DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

A. Supplementary Materials

A.1. The Reinforcement Learning Paradigm

The reinforcement learning (RL) paradigm consists of an agent re-
ceiving a sequence of observations s§ which are some function of
environment states s; € S and may be accompanied by rewards
ri+1 € R conditional on the actions a; € A, chosen at each time
step ¢ (Sutton & Barto, 1998). We assume that these interactions
can be modelled as a Markov Decision Process (MDP) (Puterman,
1994) defined as a tuple D = (S, A, T, R,7). T = p(s|st,ar)
is a transition function that models the distribution of all possible
next states given action a. is taken in state s; for all s; € S and

a: € A. Each transition s; 2% 5,41 may be accompanied by a
reward signal r¢41 (s,g7 a, 5t+1)- The goal of the agent is to learn
a policy 7(a¢|st), a probability distribution over actions a: € A,
that maximises the expected return i.e. the discounted sum of fu-
ture rewards Ry = E[Zf:_lt Y " Yripr]. T is the time step at
which each episode ends, and v € [0,1) is the discount factor
that progressively down-weights future rewards. Given a policy
m(als), one can define the value function V;(s) = E[R¢|s: =
s, 7], which is the expected return from state s following policy 7.
The action-value function Q«(s,a) = E[R:¢|s: = s,a: = a, 7]
is the expected return for taking action « in state s at time ¢, and
then following policy 7 from time ¢ + 1 onward.

A.2. Further task details
A.2.1. DEEPMIND LAB

As described in Sec 3.1, in each source episode of DeepMind Lab
the agent was presented with one of three possible room/object
type conjunctions, chosen at random. These are marked Dgs in
Fig 2. The setup was a seek-avoid style task, where one of the
two object types in the room gave a reward of +1 and the other
gave a reward of -1. The agent was allowed to pick up objects for
60 seconds after which the episode would terminate and a new one
would begin; if the agent was able to pick up all the ‘good’ objects
in less than 60 seconds, a new episode was begun immediately.
The agent was spawned in a random location in the room at the
start of each new episode.

During transfer, the agent was placed into the held out conjunction
of object types and room background; see Dt in Fig 2.

Visual pre-training was performed in other conjunctions of object
type and room background denoted Dy in Fig 2.

The observation size of frames in the DeepMind Lab task was
84x84x3 (HxWxC().

A.2.2. MuJoCo/JACcO ARM EXPERIMENTS

As described in Sec 3.2, the source task consisted of an agent
learning to control a simulated arm in order to reach toward an
object. A shaping reward was used, with a maximum value of
1 when the centre of the object fell between the pinch and grip
sites of the end effector, or within a 10cm distance of the two.
Distances on the x and y dimensions counted double compared to
distances on the z dimension.

During each episode the object was placed at a random drop point
within a 40x40cm area, and the arm was set to a random ini-
tial start position high above the work-space, independent of the
object’s position. Each episode lasted for 150 steps, or 7.5 sec-
onds, with a control step of 50ms. Observations s¢; were sampled

randomly across episodes. Overall, 4 million frames of dimen-
sions 64x64x3 (HxWxC') were used for this stage of the curricu-
lum. For each episode the camera position and orientation were
randomly sampled from an isotropic normal distribution centred
around the approximate position and orientation of the real cam-
era, with standard deviation 0.01. No precise measurements were
used to match the two. Work-space table colour was sampled
uniformly between —5% and +5% around the midpoint, inde-
pendently for each RGB channel; object colours were sampled
uniformly at random in RGB space, rejecting colours which fell
within a ball around 10 held-out intensities (radius 10% of range);
the latter were only used for simulated transfer experiments, i.e.
in Dr in the sim2sim experiments. Additionally, Gaussian noise
with standard deviation 0.01 was added to the observations s7 in
the sim2sim task.

For the real Jaco arm and its MuJoCo simulation counterpart, each
of the nine joints could independently take 11 different actions (a
linear discretisation of the continuous velocity action space). In
simulation Gaussian noise with standard deviation 0.1 was added
to each discrete velocity output; delays in the real setup between
observations and action execution were simulated by randomly
mixing velocity outputs from two previous steps instead of emit-
ting the last output directly. Speed ranges were between —50%
and 50% of the Jaco arm’s top speed on joints 1 through 6 start-
ing at the base, while the fingers could use a full range. For safety
reasons the speed ranges have been reduced by a factor of 0.3
while evaluating agents on the Jaco arm, without significant per-
formance degradation.

