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Andrea Horňáková * 1 Jan-Hendrik Lange * 1 Bjoern Andres 1

Appendix

A. Multicuts
Proof of Lemma 2 First, we show that for any Π ∈ DG,
the image φG(Π) is a multicut of G. Assume the contrary,
i.e. there exists a cycle C of G such that |C ∩ φG(Π)| = 1.
Let {u, v} = e ∈ C ∩ φG(Π), then for all U ∈ Π it holds
that u /∈ U or v /∈ U . However, C \ {e} is a sequence of
edges {w1, w2}, . . . , {wk−1, wk} such that u = w1, v =
wk and {wi, wi+1} /∈ φG(Π) for all 1 ≤ i ≤ k − 1. Con-
sequently, since Π is a partition of V , there exists some
U ∈ Π such that

w1 ∈ U ∧ w2 ∈ U ∧ . . . ∧ wk−1 ∈ U ∧ wk ∈ U.

This contradicts w1 = u /∈ U or wk = v /∈ U .

To show injectivity of φG, let Π = {U1, . . . , Uk}, Π′ =
{U ′1, . . . , U ′`} be two decompositions of G. Suppose Π 6=
Π′. Then (w.l.o.g.) there exist some u, v ∈ V with {u, v} ∈
E and some Ui ∈ Π such that u, v ∈ Ui and for all U ′j ∈ Π′

it holds that u /∈ U ′j or v /∈ U ′j . Thus, {u, v} ∈ φG(Π′) but
{u, v} /∈ φG(Π), which means φG(Π) 6= φG(Π′).

For surjectivity, take some multicut M ⊆ E of G. Let
Π = {U1, . . . , Uk} collect the node sets of the connected
components of the graph (V,E \M). Apparently, Π defines
a decomposition of G. We have {u, v} ∈ φG(Π) if and
only if for all U ∈ Π it holds that v /∈ U or u /∈ U . The
latter holds true if and only if {u, v} is not contained in any
connected component of (V,E \M), which is equivalent
to {v, w} ∈M . Hence, φG(Π) = M .

Proof of Lemma 4 First, we show that for any M ∈
MKV

the image ψ(M) is an equivalence relation on V .
Since KV is simple, we trivially have {v, v} /∈M for any
v ∈ V . Therefore, (v, v) ∈ ψ(M), which means ψ(M)
is reflexive. Symmetry of ψ(M) follows from {u, v} =
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{v, u} for all u, v ∈ V . Now, suppose (u, v), (v, w) ∈
ψ(M). Then {u, v, }, {v, w} /∈ M and thus {u,w} /∈ M
(otherwise C = {u, v, w} would be a cycle contradicting
the definition of a multicut). Hence, (u,w) ∈ ψ(M), which
gives transitivity of ψ(M).

Let M,M ′ be two multicuts of KV with ψ(M) = ψ(M ′).
Then

{u, v} ∈M ⇐⇒ (u, v) /∈ ψ(M)

⇐⇒ (u, v) /∈ ψ(M ′)

⇐⇒ {u, v} ∈M ′.

Hence M = M ′, so ψ is injective.

Let R be an equivalence relation on V and define M by

{u, v} ∈M ⇐⇒ (u, v) /∈ R.

Transitivity of R implies that M is a multicut of KV . More-
over, by definition, it holds that ψ(M) = R. Hence, ψ is
also surjective.

B. Lifted Multicuts
Proof of Lemma 5 Let x ∈ {0, 1}E′ be such that M ′ =
x−1(1) is a multicut ofG′ lifted fromG. Every cycle inG is
a cycle in G′. Moreover, for any path vw = f ∈ FGG′ and
any vw-path P in G, it holds that P ∪ {f} is a cycle in G′.
Therefore, x satisfies all inequalities (4) and (5). Assume
x violates some inequality of (6). Then there is an edge
vw ∈ FGG′ and some vw-cut C in G such that xvw = 0
and for all e ∈ C we have xe = 1. Let Π be the partition
of V corresponding to M ′ according to Lemma 2. There
exists some U ∈ Π with v ∈ U and w ∈ U . However, for
any uu′ = e ∈ C it holds that u /∈ U or u′ /∈ U . This
means the subgraph (U,E ∩

(
U
2

)
) is not connected, as C is

a vw-cut. Hence, Π is not a decomposition of G, which is a
contradiction, because G is connected.

Now, suppose x ∈ E′ satisfies all inequalities (4)–(6). We
show first that M ′ = x−1(1) is a multicut of G′. Assume
the contrary, then there is a cycle C ′ in G′ and some edge
e′ such that C ′ ∩M ′ = {e′}. For every vw = f ∈ FGG′ ∩
C ′ \ {e′} there exists a vw-path P in G such that xe = 0
for all e ∈ P . Otherwise there would be some vw-cut in G
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Figure 1. To show that the consistency problem is NP-hard, we
reduce 3-SAT to this problem. Shown above is the instance of the
consistency problem constructed for the instance of 3-SAT given by
the form (a∨ b∨ c̄)∧ (a∨ c∨ d̄)∧ (ā∨ c∨ e)∧ (ā∨ c∨ ē). Solid
and dashed lines depict edges in E and E′ \E, respectively. Black
means x̃e = 0. Red means x̃e = 1. Grey means e /∈ dom x̃.

violating (6), as G is connected. If we replace every such
f with its associated path P in G, then the resulting cycle
violates either (4) (if e′ ∈ E) or (5) (if e′ ∈ FGG′). Thus,
M ′ is a multicut of G′. By connectivity of G, the partition
φ−1G′ (M

′) is a decomposition of both G′ and G. Therefore,
M = λ−1GG′(M

′) = φG(φ−1G′ (M
′)) is a multicut of G and

hence M ′ = x−1(1) is indeed lifted from G.

C. Partial Lifted Multicuts
Proof of Theorem 1 Firstly, we show that the consistency
problem is in NP. For that, we show that verifying, for
any given x ∈ {0, 1}E′ , that x is a completion of x̃ and a
characteristic function of a multicut of G′ lifted from G is
a problem of polynomial time complexity. To verify that x
is a completion of x̃, we verify for every e ∈ dom x̃ that
xe = x̃e. This takes time O(|E|). To verify that x−1(1)
is a multicut of G′ lifted from G, we employ a disjoint set
data structure initialized with singleton sets V . For any
{v, w} ∈ x−1(0), we call union(v, w). Then, we verify for
every {v, w} ∈ x−1(1) that find(v) 6= find(w). This takes
time O(|E|+ |V | log |V |).

To show that the consistency problem is NP-hard, we reduce
3-SAT to this problem. For that, we consider any instance of
3-SAT defined by a propositional logic formula A in 3-SAT
form. An example is shown in Fig. 1. Let m be the number
of variables and n the number of clauses in A.

