected. Any such path P hase € P, as
PNC#@and CNEy = {e}and P C Ey. Thus:

veV AweV” (99)

by (97). (V*, E*) is properly (vw, C)-connected, by (97),
(98) and (99). Any other component of Gy does not cross
the cut, by (96), (97) and definition of Gy, and is thus im-
properly (vw, C')-connected.

b) We have

Vste E: 24 =0 st e E* (100)

by the following argument:

e If st € E*,thens € V* ANt € V* as (V* E*)isa
graph. Thus, x4 = 0, by definition of x.

o Ifst¢ E*thens ¢ V'Vt ¢ V* as (V" E*)isa
component of G. Thus, x5 = 1, by definition of x.

Consider the decomposition of G into (V*, E*) and single-
ton components. E7 := {e € E|xz, = 1} is the set of edges
that straddle distinct components of this decomposition, by
(100). Therefore, F is a multicut of G, by Lemma 2. Thus,
(4) holds, by Lemma 3.

For any st € Fgg and any P € st-paths(G), distinguish
two cases:

e If PC E* thens € V* ANt € V* as (V* E*)isa
graph. Thus, x5, = 0, by definition of . Moreover,
zp = 0, by (100). Hence, (5) evaluates to 0 = 0.

e Otherwise, there exists an e € P such that e ¢ E*.
Therefore, . = 1, by (100). Thus, (5) holds, as the
r.h.s. is at least 1.

For any st € Fggs and any C' € st-cuts(G), distinguish
two cases:

e IfC'NE* =(0thens ¢ V*V i ¢ V* Therefore,
g = 1, by definition of x. Moreover, x¢: = 1, by
(100). Thus, (6) evaluates to 0 = 0.

e Otherwise, there exists an e € C’ such that e € E*.
Therefore, z. = 0, by (100). Thus, (6) holds, as the
r.h.s. is at least 1.

Proof of Theorem 11  Assume that C1 does not hold (as in
Fig. 4a). Then, there exists an e € C' such that no (vw, C)-
connected component of G contains e. Thus, for all x €
SGG’ (vw, C)Z

Te=1 (101)

by Proposition 1. Now, dim Xgq (vw, C) < |E'| — 2, by
(35) and (101). Thus, X’ (vw, C) is not a facet of Ege,
by Theorem 7.

Assume that C2 does not hold. Then, for any e € C there
exists some number m such that for all (vw, C')-connected
components (V*, E*) with e € E* itholds that |[FNFy«| =
m. Thus, we can write

|F|
c=Jcwm),

m=0

(102)

where C(F,m) := {e € C' | |[F N Fy-| = mVY (vw,C)-
connected (V*, E*) with e € E*}. It follows that for all
x € Sger (vw, C) we have the equality

|7
Som Y (-z)=> (I—ap)  (103)
m=0  ecC(F,m) frer

by the following argument:

elf x. = 1foralle € C, then zy» = 1 for all
vw' = f' € F, since C is also a v'w’-cut. Thus,
(103) evaluates to 0 = 0.

e Otherwise there exists precisely one edge e € C' such
that z. = 0. Let m be such that e € C(F,m). By
definition of C'(F, m), there are exactly m edges f' €
F with z ¢ = 0. Thus, (103) evaluates to m = m.

Assume that condition C3 does not hold. Then there exists
an f' € Fgor(vw,C), aset) # F C Fge (vw,C) and
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a) b)
U/ U ‘e\l‘ B
Vo
€2 U2
€3
€1
€4 Vg €9 \
V2
] €5 ,
! — o/ 4
V Vg = W

Figure 3. Depicted are the nodes (in black) and edges (in green)
on a path (a) and on a cycle (b), respectively. Nodes in the set

V' are are either in V* (filled circle) or not in V* (open circle).

Consequently, pairs of consecutive edges are either cut (dotted
lines) or not cut (solid lines).

some k € N such that for all (vw, C') connected components
(V*, E*) and (V**, E**) with f’ € Fy« and f’' ¢ Fy« it
holds that

|F N Fy-

= kand |F' N Fy -~

=0. (104

In other words, for all z € Sger (vw, C') it holds that xp =

0 iff there are exactly k edges f” € F such that x ¢ = 0.

Similarly, it holds that ¢ = 1 iff for all f” € F we
have z ¢ = 1. Therefore, all z € Sg¢ (vw, C) satisfy the
additional equality

k(]. 7$f/) = Z 1 758]0//.

freF

(105)

Assume that C4 does not hold. Then, there exist v/ €
V(v,C)andw’ € V(w,C) and a v'w’-path P = (Vp, Ep)
in G’ (vw, C) such that every properly (vw, C')-connected
component (V*, E*) of G holds:

(WevVs A V(w,C)NVp CVH)
vV o (weV* AV(,C)NVp CV*) .

(106)
(107)

Let vy < --- < v}y, the linear order of the nodes Vp and

lete; < --- < g, the linear order of the edges Fp in the
v'w’-path P. Now, for all z € Sgg (vw, C):

|Ep|

Tow = Z (_1)j+1xej

j=1

(108)

by the following argument: |Ep| is odd, as the path P
alternates between the set V' (v, C') where it begins and the
set V(w, C) where it ends. Thus,

|Ep| (1Ep|-1)/2

Z(_1>j+1x€j = Tey — Z(xezj - x52j+1) :

j=1 j=1

(109)

Distinguish two cases:

o If 2, = 1, then zg, = 1, by (35) and (6). Thus,
(108) evaluates to 1 = 1, by (109).

o If z,,, = 0, the decomposition of G defined by x con-
tains precisely one properly (vw, C')-connected com-
ponent (V*, E*) of G, by Proposition 1. Without loss
of generality, (106) holds. Otherwise, that is, if (107)
holds, exchange v and w.