A.3. Vision model details

A.3.1. DENOISING AUTOENCODER FOR 3-VAE

A denoising autoencoder (DAE) was used as a model to provide
the feature space for the 5-VAE reconstruction loss to be com-
puted over (for motivation, see Sec. 2.3.1). The DAE was trained
with occlusion-style masking noise in the vein of (Pathak et al.,
2016), with the aim for the DAE to learn a semantic representation
of the input frames. Concretely, two values were independently
sampled from U[0, W] and two from U[0, H] where W and H
were the width and height of the input frames. These four values
determined the corners of the rectangular mask applied; all pixels
that fell within the mask were set to zero.

The DAE architecture consisted of four convolutional layers, each
with kernel size 4 and stride 2 in both the height and width di-
mensions. The number of filters learnt for each layer was {32,
32, 64, 64} respectively. The bottleneck layer consisted of a fully
connected layer of size 100 neurons. This was followed by four
deconvolutional layers, again with kernel sizes 4, strides 2, and
{64, 64, 32, 32} filters. The padding algorithm used was ‘SAME’
in TensorFlow (Abadi et al., 2015). ReLU non-linearities were
used throughout.

The model was trained with loss given by the L2 distance of the
outputs from the original, un-noised inputs. The optimiser used
was Adam (Kingma & Ba, 2014) with a learning rate of le-3.
A.3.2. B-VAE WITH PERCEPTUAL SIMILARITY LOSS

After training a DAE, as detailed in the previous section®, a

B-VAEp 4 was trained with perceptual similarity loss given by

°In principle, the S-VAEpag could also have been trained
end-to-end in one pass, but we did not experiment with this.

DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

Eq. 2, repeated here:

L6, ¢3%,2,) =Eqy a0 |17 (%) = I3
— B Dk1(ge(2|x)lp(z)) 3)

Specifically, the input was passed through the 8-VAE and a sam-
pled’ reconstruction was passed through the pre-trained DAE up
to a designated layer. The L2 distance of this representation from
the representation of the original input passed through the same
layers of the DAE was then computed, and this formed the train-
ing loss for the S-VAE part of the 3-VAEpar °. The DAE
weights remained frozen throughout.

The S-VAE architecture consisted of an encoder of four convolu-
tional layers, each with kernel size 4, and stride 2 in the height
and width dimensions. The number of filters learnt for each layer
was {32, 32, 64, 64} respectively. This was followed by a fully
connected layer of size 256 neurons. The latent layer comprised
64 neurons parametrising 32 (marginally) independent Gaussian
distributions. The decoder architecture was simply the reverse of
the encoder, utilising deconvolutional layers. The decoder used
was Gaussian, so that the number of output channels was 2C,
where C' was the number of channels that the input frames had.
The padding algorithm used was ‘SAME’ in TensorFlow. ReLU
non-linearities were used throughout.

The model was trained with the loss given by Eq. 3. Specifically,
the disentangled model used for DARLA was trained with a 3 hy-
perparameter value of 1 and the layer of the DAE used to compute
the perceptual similarity loss was the last deconvolutional layer.
The entangled model used for DARLAgNT was trained with a 3
hyperparameter value of 0.1 with the last deconvolutional layer of
the DAE was used to compute the perceptual similarity loss.

The optimiser used was Adam with a learning rate of le-4.

A.3.3. B-VAE

For the MuJoCo/Jaco tasks, a standard 5-VAE was used rather
than the 8-VAEp 4 used for DeepMind Lab. The architecture of
the VAE encoder, decoder and the latent size were exactly as de-
scribed in the previous section A.3.2. S for the the disentangled (-
VAE in DARLA was 175. (3 for the entangled model DARLAgNT
was 1, corresponding to the standard VAE of (Kingma & Welling,
2014).

The optimizer used was Adam with a learning rate of 1e-4.

A.3.4. DENOISING AUTOENCODER FOR BASELINE

For the baseline model DARLApag, we trained a denoising au-
toencoder with occlusion-style masking noise as described in Ap-
pendix Section A.3.1. The architecture used matched that exactly
of the 8-VAE described in Appendix Section A.3.2 - however, all
stochastic nodes were replaced with deterministic neurons.

"It is more typical to use the mean of the reconstruction dis-
tribution, but this does not induce any pressure on the Gaussians
parametrising the decoder to reduce their variances. Hence full
samples were used instead.

8The representations were taken after passing through the
layer but before passing through the following non-linearity. We
also briefly experimented with taking the L2 loss post-activation
but did not find a significant difference.