In order to define an instance of the consistency prob-
lem w.r.t. this instance of 3-SAT, we construct in poly-
nomial time a connected graph G = (V,E), a graph
G′ = (V,E′) with E ⊆ E′, and a partial characteristic
function x̃ ∈ {0, 1, ∗}E′ as described below. An example
of this construction is shown in Fig. 1.

• There are 3n+ 2 nodes in V . Two nodes are denoted
by s and t. Additional nodes are organized in n layers.
For j ∈ {1, . . . , n}, the j-th layer corresponds to the

j-th clause in A, containing one node for each of the
three literals1 in the clause. Every node is labeled with
its corresponding literal. Layer 0 contains only the
node s. Layer n+ 1 contains only the node t.

• Any two consecutive layers are connected such that
their nodes together induce a complete bipartite sub-
graph of G. Additionally, any nodes v and w la-
beled with conflicting literals, a and ā, that are not
already connected in G are connected in G′ by an edge
{v, w} ∈ E′ \ E.

• For any edge {v, w} ∈ E′ whose nodes v and w are
labeled with conflicting literals, we set x̃vw = 1. In
addition, we introduce the edge {s, t} ∈ E′ \ E and
define x̃st = 0. No other edges are in the domain of x̃.

Observe that x̃ is consistent iff there exists an st-path P inG
such that no edge or chord {v, w} of P is such that x̃vw = 1.
Any such path is called feasible. All other st-paths in G are
called infeasible.

Now, we show firstly that the existence of a feasible path
implies the existence of a solution to the given instance of
3-SAT. Secondly, we show that the existence of a solution
to the given instance of 3-SAT implies the existence of a
feasible path. That suffices.

1. Let P be a feasible path and let VP its node set. An
assignment χ to the variables of the instance of 3-SAT
is constructed as follows: For any node v ∈ VP whose
label is a variable a, we define χ(a) := true. For
any node v ∈ VP whose label is a negated variable ā,
we define χ(a) := false. All remaining variables are
assigned arbitrary truth values. By the properties of P ,
χ is well-defined and A[χ] is true.

2. Let χ be a solution to the given instance of 3-SAT.
As every clause of A contains one literal that is true,
and by construction of G, we can choose an st-path in
G along which all nodes are labeled with literals that
are true for the assignment χ. By virtue of χ being a
solution to the instance of 3-SAT, any pair of literals
that are both true are non-conflicting. Thus, P has no
edge or chord {v, w} such that x̃vw = 1.

Proof of Lemma 6 Firstly, suppose that E ⊆ dom x̃. In
this case, it is clear that x̃ is consistent iff x̃ satisfies all
cycle inequalities (4) w.r.t. the graph (V,E ∩ dom x̃). This
can be checked in time O(|V |+ |E′|) as follows: Label the
maximal components of the subgraph Gx̃ of G induced by
the edge set {e ∈ E : x̃e = 0}. Then, for every {v, w} ∈
E′ with x̃vw = 1, check if v and w are in distinct maximal

1A literal is either a variable a or a negated variable ā.
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components of Gx̃. If so, x̃ is consistent, otherwise x̃ is
inconsistent.

Now, suppose x̃ ∈ {0, 1, ∗}E′ satisfies (10). We show that,
similar to the first case, x̃ is consistent iff all inequalities (4)
and (5) are satisfied w.r.t. the graph (V,E′ ∩ dom x̃). This
can be checked analogously to the first case.

Necessity of this condition is clear. To show sufficiency,
assume this condition holds true. We construct some x ∈
XGG′ [x̃] as follows. For all e ∈ dom x̃, set xe := x̃e. For
all {v, w} = f ∈ E′ \ E such that f /∈ dom x̃ and such
that there is a vw-path P in G with x̃e = 0 for all e ∈ P ,
set xf := 0. For all remaining edges e, set xe := 1. By
construction, x satisfies (4), (5) and (6).

Proof of Theorem 2 To show that the maximal specificity
problem is NP-hard, we reduce 3-SAT to this problem: For
any given instance of 3-SAT we construct in polynomial
time a connected graph G = (V,E), a graph G′ = (V,E′)
with E ⊆ E′, and a partial characteristic function x̃ ∈
{0, 1, ∗}E′ as in the proof of Thm. 1, except that now, we
let st /∈ dom x̃.

We know that x̃ is consistent because 1 ∈ XGG′ [x̃]. We
show that x̃ is maximally specific iff the given instance of
3-SAT has a solution:

Firstly, every e ∈ E′ \ (dom x̃ ∪ {st}) is undecided, by
the following argument: (i) There exists an x ∈ XGG′ [x̃]
with xe = 1, namely 1. (ii) There exists an x ∈ XGG′ [x̃]
with xe = 0, namely the x ∈ {0, 1}E′ with xe = 0 and
∀f ∈ E′ \ {e} : xf = 1. To see that x ∈ XGG′ [x̃], observe
that e ∈ E and x̃−1(0) = ∅. Thus, st is the only edge in
E′ \ dom x̃ that is possibly decided. That is:

E′[x̃] ⊆ {st} ∪ dom x̃ (42)

Thus, x̃ is maximally specific iff x̃ is undecided. More
specifically, x̃ is maximally specific iff there exists an x ∈
XGG′ [x̃] with xst = 0, as we know of the existence of
1 ∈ XGG′ [x̃]. Thus, x̃ is maximally specific iff the given
instance of 3-SAT has a solution, by the arguments made in
the proof of Thm. 1.

Proof of Lemma 7 Observe that x̃ is maximally specific
iff clGG′ x̃ = x̃. Thus, Lemma 7 follows from Lemma 11.

Proof of Lemma 8 Reflexivity is obvious. Antisymmetry:
(x̃ ≤ x̃′ ∧ x̃′ ≤ x̃) ⇒ (dom x̃ = dom x̃′ ∧ ∀e ∈ dom x̃ :
x̃e = x̃′e). Transitivity: Let x̃ ≤ x̃′ ≤ x̃′′. Then dom x̃ ⊆
dom x̃′ ⊆ dom x̃′′ and ∀e ∈ dom x̃ : x̃e = x̃′e = x̃′′e .

Proof of Lemma 9 We show first that x̃′ is maximal w.r.t.
≤ in X̃GG′ [x̃] iff it is maximally specific. This implies

existence and uniqueness of the maximum of X̃GG′ [x̃] by
construction via dom x̃′ = E′[x̃].

Let x̃′ ∈ X̃GG′ [x̃] be maximally specific and suppose x̃′ ≤
x̃′′ for some x̃′′ ∈ X̃GG′ [x̃]. Then dom x̃′′ = dom x̃′,
since XGG′ [x̃

′] 6= XGG′ [x̃
′′] if dom x̃′′ \ E′[x̃] 6= ∅. Thus,

x̃′ = x̃′′, which means x̃′ is maximal w.r.t. ≤ in X̃GG′ [x̃].

Conversely, any maximal element x̃′ of X̃GG′ [x̃] w.r.t. ≤
must satisfy E′[x̃] ⊆ dom x̃′, which means it is maximally
specific.