Consider the nodes Vp as depicted in Fig. 3a: v; =
v € V*, by (106). For every even j, v; € V(w,C),
by definition of P. Thus:

Vie{l,...,(|Ep|+1)/2}: vo; € V¥ (110)

by (106).

Consider the edges Ep as depicted in Fig. 3a: e; =
v1ve € E*,asv; € V* and v € V* and as (V*, E*)
is a component of G. Thus,

Te, =0 (111)

by Proposition 1. Forevery j € {1,...,(|Ep|—1)/2},
distinguish two cases:

- If V2j+1 € V'*, then €25 = V2;V2i4+1 € E* and
€2j4+1 = V2j4+1V2j4+2 € E*, because Vaj € V=
and vo;12 € V*, by (110), and because (V*, E*)
is a component of G. Thus:

(112)

Teg; =0 N Tey, ;, =0 .

- If?}gj_;,_l ¢ V*, then €25 = V25V2;5+1 and €2j4+1 =
V24102542 straddle distinct components of the
decomposition of G defined by x, because vg; €
V* and v9542 € V*, by (110). Thus:

Teg; =1 N Tey, =1 (113)

In any case:

Vie{l,...,(|Ep|—1)/2}: Tey, — Tey;yy =0 .
(114)

Thus, (108) evaluates to 0 = 0, by (109), (111), (114).

Assume that C5 does not hold. Then, there exists a cy-
cleY = (Vy, Ey) in G’ (vw, C) such that every properly
(vw, C)-connected component (V*, E*) of G holds:

Vv NV(v,C) CV*
vV Ve NV(w,C)CV* .

(115)
(116)

Let vg < -++ < v}y, |1 an order on Vy such that vy €
V(v,C) and, forall j € {0,...,|Ey|—1}:

ej = {Uj7vj+1 mod \Ey\} € Fy . (117)
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Now, for all z € Sge (vw, C):

|Ey|-1

0=> (~-1)z, (118)

=0

by the following argument: |Ey | is even, as the cycle YV
alternates between the sets V' (v, C') and V (w, C). Thus,

|[Ey|-1 - (By]=z2)/2
S (e, =D (Tey, — Teyyyy) - (119)
j=0 j=0

Distinguish two cases:

o If z,, = 1, then zp, = 1, by (35) and (6). Thus,
(118) evaluates to 0 = 0, by (119).

o If z,, = 0, the decomposition of G defined by x con-
tains precisely one properly (vw, C')-connected com-
ponent (V*, E*) of G, by Proposition 1. Without loss
of generality, (115) holds. Otherwise, that is, if (116)
holds, exchange v and w.

Consider the nodes V3 as depicted in Fig. 3b: For
every even j, v; € V (v, C), by definition of Y and the
order. Thus:

Vje{0,...,(|By| —2)/2} : vo; € V*  (120)

by (115).

Consider the edges Ey as depicted in Fig. 3b: For ev-
ery j € {0,...,(|Ey|— 2)/2}, distinguish two cases:

- If V2j+1 € V*, then €25 = V2;V254+1 € E* and
€2j4+1 = U2j+1V2j42mod |Ey| € E*, because
V25 € V* and V2j+2 mod |Ey| € V*, by (120),
and because (V*, E*) is a component of G. Thus:

Teg; =0 A ey, =0 . (121)
- If V2j+1 ¢ V*, then €25 = VU2V2j+1 and
€2j4+1 = V25+1V2542 mod |Ey| straddle distinct

components of the decomposition of G defined by
x, because vo; € V* and v3j42 mod |Ey| € V™
by (120). Thus:

Teg; =1 N Tey, y, =1 (122)
In any case:

v e{0,....(|Ey|—2)/2}: Tep; — Tegypy =0 -
(123)

Thus, (118) evaluates to 0 = 0, by (119) and (123).
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Figure 4. Depicted above are graphs G = (V, E) (in black) and G’ = (V, E") with E C E’ (E' in green), distinct nodes v,w € V and
a vw-cut C of G (as dotted lines). In any of the above examples, one condition of Theorem 11 is violated and thus, Xgg’ (vw, C) is
not a facet of the lifted multicut polytope Z¢ . a) Condition C1 is violated for e. b) Condition C2 is violated as r and s are connected
in any (vw, C')-connected component. ¢) Condition C2 is violated as r and s are not connected in any (vw, C')-connected component.
d) Condition C2 is violated. Specifically, C({f'},1) = {eo} and C'({f’},0) = {e1} in the proof of Theorem 11. e) Condition C2 is
violated for F' = { f1, f2}. f) Condition C3 is violated. g) Condition C3 is violated for ' = { f1, f} and £ = 1. h) Condition C4 is
violated for the v'w’-path f1 f2 f3. i) Condition C4 is violated for the v'w’-path e f1 f2. j) Condition C5 is violated for the cycle f1f2 f3 fa.
k) Condition C5 is violated for the cycle e fi fa fa.