The optimizer used was Adam with a learning rate of 1e-4.

A.4. Reinforcement Learning Algorithm Details

A.4.1. DEEPMIND LAB

The action space in the DeepMind Lab task consisted of 8 discrete
actions.

DQN: in DQN, the convolutional (or ‘vision’) part of the Q-net
was replaced with the encoder of the 5-VAEpag from stage 1
and frozen. DQN takes four consecutive frames as input in order
to capture some aspect of environment dynamics in the agent’s
state. In order to match this in our setup with a pre-trained vision
stack Fu, we passed each observation frame s{; 4, through the
pre-trained model s{; 43 = Fu(s{;.4;) and then concatenated
the outputs together to form the k-dimensional (where k& = 4|s*|)
input to the policy network. In this case the size of s* was 64 for
DARLA as well as DARLAENT, DARLADAE and DARLAFT

On top of the frozen convolutional stack, two ‘policy’ layers of
512 neurons each were used, with a final linear layer of 8 neurons
corresponding to the size of the action space in the DeepMind
Lab task. ReLU non-linearities were used throughout. All other
hyperparameters were as reported in (Mnih et al., 2015).

A3C: in A3C, as with DQN, the convolutional part of the net-
work that is shared between the policy net and the value net was
replaced with the encoder of the 5-VAEpag in DeepMind Lab
tasks. All other hyperparameters were as reported in (Mnih et al.,
2016).

Episodic Control: for the Episodic Controller-based DARLA we
used mostly the same hyperparameters as in the original paper by
(Blundell et al., 2016). We explored the following hyperparameter
settings: number of nearest neighbours € {10, 50}, return hori-
zon € {100,400, 800, 1800,500000}, kernel type € {inverse,
gaussian}, kernel width € {le — 6,1e — 5,1e — 4,1e — 3, 1le —
2,1e — 1,0.5,0.99} and we tried training EC with and without
Peng’s Q(A) (Peng, 1993). In practice we found that none of the
explored hyperparameter choices significantly influenced the re-
sults of our experiments. The final hyperparameters used for all
experiments reported in the paper were the following: number of
nearest neighbours: 10, return horizon: 400, kernel type: inverse,
kernel width: 1e-6 and no Peng’s Q(\) (Peng, 1993).

UNREAL: We used a vanilla version of UNREAL, with parame-
ters as reported in (Jaderberg et al., 2017).

A.4.2. MuJoCo/JACO ARM EXPERIMENTS

For the real Jaco arm and its MuJoCo simulation, each of the nine
joints could independently take 11 different actions (a linear dis-
cretisation of the continuous velocity action space). Therefore the
action space size was 99.

DARLA for MuJoCo/Jaco was based on feedforward A3C (Mnih
et al., 2016). We closely followed the simulation training setup of
(Rusu et al., 2016) for feed-forward networks using raw visual-
input only. In place of the usual conv-stack, however, we used the
encoder of the 3-VAE as described in Appendix A.3.3. This was
followed by a linear layer with 512 units, a ReLU non-linearity
and a collection of 9 linear and softmax layers for the 9 indepen-
dent policy outputs, as well as a single value output layer that
outputted the value function.

DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

Transfer metric score:
0.457 0.196 0.065

e
R

-m T mae 7

Figure 6. Traversals of the latent corresponding to room back-
ground for models with different transfer metric scores (shown
top). Note that in the entangled model, many other objects appear
and blue hat changes shape in addition to the background chang-
ing. For the model with middling transfer score, both the object
type and background alter; whereas for the disentangled model,
very little apart from the background changes.

A.5. Disentanglement Evaluation

A.5.1. VISUAL HEURISTIC DETAILS

In order to choose the optimal value of 3 for the 5-VAE -DAE
models and evaluate the fitness of the representations s7; learnt in
stage 1 of our pipeline (in terms of disentanglement achieved), we
used the visual inspection heuristic described in (Higgins et al.,
2017). The heuristic involved clustering trained -VAE based
models based on the number of informative latents (estimated as
the number of latents z; with average inferred standard deviation
below 0.75). For each cluster we examined the degree of learnt
disentanglement by running inference on a number of seed im-
ages, then traversing each latent unit z(;; one at a time over three
standard deviations away from its average inferred mean while
keeping all other latents zy\;} fixed to their inferred values. This
allowed us to visually examine whether each individual latent unit
zi learnt to control a single interpretable factor of variation in the
data. A similar heuristic has been the de rigueur method for ex-
hibiting disentanglement in the disentanglement literature (Chen
et al., 2016; Kulkarni et al., 2015).