Hence, the unique maximum x̃′ ∈ X̃GG′ [x̃] is obtained
as follows. For an arbitrary x ∈ XGG′ [x̃] define x̃′ via
x̃′e := xe for all decided edges e ∈ E′[x̃].

Proof of Theorem 3 Let us have x̃, x̃′ ∈ X̃GG′ .

• The implication XGG′ [x̃] = XGG′ [x̃
′]⇒ X̃GG′ [x̃] =

X̃GG′ [x̃
′] : follows from the definition of X̃GG′ [x̃] in

Lemma 9.

• The implication X̃GG′ [x̃] = X̃GG′ [x̃
′] ⇒ clGG′ x̃ =

clGG′ x̃
′ follows from the definition of the closure of x̃

as the maximum of X̃GG′ [x̃].

• The implication clGG′ x̃ = clGG′ x̃
′ ⇒ XGG′ [x̃] =

XGG′ [x̃
′] follows from clGG′ x̃ = clGG′ x̃

′ ∈
X̃GG′ [x̃].

Proof of Lemma 10 Let x ∈ XG and define y = clGG′ x.
Since domx = E, it holds that E′[x] = E′, i.e. all edges
are decided. Therefore, y−1(1) is a multicut of G′ and for
all {v, w} = f ∈ E′ \ E it holds that yf = 0 iff there is a
vw-path P in G such that xe = 0 for all e ∈ P . By Lemma
5, this implies y−1(1) = λGG′(x

−1(1)).

Proof of Theorem 4 Computing closures is at least as
hard as deciding maximal specificity: To decide maximal
specificity of x̃ ∈ X̃GG′ , compute its closure clGG′ x̃. Then
x̃ is maximally specific iff dom x̃ = dom clGG′ x̃, i.e., if
x̃ = clGG′ x̃. By Theorem 2, this means computing closures
is NP-hard.

Proof of Lemma 11 Let x̃ ∈ X̃GG′ and ỹ = clGG′ x̃.

Suppose first that E = E′. We describe how to compute
ỹ efficiently. Obviously, we must set ỹe = x̃e for all e ∈
dom x̃. Furthermore, we must set ỹvw = 0 for all {v, w} ∈
E \ dom x̃ such that there is a vw-path P in G with x̃e = 0
for all e ∈ P . Moreover, we must set ỹvw = 1 for all
{v, w} ∈ E \ dom x̃ that satisfy

∃P ∈ vw-paths(G) ∃!e ∈ P :

x̃e = 1 ∧ ∀e′ ∈ P \ {e} : x̃e′ = 0 . (43)
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Therefore, initialize a disjoint-set data structure with sin-
gleton sets V . Apply the union operation on all edges
e ∈ dom x̃ where x̃e = 0, i.e. contract all 0-labeled edges.
Then, set ỹe = 0 for all edges that connect nodes of the
same component. If there is an edge e′ between two compo-
nents such that x̃e′ = 1, then for all edges e between those
components set ỹe = 1. The remaining edges are undecided
by x̃. In case we only want to decide maximal specificity,
we can stop upon finding the first edge e ∈ dom ỹ \ dom x̃.

Now suppose that E ⊆ dom x̃. In this case, all edges are
decided, because x̃|E ∈ XG. According to Lemma 10, the
closure ỹ corresponds to the lifting of x̃|E to G′. Therefore,
to obtain ỹ, compute the decomposition of G associated to
x̃|E using, e.g., a disjoint-set data structure. Set ỹe = 0 if e
is an edge within a component. Set ỹe = 1 if e is an edge
between components.

D. Metrics
Proof of Theorem 5 Symmetry and non-negativity follow
directly from the definition, and so does dµE′(x, x) = 0 for
all x ∈ XGG′′ . For any e ∈ E′, the form d1e on E′ × E′ is
a Hamming metric on words of length 1 from the alphabet
{0, 1}. Therefore, it satisfies the triangle inequality. Hence,
for any x, y, z ∈ XGG′′ :

dµE′(x, z) =
∑
e∈E′

µed
1
e(x, z) (44)

≤
∑
e∈E′

µe(d
1
e(x, y) + d1e(y, z)) (45)

=
∑
e∈E′

µed
1
e(x, y) +

∑
e∈E′

µed
1
e(y, z) (46)

= dµE′(x, y) + dµE′(y, z), (47)

Thus, dµE′ is a pseudo-metric on XGG′′ .

If E ⊆ E′, then G′ = G′′ and thus, XGG′′ = XGG′ ⊆
XG′ . For any two x, x′ ∈ XGG′′ ⊆ XG′ , it holds that
dµE′(x, x

′) = 0 iff d1e(x, x
′) = 0 for all e ∈ E′, i.e. iff

x = x′. Conversely, suppose there exists some e ∈ E \ E′.
Define x, x′ ∈ XGG′′ via xe′ = x′e′ = 1 for all e′ ∈
E′′ \ {e} and xe = 1, x′e = 0. It holds that x 6= x′ but
dµE′(x, x

′) = 0.

Proof of Theorem 6 We first prove that d̃θE′ is a metric
on X̂GG′ . For any x̃ ∈ X̂GG′ , we have clGG′ x̃ = x̃. Thus,
for all x̃, x̃′ ∈ X̂GG′ , we have d̃θE′(x̃, x̃

′) = dθE′(x̃, x̃
′).

Therefore, positive definiteness and symmetry are obvious
from the definition of dθE′(x̃, x̃

′). To establish the triangle
inequality for dθE′ , we prove it for θd1e and any edge e ∈ E′.
Let x̃, ỹ, z̃ ∈ X̂GG′ and consider the inequality

θd1e(x̃, z̃) ≤ θd1e(x̃, ỹ) + θd1e(ỹ, z̃). (48)

Table 1. The left- and right-hand side of the inequality θd1e(x̃, z̃) ≤
θd1e(x̃, ỹ) + θd1e(ỹ, z̃) for all possible combinations of values
x̃e, ỹe, z̃e where x̃, ỹ, z̃ ∈ X̂GG′ . The right-hand side is always
greater or equal the left-hand side iff 0.5 ≤ θ.

x̃e ỹe z̃e lhs rhs
0 0 0 0 0
1 1 1 0 0
* * * 0 0
0 * 1 1 2θ
0 1/0 1 1 1
0 0/* * θ θ
1 1/* * θ θ

In Tab. 1, the left-hand side and right-hand side of (48) are
evaluated for all possible assignments of values to x̃e, ỹe, z̃e.
It is apparent form this table that (48) holds iff θ ≥ 0.5.

We now show that d̃θE′ is a pseudo-metric on X̃GG′ . Sym-
metry and non-negativity are obvious from the definition.
For all x̃ ∈ X̃GG′ , we have d̃θE′(x̃, x̃) = 0. Since
d̃θE′(x̃, x̃

′) = d̃θE′(clGG′ x̃, clGG′ x̃
′) and clGG′ x̃ ∈ X̂GG′

for any x̃ ∈ X̃GG′ , the triangle inequality follows from the
fact that d̃θE′ is a metric on X̂GG′ .

