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Abstract

Chemical space is so large that brute force
searches for new interesting molecules are in-
feasible. High-throughput virtual screening
via computer cluster simulations can speed up
the discovery process by collecting very large
amounts of data in parallel, e.g., up to hundreds
or thousands of parallel measurements. Bayesian
optimization (BO) can produce additional accel-
eration by sequentially identifying the most use-
ful simulations or experiments to be performed
next. However, current BO methods cannot scale
to the large numbers of parallel measurements
and the massive libraries of molecules currently
used in high-throughput screening. Here, we
propose a scalable solution based on a paral-
lel and distributed implementation of Thompson
sampling (PDTS). We show that, in small scale
problems, PDTS performs similarly as parallel
expected improvement (EI), a batch version of
the most widely used BO heuristic. Addition-
ally, in settings where parallel EI does not scale,
PDTS outperforms other scalable baselines such
as a greedy search, ε-greedy approaches and a
random search method. These results show that
PDTS is a successful solution for large-scale par-
allel BO.

1. Introduction
Chemical space is huge: it is estimated to contain over 1060

molecules. Among these, fewer than 100 million com-
pounds can be found in public repositories or databases
(Reymond et al., 2012). This discrepancy between known
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compounds and possible compounds indicates the potential
for discoverying many new compounds with highly desir-
able functionality (e.g., new energy materials, pharmaceu-
ticals, dyes, etc.). While the vast size of chemical space
makes this an enormous opportunity, it also presents a sig-
nificant difficulty in the identification of new relevant com-
pounds among the many unimportant ones. This challenge
is so great that any discovery process relying purely on the
combination of scientific intuition with trial and error ex-
perimentation is slow, tedious and in many cases infeasible.

To accelerate the search, high-throughput approaches can
be used in a combinatorial exploration of small specific
areas of chemical space (Rajan, 2008). These have led
to the development of high-throughput virtual screening
(Pyzer-Knapp et al., 2015; Gómez-Bombarelli et al., 2016)
in which large libraries of molecules are created and then
analyzed using theoretical and computational techniques,
typically by running a large number of parallel simulations
in a computer cluster. The objective is to reduce an initially
very large library of molecules to a small set of promising
leads for which expensive experimental evaluation is justi-
fied. However, even though these techniques only search
a tiny drop in the ocean of chemical space, they can result
in massive libraries whose magnitude exceeds traditional
computational capabilities. As a result, at present, there
is an urgent need to accelerate high-throughput screening
approaches.

Bayesian optimization (BO) (Jones et al., 1998) can speed
up the discovery process by using machine learning to
guide the search and make improved decisions about what
molecules to analyze next given the data collected so far.
However, current BO methods cannot scale to the large
number of parallel measurements and the massive libraries
of candidate molecules currently used in high-throughput
screening (Pyzer-Knapp et al., 2015). While there are BO
methods that allow parallel data collection, these methods
have typically been limited to tens of data points per batch
(Snoek et al., 2012; Shahriari et al., 2014; Gonzlez et al.,
2016). In contrast, high-throughput screening may allow
the simultaneous collection of thousands of data points via
large-scale parallel computation. This creates a need for
new scalable methods for parallel Bayesian optimization.
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Figure 1. Illustration of Thompson sampling and PDTS.

To address the above difficulty, we present here a scalable
solution for parallel Bayesian optimization based on a dis-
tributed implementation of the Thompson sampling heuris-
tic (Thompson, 1933; Chapelle & Li, 2011). We show that,
for the case of small batch sizes, the proposed parallel and
distributed Thompson sampling (PDTS) method performs
as well as a parallel implementation of expected improve-
ment (EI) (Snoek et al., 2012; Ginsbourger et al., 2011), the
most widely used Bayesian optimization heuristic. Parallel
EI selects the batch entries sequentially and so EI proposals
can’t be parallelized, which limits its scalability properties.
PDTS generates each batch of evaluation locations by se-
lecting the different batch entries independently and in par-
allel. Consequently, PDTS is highly scalable and applica-
ble to large batch sizes. We also evaluate the performance
of PDTS in several real-world high-throughput screening
experiments for material and drug discovery, where paral-
lel EI is infeasible. In these problems, PDTS outperforms
other scalable baselines such as a greedy search strategy,
ε-greedy approaches and a random search method. These
results indicate that PDTS is a successful solution for large-
scale parallel Bayesian optimization.

Algorithm 1 Sequential Thompson sampling

Input: initial data DI(1) = {(xi, yi)}i∈I(1)
for t = 1 to T do

Compute current posterior p(θ|DI(t))
Sample θ from p(θ|DI(t))
Select k ← argmaxj 6∈I(t)E[yj |xj ,θ]
Collect yk by evaluating f at xk
DI(t+1) ← DI(t) ∪ {(xk, yk)}

end for

2. BO and Thompson Sampling
Let us assume we have a large library of candidate
molecules M = {m1, . . . ,m|M|}. Our goal is to iden-
tify a small subset of elements {mi} ⊂ M for which the

f(mi) are as high as possible, with f being an expensive-
to-evaluate objective function. The objective f could be,
for example, an estimate of the power-conversion efficiency
of organic photovoltaics, as given by expensive quantum
mechanical simulations (Scharber et al., 2006), and we may
want to identify the top 1% elements inM according to this
score.