A.5.2. TRANSFER METRIC DETAILS

In the case of DeepMind Lab, we were able to use the ground truth
labels corresponding to the two factors of variation of the object
type and the background to design a proxy to the disentanglement
metric proposed in (Higgins et al., 2017). The procedure used

consisted of the following steps:

1) Train the model under consideration on observations sg; to
learn Fy, as described in stage 1 of the DARLA pipeline.

2) Learn a linear model £ : S5, — M x N from the represen-
tations syy = Fv(sy,), where M € {0,1} corresponds to the
set of possible rooms and N € {0, 1, 2, 3} corresponds to the set
of possible objects’. Therefore we are learning a low-VC dimen-
sion classifier to predict the room and the object class from the
latent representation of the model. Crucially, the linear model £
is trained on only a subset of the Cartesian product M x N e.g. on
{{0,0},{0,3},{1, 1}, {1,2}}. In practice, we utilised a softmax
classifier each for M and N and trained this using backpropaga-
tion with a cross-entropy loss, keeping the unsupervised model
(and therefore JF7,) fixed.

3) The trained linear model £’s accuracy is evaluated on the held
out subset of the Cartesian product M x N.

Although the above procedure only measures disentangling up to
linearity, and only does so for the latents of object type and room
background, we nevertheless found that the metric was highly cor-
related with disentanglement as determined via visual inspection
(see Fig. 6).

A.6. Background on RL Algorithms

In this Appendix, we provide background on the different RL al-
gorithms that the DARLA framework was tested on in this paper.

A.6.1. DQN

(DQN) (Mnih et al., 2015) is a variant of the Q-learning algorithm
(Watkins, 1989) that utilises deep learning. It uses a neural net-
work to parametrise an approximation for the action-value func-
tion Q(s, a; 6) using parameters 0. These parameters are updated
by minimising the mean-squared error of a 1-step lookahead loss
Lo = E[(ri+ymazsQ(s',a’;07) — Q(s,a;0))*], where
0~ are parameters corresponding to a frozen network and opti-
misation is performed with respect to 6, with 6~ being synced to
0 at regular intervals.

A.6.2. A3C

Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016)
is an asynchronous implementation of the advantage actor-critic
paradigm (Sutton & Barto, 1998; Degris & Sutton, 2012), where
separate threads run in parallel and perform updates to shared pa-
rameters. The different threads each hold their own instance of
the environment and have different exploration policies, thereby
decorrelating parameter updates without the need for experience
replay.

A3C uses neural networks to approximate both policy 7 (als; 0)
and value V;(s;0) functions using parameters 6 using n-
step look-ahead loss (Peng & Williams, 1996). The algo-
rithm is trained using an advantage actor-critic loss func-
tion with an entropy regularisation penalty: Lazc =~
Lvr + Lx — Esur[aH(n(als;0))], where H is entropy.
The parameter updates are performed after every tmqz ac-
tions or when a terminal state is reached. Lvr =

9For the purposes of this metric, we utilised rooms with only
single objects, which we denote by the subscript V' e.g. the obser-
vation set SY,.

DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

Esnr {(Rtmrn "V (st4n+150) = V(s:30))°] and L. =
Esr [log m(als;0)(Q7 (s,a;0) — V7 (s;6))]. Unlike DQN,
A3C uses an LSTM core to encode its history and therefore has
a longer term memory permitting it to perform better in partially
observed environments. In the version of A3C used in this pa-
per for the DeepMind Lab task, the policy net additionally takes
the last action a;—; and last reward r;_1 as inputs along with the
observation s¢, as introduced in (Jaderberg et al., 2017).

A.6.3. UNREAL

The UNREAL agent (Jaderberg et al., 2017) takes as a base an
LSTM A3C agent (Mnih et al., 2016) and augments it with a
number of unsupervised auxiliary tasks that make use of the rich
perceptual data available to the agent besides the (sometimes very
sparse) extrinsic reward signals. This auxiliary learning tends to
improve the representation learnt by the agent. While training the
base agent, its observations, rewards, and actions are stored in a
replay buffer, which is used by the auxiliary learning tasks. The
tasks include: 1) pixel control the agent learns how to control the
environment by training auxiliary policies to maximally change
pixel intensities in different parts of the input; 2) reward predic-
tion - given a replay buffer of observations within a short time
period of an extrinsic reward, the agent has to predict the reward
obtained during the next unobserved timestep using a sequence of
three preceding steps; 3) value function replay - extra training of
the value function to promote faster value iteration.