Finally, it holds that d̃θE′(x̃, x̃
′) = 0 iff clGG′ x̃ = clGG′ x̃

′,
which in turn is equivalent to X̃GG′ [x̃] = X̃GG′ [x̃

′], by
Theorem 3. This proves property (24).

E. Polyhedral Optimization
Proof of Theorem 7 The all-one vector 1 ∈ {0, 1}E′ is
such that 1 ∈ XGG′ .

For any e ∈ E, xe ∈ {0, 1}E′ such that xee = 0 and
xeE\{e} = 1 and xeFGG′

= 1 holds xe ∈ XGG′ .

For any f ∈ FGG′ , any f -feasible xf ∈ {0, 1}E′ is such
that xf ∈ XGG′ . Moreover, xf can be chosen such that
one shortest path connecting the two nodes in f is the only
component containing more than one node.

For any e ∈ E, let ye ∈ RE′ such that

ye = 1− xe . (49)

For any f ∈ F1, choose an f -feasible xf and let yf ∈ RE′

such that
yf = 1− xf −

∑
{e∈E|xf

e=0}

ye . (50)

For any n ∈ N such that n > 1 and any f ∈ Fn, choose an
f -feasible xf and let yf ∈ RE′ such that

yf = 1− xf −
∑

{f ′∈FGG′ |f ′ 6=f∧xf

f′=0}

yf
′

−
∑

{e∈E|xf
e=0}

ye . (51)
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Here, `(f ′) < `(f) ≤ n, by definition of f -feasibility. Thus,
all yf

′
are well-defined by induction (over n).

Observe that {ye | e ∈ E′} is the unit basis in RE′ .
Moreover, each of its elements is a linear combination of
{1− xe | e ∈ E′} which is therefore linearly independent.

Thus, {1} ∪ {xe | e ∈ E′} is affine independent. It is also
a subset of XGG′ and, therefore, a subset of ΞGG′ . Thus,
dim ΞGG′ = |E′|.

Proof of Lemma 12 Let {v, w} = f ∈ FGG′ and let
d(v, w) the length of a shortest vw-path in G. Then,
d(v, w) > 1 because FGG′ ∩ E = ∅.

If d(v, w) = 2, there exists a u ∈ V such that {v, u} ∈ E
and {u,w} ∈ E. Moreover, {v, u} /∈ FGG′ and {u,w} /∈
FGG′ , as FGG′ ∩ E = ∅. Thus, f ∈ F1.

If d(v, w) = m with m > 2, consider any shortest vw-
path P in G. Moreover, let F ′ ⊆ FGG′ such that, for any
{v′, w′} = f ′ ∈ FGG′ , f ′ ∈ F ′ iff v′ ∈ P and w′ ∈ P and
f ′ 6= f . If F ′ = ∅ then f ∈ F1. Otherwise:

∀{v′, w′} ∈ F ′ : d(v′, w′) < m (52)

and thus:

∀f ′ ∈ F ′ ∃nf ′ ∈ N : f ′ ∈ Fnf′ (53)

by induction (over m). Let

n = max
f ′∈F ′

nf ′ . (54)

Then, f ∈ Fn+1.

Proof of Lemma 13 For any {v, w} = f ∈ FGG′ , let P
be a shortest vw-path in G and let

F ′GG′ := {{v′, w′} ∈ FGG′ | v′ ∈ P ∧ w′ ∈ P} (55)
F ′′GG′ := FGG′ \ F ′GG′ . (56)

Moreover, let x ∈ {0, 1}E′ with xP = 0 and xE\P = 1 and
xF ′

GG′
= 0 and xF ′′

GG′
= 1. P has no chord in E, because

it is a shortest path. Thus, x ∈ XGG′ .

Proof of Theorem 8 Let S = {x ∈ XGG′ | xe = 1} and
put Σ = convS.

To show necessity, suppose there is some vw = f ∈ FGG′
such that e connects a pair of v-w-cut-vertices. Then, for
any vw-path P in G, either e ∈ P or e is a chord of P .
We claim that we have xf = 1 for any x ∈ S. This gives
dim Σ ≤ |E′| − 2, so the inequality xe ≤ 1 cannot define
a facet of ΞGG′ . If there are no vw-paths that have e as a
chord, then {e} is a vw-cut and the claim follows from the
corresponding inequality of (6). Otherwise, every vw-path

P that has e as a chord contains a subpath P ′ such that
P ′ ∪ {e} is a cycle. Thus, for any x ∈ S, the inequalities
(4) or (5) (for e ∈ E or e ∈ FGG′ , respectively) imply
the existence of some eP ′ ∈ P ′ such that xeP ′ = 1. Let
P denote the set of all such paths P ′. Apparently, the
collection

⋃
P ′∈P{eP ′} ∪ {e} is a v-w-separating set of

edges. Therefore, it contains some subset C that is a vw-cut.
This gives xf = 1 via the inequality of (6) corresponding
to C.

We turn to the proof of sufficiency. Assume there is no vw =
f ∈ FGG′ such that e connects a pair of v-w-cut-vertices in
G. The construction of an affine independent |E′|-element-
subset of S ⊂ XGG′ is analogous to the proof of Theorem
7. The assumption guarantees for any f ∈ FGG′ with f 6= e
the existence of an f -feasible x ∈ S such that there is a
vw-path P with xP = 0. In particular, the hierarchy on
FGG′ defined by the level function ` remains unchanged
(if e ∈ FGG′ , then `(e) ≥ `(f) for all f ∈ FGG′). Hence,
dim Σ = |E′| − 1, which means Σ is a facet of ΞGG′ .

Proof of Theorem 9 Let S = {x ∈ XGG′ | xe = 0} and
put Σ = convS.

Consider the case that e ∈ E. Let G[e] and G′[e] be the
graphs obtained from G and G′, respectively, by contracting
the edge e. The lifted multicuts x−1(1) for x ∈ S corre-
spond bijectively to the multicuts of G′[e] lifted from G[e].
This implies dim Σ = dim ΞG[e]G

′
[e]

. The claim follows
from Theorem 7 and the fact that G′[e] has |E′| − 1 many
edges if and only if e is not contained in any triangle in G′.

Now, suppose uv = e ∈ FGG′ . We show necessity of
Conditions (a)-(c) by proving that if any of them is violated,
then all x ∈ S satisfy some additional, orthogonal equality
and thus, dim Σ ≤ |E′| − 2.

First, assume that (a) is violated. Hence, there are edges
e′, e′′ ∈ E′ such that T = {e, e′, e′′} is a triangle in G′.
Every x ∈ S satisfies the cycle inequalities

xe′ ≤ xe + xe′′ (57)
xe′′ ≤ xe + xe′ (58)

by Lemma 3 applied to the multicut x−1(1) of G′. Every
x ∈ S satisfies xe′ = xe′′ , by (57) and (58) and xe = 0.

Next, assume that (b) is violated. Consider a violating pair
{u′, v′} 6= {u, v}, u′ 6= v′ of u-v-cut-vertices. For every
x ∈ S, there exists a uv-path P in G with xP = 0, as
xe = 0. Any such path P has a sub-path P ′ from u′ to v′

because u′ and v′ are u-v-cut-vertices.

• If the distance of u′ and v′ inG′ is 1, then u′v′ ∈ E′. If
u′v′ ∈ P , then xu′v′ = 0 because xP = 0. Otherwise,
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xu′v′ = 0 by xP ′ = 0 and the cycle/path inequality

xu′v′ ≤
∑
ê∈P ′

xê . (59)

Thus xu′v′ = 0 for all x ∈ S.

• If the distance of u′ and v′ in G′ is 2, there is a u′v′-
path in G′ consisting of two distinct edges e′, e′′ ∈ E′.
We show that all x ∈ S satisfy xe′ = xe′′ :

– If e′ ∈ P and e′′ ∈ P then xe′ = xe′′ = 0
because xP = 0.

– If e′ ∈ P and e′′ /∈ P then xe′ = xe′′ = 0 by
xP = 0 and the cycle/path inequality

xe′′ ≤
∑

ê∈P ′\{e′}
xê . (60)

– If e′ /∈ P and e′′ /∈ P then xe′ = xe′′ by xP = 0
and the cycle/path inequalities

xe′′ ≤ xe′ +
∑
ê∈P ′

xê (61)

xe′ ≤ xe′′ +
∑
ê∈P ′

xê . (62)

Now, assume that (c) is violated. Hence, there exists a u-
v-cut-vertex t and a u-v-separating set of vertices {s, s′}
such that {ts, ts′, ss′} is a triangle in G′. We have that all
x ∈ S satisfy xss′ = xts + xts′ as follows. At most one of
xts and xts′ is 1, because t is a u-v-cut-vertex and {s, s′}
is u-v-separating as well. Moreover, xts + xts′ = 0 if and
only if xss′ = 0.

Proof of Theorem 10 Note that both C and P ∪ {f} are
cycles in G′. We show that, for any chordal cycle C ′ of G′

and any e ∈ C ′, the inequality

xe ≤
∑

e′∈C′\{e}
xe′ (63)

is not facet-defining for ΞG′ . This implies that (63) can-
not be facet-defining for ΞGG′ either, as ΞGG′ ⊆ ΞG′ and
dim ΞGG′ = dim ΞG′ . Hence, for facet-definingness of (4)
and (5), it is necessary that C and P ∪ {f} be chordless in
G′.

For this purpose, consider some cycle C ′ of G′ with a chord
uv = e′ ∈ E′. We may write C ′ = P1 ∪ P2 where P1 and
P2 are edge-disjoint uv-paths such that C1 = P1∪{e′} and
C2 = P2 ∪ {e′} are cycles in G′. Let e ∈ C ′, then either
e ∈ P1 or e ∈ P2. W.l.o.g. we may assume e ∈ P1. The
inequalities

xe ≤
∑

e′′∈C1\{e}
xe′′ , (64)

xe′ ≤
∑

e′′∈C2\{e′}
xe′′ (65)

are both valid for ΞG′ . Moreover, since e′ ∈ C1, (64) and
(65) imply (63) via

xe ≤
∑

e′′∈C1\{e}
xe′′ =

∑
e′′∈C1\{e,e′}

xe′′ + xe′

≤
∑

e′′∈C1\{e,e′}
xe′′ +

∑
e′′∈C2\{e′}

xe′′

=
∑

e′′∈C′\{e}
xe′′ . (66)

Thus, (63) is not facet-defining for ΞG′ .

For the proof of sufficiency, suppose the cycle C of G is
chordless in G′ and let e ∈ C. Let Σ be a facet of ΞGG′
such that ΣGG′(e, C) ⊆ Σ and suppose it is induced by the
inequality ∑

e′∈E′
ae′xe′ ≤ α (67)

with a ∈ RE′ and α ∈ R, i.e., Σ = convS, where

S :=

{
x ∈ XGG′

∣∣∣∣∣ ∑
e′∈E′

ae′xe′ = α

}
. (68)

For convenience, we also define the linear space

L :=

{
x ∈ RE

′

∣∣∣∣∣ ∑
e′∈E′

ae′xe′ = α

}
. (69)

As 0 ∈ SGG′(e, C) ⊆ S, we have α = 0. We show that
(67) is a scalar multiple of (4) and thus ΣGG′(e, C) = Σ.

Let y ∈ {0, 1}E′ be defined by

yC = 0, yE′\C = 1, (70)

i.e. all edges except C are cut. Then y ∈ SGG′(e, C) ⊆ S,
since C is chordless.

For any e′ ∈ C \ {e}, the vector x ∈ {0, 1}E′ with

xC\{e,e′} = 0, xE′\C∪{e,e′} = 1 (71)

holds x ∈ SGG′(e, C) ⊆ S. Therefore, y − x ∈ L. Thus,

∀e′ ∈ C \ {e} : ae′ = −ae . (72)

It remains to show that ae′ = 0 for all edges e′ ∈ E′\C. We
proceed by considering edges from E and FGG′ separately.
We consider the nodes u, v ∈ V such that uv = e′. W.l.o.g.,
we assume that v does not belong to C. This is possible
because C does not have a chord in G′.

Firstly, consider e′ ∈ E and distinguish the following cases:
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(i) If e′ connects two nodes not contained in C or it is the
only edge connecting some node in C to v, then for
x ∈ {0, 1}E′ , defined by

xC = 0, xe′ = 0, xE′\(C∪{e′}) = 1, (73)

it holds that x ∈ SGG′(e, C) ⊆ S. Therefore, y − x ∈
L, which evaluates to ae′ = 0.

(ii) Otherwise, let E′C,v := {{u′, v} ∈ E′ |
u′ belongs to C} denote the set of edges in E′ that
connect v to some node in C. By assumption, we have
that |E′C,v| ≥ 2. Now, pick some direction on C and
traverse C from one endpoint of e to the other endpoint
of e. We may order the edges E′C,v = {e1, . . . , ek}
such that the endpoint of ei appears before the endpoint
of ei+1 in the traversal of C. We show that aei = 0 for
all 1 ≤ i ≤ k:

For the vector x ∈ {0, 1}E′ defined by

xe′′ =


0 if e′′ ∈ C
0 if e′′ ∈ E′C,v
1 else,

(74)

it holds that x ∈ SGG′(e, C) ⊆ S. Therefore, y − x ∈
L. Thus: ∑

1≤i≤k
aei = 0. (75)

Consider the m ∈ {1, . . . , k} such that e′ = em. For
any i with 1 ≤ i ≤ m − 1, consider the following
construction that is illustrated also in Fig. 2: Let e′′ ∈
C be some edge between the endpoints of ei and ei+1.
If ei ∈ E, define x ∈ {0, 1}E′ via

xe = xe′′ = 1 (76)
xC\{e,e′′} = 0 (77)