A.6.4. ErisoDpIC CONTROL

In its simplest form EC is a lookup table of states and actions
denoted as Q¥ (s,a). In each state EC picks the action with
the highest Qzc value. At the end of each episode QZ (s, a)
is set to Ry if (s¢,a:) ¢ QFC, where Ry is the discounted re-
turn. Otherwise Q%% (s, a) = max {QEc(s,a),Rt}. In order
to generalise its policy to novel states that are not in Q¥¢, EC
uses a non-parametric nearest neighbours search Q/E\C (s,a) =
L3k QF9(s',a), where s',i = 1,..., k are k states with the
smallest distance to the novel state s. Like DQN, EC takes a con-
catenation of four frames as input.

The EC algorithm is proposed as a model of fast hippocampal
instance-based learning in the brain (Marr, 1971; Sutherland &
Rudy, 1989), while the deep RL algorithms described above are
more analogous to slow cortical learning that relies on generalised
statistical summaries of the input distribution (McClelland et al.,
1995; Norman & O’Reilly, 2003; Tulving et al., 1991).

A.7. Source Task Performance Results

The focus of this paper is primarily on zero-shot domain adapta-
tion performance. However, it is also interesting to analyse the
effect of the DARLA approach on source domain policy perfor-
mance. In order to compare the models’ behaviour on the source
task, we examined the training curves (see Figures 7-10) and
noted in particular their:

1. Asymptotic task performance, i.e. the rewards per episode
at the point where mg has converged for the agent under
consideration.

2. Data efficiency, i.e. how quickly the training curve was able
to achieve convergence.

20 DQN
—— DARLA
—— DARLA_ENT
—— DARLA_DAE
—— DQN
DARLA_FT

Average reward

1 2 3 4 5
Environment steps le6

Figure 7. Source task training curves for DQN. Curves show av-
erage and standard deviation over 20 random seeds.

A3C (DEEPMIND LAB)

/| — DARLA
s eyl

25 A AR —— DARLA_ENT
3 N —— DARLA_DAE
220 — A3C
Ty DARLA_FT
= UNREAL
Tis
©
2
o
¢ 10
e
[
>
< 5

02 04 06 08 1.0 1.2 14 16
Environment steps le7

Figure 8. Source task performance training curves for A3C and
UNREAL. DARLA shows accelerated learning of the task com-
pared to other architectures. Results show average and standard
deviation over 20 random seeds, each using 16 workers.

20 Episodic Controller

—— DARLA
—— DARLA_ENT
—— DARLA_DAE

15 - EC

10

Average reward

v

1 2 3 4 5
Environment steps le6

Figure 9. Source task training curves for EC. Results show aver-
age and standard deviation over 20 random seeds.

We note the following consistent trends across the results:

1. Using DARLA provided an initial boost in learning perfor-
mance, which depended on the degree of disentanglement of
the representation. This was particularly observable in A3C,

DARLA: Improving Zero-Shot Transfer in Reinforcement Learning

A3C (JACO)

120

DARLA
DARLA_ENT
DARLA_DAE
A3C
DARLA_FT

Average reward

0 1 2 3 4 5 6 7 8 9
environment steps le6

Figure 10. Training curves for various baselines on the source
MuJoCo reaching task

see Fig. 8.

2. Baseline algorithms where F could be fine-tuned to the
source task were able to achieve higher asymptotic perfor-
mance. This was particularly notable on DQN and A3C (see
Figs. 7 and 8) in DeepMind Lab. However, in both those
cases, DARLA was able to learn very reasonable policies
on the source task which were on the order of 20% lower
than the fine-tuned models — arguably a worthwhile sacri-
fice for a subsequent median 270% improvement in target
domain performance noted in the main text.

3. Allowing DARLA to fine-tune its vision module
(DARLAgt) boosted its source task learning speed,
and allowed the agent to asymptote at the same level as
the baseline algorithms. As discussed in the main text, this
comes at the cost of significantly reduced domain transfer
performance on A3C. For DQN, however, finetuning
appears to offer the best of both worlds.

4. Perhaps most relevantly for this paper, even if solely exam-
ining source task performance, DARLA outperforms both
DARLAgntT and DARLApag on both asymptotic perfor-
mance and data efficiency — suggesting that disentangled
representations have wider applicability in RL beyond the
zero-shot domain adaptation that is the focus of this paper.