∀j ≤ i : xej = 0 (78)
∀j > i : xej = 1 (79)

If ei ∈ FGG′ , define x ∈ {0, 1}E′ via

xe = xe′′ = 1 (80)
xC\{e,e′′} = 0 (81)

∀j ≤ i : xej = 1 (82)
∀j > i : xej = 0 (83)

Either way, it holds that x ∈ SGG′(e, C) ⊆ S and thus,
y − x ∈ L. If ei ∈ E, this yields

0 =
∑

1≤j≤i
aej − ae − ae′′ =

∑
1≤j≤i

aej (84)

v

e

e′′′e′′
e2

e1 e3 v

e

e′′′e′′
e2

e1 e3

Figure 2. The figure illustrates the argument from case (ii) in the
proof of Theorem 10 for the cycle C = {e, e′′, e′′′}. In this
example, e3 = e′, e1 ∈ FGG′ and e2 ∈ E. The left multicut is
chosen for i = 1 and the right one for i = 2.

by (72). If ei ∈ FGG′ , we similarly obtain

0 =
∑

i+1≤j≤k
aej − ae − ae′′ =

∑
i+1≤j≤k

aej . (85)

Together with (75), this yields
∑

1≤j≤i aej = 0 as
well. Applying this argument repeatedly from i = 1 to
i = m− 1, we conclude that ae1 = . . . = aem−1 = 0.
By reversing the order of the edges in E′C,v, it can
be shown analogously that aek = aek−1

= . . . =
aem+1

= 0. Thus, by (75), ae′ = aem = 0.

Next, consider e′ ∈ FGG′ and distinguish the following
additional cases:

(iii) Suppose there is a uv-path P ′ in G that does not con-
tain any node from C. Define x ∈ {0, 1}E′ via

xe′′ =


0 if e′′ ∈ C
0 if e′′ = e′

0 if e′′ ∈ P ′ or e′′ is a chord of P ′

1 else.

(86)

Then x ∈ SGG′(e, C) ⊆ S and thus y − x ∈ L. This
gives

ae′ +
∑
e′′∈P ′

ae′′ +
∑

e′′ chord
of P ′

ae′′ = 0. (87)

We argue that all terms except ae′ vanish by induction
over the level function `(e′). If `(e′) = 1, then P ′

does not have any chords from FGG′ , thus ae′ = 0,
because ae′′ = 0 for all e′′ ∈ E as shown previously
in the cases (i) and (ii). If `(e′) > 1, then for any chord
e′′ ∈ FGG′ of P ′ it holds that `(e′′) < `(e′). The
induction hypothesis provides ae′′ = 0 and hence we
conclude ae′ = 0.

(iv) Suppose u is contained in C. Pick a shortest uv-path
P ′ in G. We argue inductively over the length of P ′,
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which we denote by d(P ′). If d(P ′) = 1, then P ′

consists of only one edge from E. This situation is
in fact already covered by case (ii). If d(P ′) > 1,
then we employ an argument similar to (ii) as follows.
Let FC,v := {{u′, v} ∈ FGG′ | u′ belongs to C} =
{f1, . . . , fk} be the set of edges fi ∈ FGG′ that con-
nect v to some node in C. Again, assume they are
ordered such that the endpoint of fi appears before the
endpoint of fi+1 on C in a traversal from e to itself.
For the vector x ∈ {0, 1}E′ defined by

xe′′ =



0 if e′′ ∈ C
0 if e′′ ∈ P ′ or e′′ is a chord of P ′

0 if e′′ = u′v′ where u′ belongs to C,
v′ 6= v belongs to P ′

0 if e′′ ∈ FC,v
1 else,

(88)

it holds that x ∈ SGG′(e, C) ⊆ S and thus y − x ∈ L.
This yields∑

e′′∈P ′
ae′′ +

∑
e′′ chord

of P ′

ae′′

+
∑

e′′=u′v′:
u′ belongs to C,

v′ 6=v belongs to P ′

ae′′ +
∑

e′′∈FC,v

ae′′ = 0 (89)

and thus ∑
1≤i≤k

afi =
∑

e′′∈FC,v

ae′′ = 0, (90)

as all other terms vanish (apply the induction hypoth-
esis to all u′v′ ∈ FGG′ where u′ belongs to C and
v′ 6= v belongs to P ′). Let m be the highest index
such that the endpoint of fm appears before the end-
point of P ′ on C. Now, for any i with 1 ≤ i ≤ m, pick
an edge e′′ ∈ C between the endpoint of fi and the
endpoint of fi+1 and before the endpoint of P ′ on C.
Define x ∈ {0, 1}E′ by

xg =



0 if g ∈ C \ {e, e′′}
0 if g ∈ P ′ or g is a chord of P ′

0 if g = u′v′ where
u′ appears before endpoint of P ′ on C,
v′ 6= v belongs to P ′

0 if g = fj ∀j > i

1 else.
(91)

Then, it holds that x ∈ SGG′(e, C) ⊆ S and thus
y − x ∈ L. This yields, after removing all zero terms

(apply the induction hypothesis once more),∑
i+1≤j≤k

afj = 0. (92)

Together with (90), we obtain∑
1≤j≤i

afi = 0. (93)

Applying this argument repeatedly for i = 1 to i = m,
we conclude af1 = . . . = afm = 0. Similarly, we
obtain afk = afk−1

= . . . = afm = 0, by reversing
the direction of traversal of C and employing the same
reasoning.

(v) Finally, suppose neither u nor v belong to the cycle
C, but every uv-path in G shares at least one node
with C. Let P ′ be such a uv-path. Define the vector
x ∈ {0, 1}E′ by

xe′′ =



0 if e′′ ∈ C
0 if e′′ = e′

0 if e′′ ∈ P ′ or e′′ is a chord of P ′

0 if e′′ = u′v′ where u′ belongs to C,
v′ belongs to P ′

1 else.
(94)

It holds that x ∈ SGG′(e, C) ⊆ S and thus y − x ∈ L.
This gives

ae′ +
∑
e′′∈P ′

ae′′ +
∑

e′′ chord
of P ′

ae′′ +
∑

e′′=u′v′:
u′ belongs to C,
v′ belongs to P ′

ae′′ = 0.

(95)

We argue inductively over the level function `(e′). If
`(e′) = 1, then P ′ does not have any chords and our
consideration in cases (i)–(iv) yield that all terms ex-
cept ae′ vanish. If `(e′) > 1, then we additionally
employ the induction hypothesis to achieve the same
result. Hence, it holds that ae′ = 0 as well.

The proof of sufficiency in the second assertion is com-
pletely analogous (replace C by P ∪ {f} and e by f ). The
chosen multicuts remain valid, because e = f is the only
edge in the cycle that is not contained in E.
Proposition 1 For every connected graph G = (V,E), ev-
ery graph G′ = (V,E′) with E ⊆ E′, every vw ∈ FGG′
and every C ∈ vw-cuts(G), the following holds:

(a) Every x ∈ SGG′(vw,C) defines a decomposition of
G into (vw,C)-connected components. That is, every
maximal component of the graph (V, {e ∈ E|xe = 0})
is (vw,C)-connected. At most one of these is properly
(vw,C)-connected. It exists iff xvw = 0.
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(b) For every (vw,C)-connected component (V ∗, E∗) of
G, the x ∈ {0, 1}E′ such that ∀rs ∈ E′(xrs = 0 ⇔
r ∈ V ∗ ∧ s ∈ V ∗) is such that x ∈ SGG′(vw,C).

Proof of Proposition 1 a) Let x ∈ SGG′(vw,C) arbitrary.
Let E0 := {e ∈ E|xe = 0} and let G0 := (V,E0).

If xvw = 1 then ∀e ∈ C : xe = 1, by (35). Thus, every
component of G0 is improperly (vw,C)-connected.

If xvw = 0 then

∃e ∈ C(xe = 0 ∧ ∀e′ ∈ C \ {e}(xe′ = 1)) (96)

by (35). Let (V ∗, E∗) the maximal component of G0 with

e ∈ E∗ . (97)

Clearly:

∀e′ ∈ C \ {e} : e′ /∈ E∗ (98)

by (96) and definition of G0. There does not exist a C ′ ∈
vw-cuts(G) with xC′ = 1, because this would imply xvw =
1, by (6). Thus, there exists a P ∈ vw-paths(G) with
xP = 0, as G is connected. Any such path P has e ∈ P , as
P ∩ C 6= ∅ and C ∩ E0 = {e} and P ⊆ E0. Thus:

v ∈ V ∗ ∧ w ∈ V ∗ (99)

by (97). (V ∗, E∗) is properly (vw,C)-connected, by (97),
(98) and (99). Any other component of G0 does not cross
the cut, by (96), (97) and definition of G0, and is thus im-
properly (vw,C)-connected.

b) We have

∀st ∈ E : xst = 0⇔ st ∈ E∗ (100)

by the following argument:

• If st ∈ E∗, then s ∈ V ∗ ∧ t ∈ V ∗, as (V ∗, E∗) is a
graph. Thus, xst = 0, by definition of x.

• If st /∈ E∗ then s /∈ V ∗ ∨ t /∈ V ∗, as (V ∗, E∗) is a
component of G. Thus, xst = 1, by definition of x.

Consider the decomposition of G into (V ∗, E∗) and single-
ton components. E1 := {e ∈ E|xe = 1} is the set of edges
that straddle distinct components of this decomposition, by
(100). Therefore, E1 is a multicut of G, by Lemma 2. Thus,
(4) holds, by Lemma 3.

For any st ∈ FGG′ and any P ∈ st-paths(G), distinguish
two cases:

• If P ⊆ E∗, then s ∈ V ∗ ∧ t ∈ V ∗, as (V ∗, E∗) is a
graph. Thus, xst = 0, by definition of x. Moreover,
xP = 0, by (100). Hence, (5) evaluates to 0 = 0.

• Otherwise, there exists an e ∈ P such that e /∈ E∗.
Therefore, xe = 1, by (100). Thus, (5) holds, as the
r.h.s. is at least 1.

For any st ∈ FGG′ and any C ′ ∈ st-cuts(G), distinguish
two cases:

• If C ′ ∩ E∗ = ∅ then s /∈ V ∗ ∨ t /∈ V ∗. Therefore,
xst = 1, by definition of x. Moreover, xC′ = 1, by
(100). Thus, (6) evaluates to 0 = 0.

• Otherwise, there exists an e ∈ C ′ such that e ∈ E∗.
Therefore, xe = 0, by (100). Thus, (6) holds, as the
r.h.s. is at least 1.

Proof of Theorem 11 Assume that C1 does not hold (as in
Fig. 4a). Then, there exists an e ∈ C such that no (vw,C)-
connected component of G contains e. Thus, for all x ∈
SGG′(vw,C):

xe = 1 (101)

by Proposition 1. Now, dim ΣGG′(vw,C) ≤ |E′| − 2, by
(35) and (101). Thus, ΣGG′(vw,C) is not a facet of ΞGG′ ,
by Theorem 7.

Assume that C2 does not hold. Then, for any e ∈ C there
exists some number m such that for all (vw,C)-connected
components (V ∗, E∗) with e ∈ E∗ it holds that |F∩FV ∗ | =
m. Thus, we can write

C =

|F |⋃
m=0

C(F,m), (102)

where C(F,m) :=
{
e ∈ C | |F ∩ FV ∗ | = m ∀ (vw,C)-

connected (V ∗, E∗) with e ∈ E∗
}

. It follows that for all
x ∈ SGG′(vw,C) we have the equality

|F |∑
m=0

m
∑

e∈C(F,m)

(1− xe) =
∑
f ′∈F

(1− xf ′) (103)

by the following argument:

• If xe = 1 for all e ∈ C, then xf ′ = 1 for all
v′w′ = f ′ ∈ F , since C is also a v′w′-cut. Thus,
(103) evaluates to 0 = 0.

• Otherwise there exists precisely one edge e ∈ C such
that xe = 0. Let m be such that e ∈ C(F,m). By
definition of C(F,m), there are exactly m edges f ′ ∈
F with xf ′ = 0. Thus, (103) evaluates to m = m.

Assume that condition C3 does not hold. Then there exists
an f ′ ∈ FGG′(vw,C), a set ∅ 6= F ⊆ FGG′(vw,C) and
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a)

v6 = w′
v5

v4

v3

v2

v′ = v1

e5

e4

e3

e2

e1

V ′

b)

v3v2

v1v0
e0

e3
e2

e1

V ′

Figure 3. Depicted are the nodes (in black) and edges (in green)
on a path (a) and on a cycle (b), respectively. Nodes in the set
V ′ are are either in V ∗ (filled circle) or not in V ∗ (open circle).
Consequently, pairs of consecutive edges are either cut (dotted
lines) or not cut (solid lines).

some k ∈ N such that for all (vw,C) connected components
(V ∗, E∗) and (V ∗∗, E∗∗) with f ′ ∈ FV ∗ and f ′ /∈ FV ∗∗ it
holds that

|F ∩ FV ∗ | = k and |F ∩ FV ∗∗ | = 0. (104)

In other words, for all x ∈ SGG′(vw,C) it holds that xf ′ =
0 iff there are exactly k edges f ′′ ∈ F such that xf ′′ = 0.
Similarly, it holds that xf ′ = 1 iff for all f ′′ ∈ F we
have xf ′′ = 1. Therefore, all x ∈ SGG′(vw,C) satisfy the
additional equality

k(1− xf ′) =
∑
f ′′∈F

1− xf ′′ . (105)

Assume that C4 does not hold. Then, there exist v′ ∈
V (v, C) and w′ ∈ V (w,C) and a v′w′-path P = (VP , EP )
in G′(vw,C) such that every properly (vw,C)-connected
component (V ∗, E∗) of G holds:

(v′ ∈ V ∗ ∧ V (w,C) ∩ VP ⊆ V ∗) (106)
∨ (w′ ∈ V ∗ ∧ V (v, C) ∩ VP ⊆ V ∗) . (107)

Let v1 < · · · < v|VP | the linear order of the nodes VP and
let e1 < · · · < e|EP | the linear order of the edges EP in the
v′w′-path P . Now, for all x ∈ SGG′(vw,C):

xvw =

|EP |∑
j=1

(−1)j+1xej (108)

by the following argument: |EP | is odd, as the path P
alternates between the set V (v, C) where it begins and the
set V (w,C) where it ends. Thus,

|EP |∑
j=1

(−1)j+1xej = xe1 −
(|EP |−1)/2∑

j=1

(xe2j − xe2j+1
) . (109)

Distinguish two cases:

• If xvw = 1, then xEP
= 1, by (35) and (6). Thus,

(108) evaluates to 1 = 1, by (109).

• If xvw = 0, the decomposition of G defined by x con-
tains precisely one properly (vw,C)-connected com-
ponent (V ∗, E∗) of G, by Proposition 1. Without loss
of generality, (106) holds. Otherwise, that is, if (107)
holds, exchange v and w.

Consider the nodes VP as depicted in Fig. 3a: v1 =
v′ ∈ V ∗, by (106). For every even j, vj ∈ V (w,C),
by definition of P . Thus:

∀j ∈ {1, . . . , (|EP |+ 1)/2} : v2j ∈ V ∗ (110)

by (106).

Consider the edges EP as depicted in Fig. 3a: e1 =
v1v2 ∈ E∗, as v1 ∈ V ∗ and v2 ∈ V ∗ and as (V ∗, E∗)
is a component of G. Thus,

xe1 = 0 (111)

by Proposition 1. For every j ∈ {1, . . . , (|EP |−1)/2},
distinguish two cases:

– If v2j+1 ∈ V ∗, then e2j = v2jv2j+1 ∈ E∗ and
e2j+1 = v2j+1v2j+2 ∈ E∗, because v2j ∈ V ∗

and v2j+2 ∈ V ∗, by (110), and because (V ∗, E∗)
is a component of G. Thus:

xe2j = 0 ∧ xe2j+1
= 0 . (112)

– If v2j+1 /∈ V ∗, then e2j = v2jv2j+1 and e2j+1 =
v2j+1v2j+2 straddle distinct components of the
decomposition of G defined by x, because v2j ∈
V ∗ and v2j+2 ∈ V ∗, by (110). Thus:

xe2j = 1 ∧ xe2j+1
= 1 . (113)

In any case:

∀j ∈ {1, . . . , (|EP | − 1)/2} : xe2j − xe2j+1
= 0 .

(114)

Thus, (108) evaluates to 0 = 0, by (109), (111), (114).

Assume that C5 does not hold. Then, there exists a cy-
cle Y = (VY , EY ) in G′(vw,C) such that every properly
(vw,C)-connected component (V ∗, E∗) of G holds:

VY ∩ V (v, C) ⊆ V ∗ (115)
∨ VY ∩ V (w,C) ⊆ V ∗ . (116)

Let v0 < · · · < v|VY |−1 an order on VY such that v0 ∈
V (v, C) and, for all j ∈ {0, . . . , |EY | − 1}:

ej := {vj , vj+1 mod |EY |} ∈ EY . (117)
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Now, for all x ∈ SGG′(vw,C):

0 =

|EY |−1∑
j=0

(−1)jxej (118)

by the following argument: |EY | is even, as the cycle Y
alternates between the sets V (v, C) and V (w,C). Thus,

|EY |−1∑
j=0

(−1)jxej =

(|EY |−2)/2∑
j=0

(xe2j − xe2j+1) . (119)

Distinguish two cases:

• If xvw = 1, then xEY
= 1, by (35) and (6). Thus,

(118) evaluates to 0 = 0, by (119).

• If xvw = 0, the decomposition of G defined by x con-
tains precisely one properly (vw,C)-connected com-
ponent (V ∗, E∗) of G, by Proposition 1. Without loss
of generality, (115) holds. Otherwise, that is, if (116)
holds, exchange v and w.

Consider the nodes VY as depicted in Fig. 3b: For
every even j, vj ∈ V (v, C), by definition of Y and the
order. Thus:

∀j ∈ {0, . . . , (|EY | − 2)/2} : v2j ∈ V ∗ (120)

by (115).

Consider the edges EY as depicted in Fig. 3b: For ev-
ery j ∈ {0, . . . , (|EY | − 2)/2}, distinguish two cases:

– If v2j+1 ∈ V ∗, then e2j = v2jv2j+1 ∈ E∗ and
e2j+1 = v2j+1v2j+2 mod |EY | ∈ E∗, because
v2j ∈ V ∗ and v2j+2 mod |EY | ∈ V ∗, by (120),
and because (V ∗, E∗) is a component ofG. Thus:

xe2j = 0 ∧ xe2j+1
= 0 . (121)

– If v2j+1 /∈ V ∗, then e2j = v2jv2j+1 and
e2j+1 = v2j+1v2j+2 mod |EY | straddle distinct
components of the decomposition ofG defined by
x, because v2j ∈ V ∗ and v2j+2 mod |EY | ∈ V ∗,
by (120). Thus:

xe2j = 1 ∧ xe2j+1
= 1 . (122)

In any case:

∀j ∈ {0, . . . , (|EY | − 2)/2} : xe2j − xe2j+1
= 0 .

(123)

Thus, (118) evaluates to 0 = 0, by (119) and (123).
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Figure 4. Depicted above are graphs G = (V,E) (in black) and G′ = (V,E′) with E ⊆ E′ (E′ in green), distinct nodes v, w ∈ V and
a vw-cut C of G (as dotted lines). In any of the above examples, one condition of Theorem 11 is violated and thus, ΣGG′(vw,C) is
not a facet of the lifted multicut polytope ΞGG′ . a) Condition C1 is violated for e. b) Condition C2 is violated as r and s are connected
in any (vw,C)-connected component. c) Condition C2 is violated as r and s are not connected in any (vw,C)-connected component.
d) Condition C2 is violated. Specifically, C({f ′}, 1) = {e0} and C({f ′}, 0) = {e1} in the proof of Theorem 11. e) Condition C2 is
violated for F = {f1, f2}. f) Condition C3 is violated. g) Condition C3 is violated for F = {f1, f2} and k = 1. h) Condition C4 is
violated for the v′w′-path f1f2f3. i) Condition C4 is violated for the v′w′-path ef1f2. j) Condition C5 is violated for the cycle f1f2f3f4.
k) Condition C5 is violated for the cycle ef1f2f3.