Bayesian optimization methods can be used to identify the
inputs that maximize an expensive objective function f by
performing only a reduced number of function evaluations.
For this, BO uses a model to make predictions for the value
of f at new inputs given data from previous evaluations.
The next point to evaluate is then chosen by maximizing an
acquisition function that quantifies the benefit of evaluating
the objective at a particular location.

Let x1, . . . ,x|M| be D-dimensional feature vectors for
the molecules in M and let DI = {(xi, yi) : i ∈ I} be a
dataset with information about past evaluations, where I
is a set with the indices of the molecules already evalu-
ated, xi is the feature vector for the i-th molecule in M
and yi = f(mi) is the result of evaluating the objective
function f on that molecule. We assume that the evalua-
tions of f are noise free, however, the methods described
here can be applied to the case in which the objective eval-
uations are corrupted with additive Gaussian noise. BO
typically uses a probabilistic model to describe how the yi
in DI are generated as a function of the corresponding fea-
tures xi and some model parameters θ, that is, the model
specifies p(yi|xi,θ). Given the data DI and a prior dis-
tribution p(θ), the model also specifies a posterior distri-
bution p(θ|DI) ∝ p(θ)

∏
i∈I p(yi|xi,θ). The predictive

distribution for any mj ∈M \ {mi : i ∈ I} is then given
by p(yj |xj ,DI) =

∫
p(yj |xj ,θ)p(θ|DI) dθ. BO methods

use this predictive distribution to compute an acquisition
function (AF) given by

α(xj |DI) = Ep(yj |xj ,DI) [U(yj |xj ,DI)] , (1)

where U(yj |xj ,DI) is the utility of obtaining value yj
when evaluating f at mj . Eq. (1) is then maximized with
respect to j 6∈ I to select the next molecule mj on which to
evaluate f . The most common choice for the utility is the
improvement: U(yj |xj ,DI) = max(0, yj − y?), where y?
is equal to the best yi in DI . In this case, Eq. (1) is called
the expected improvement (EI) (Jones et al., 1998). Ideally,
the AF should encourage both exploration and exploitation.
For this, the expected utility should increase when yj takes
high values on average (to exploit), but also when there is
high uncertainty about yj (to explore). The EI utility func-
tion satisfies these two requirements.

Thompson sampling (TS) (Thompson, 1933) can be un-
derstood as a version of the previous framework in which
the utility function is defined as U(yj |xj ,DI) = yj and
the expectation in (1) is taken with respect to p(yj |xj ,θ)
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instead of p(yj |xj ,DI), with θ being a sample from
the posterior p(θ|DI). That is, when computing the
AF, TS approximates the integral in p(yj |xj ,DI) =∫
p(yj |xj ,θ)p(θ|DI) dθ by Monte Carlo, using a single

sample from p(θ|DI) in the approximation. The TS utility
function enforces only exploitation because the expected
utility is insensitive to any variance in yj . Despite this, TS
still enforces exploration because of the variance produced
by the Monte Carlo approximation to p(yj |xj ,DI). Under
TS, the probability of evaluating the objective at a particu-
lar location matches the probability of that location being
the maximizer of the objective, given the model assump-
tions and the data from past evaluations. Algorithm 1 con-
tains the pseudocode for TS. The plots in the top of Figure
1 illustrate how TS works. The top-left plot shows sev-
eral samples from a posterior distribution on f induced by
p(θ|DI) since each value of the parameters θ corresponds
to an associated value of f . Sampling from p(θ|DI) is then
equivalent to selecting one of these samples for f . The se-
lected sample represents the current AF, which is optimized
in the top-right plot in Figure 1 to select the next evaluation.

2.1. Parallel BO
So far we have considered the sequential evaluation setting,
where BO methods collect just a single data point in each
iteration. However, BO can also be applied in the parallel
setting, which involves choosing a batch of multiple points
to evaluate next in each iteration. For example, when we
run S parallel simulations in a computer cluster and each
simulation performs one evaluation of f .

Snoek et al. (2012) describe how to extend sequential BO
methods to the parallel setting. The idea is to select the first
evaluation location in the batch in the same way as in the
sequential setting. However, the next evaluation location
is then selected while the previous one is still pending. In
particular, given a setK with indexes of pending evaluation
locations, we choose a new location in the batch based on
the expectation of the AF under all possible outcomes of
the pending evaluations according to the predictions of the
model. Therefore, at any point, the next evaluation location
is obtained by optimizing the AF

αparallel(xj |DI ,K) =

Ep({yk}k∈K|{xk}k∈K,DI) [α(xj |DI ∪ DK)] , (2)

where DK = {(yk,xk)}k∈K and α(xj |DI ∪ DK) is given
by (1). Computing this expression exactly is infeasible in
most cases. Snoek et al. (2012) propose a Monte Carlo
approximation in which the expectation in the second line
is approximated by averaging across a few samples from
the predictive distribution at the pending evaluations, that
is, p({yk}k∈K|{xk}k∈K,DI). These samples are referred
to as fantasized data.

This approach for parallel BO has been successfully used

to collect small batches of data (about 10 elements in size),
with EI as utility function and with a Gaussian process as
the model for the data (Snoek et al., 2012). However, it
lacks scalability to large batch sizes, failing when we need
to collect thousands of simultaneous measurements. The
reason for this is the high computational cost of adding a
new evaluation to the current batch. The corresponding
cost includes: 1 sampling the fantasized data, 2 updating
the posterior predictive distribution to p(yj |xj ,DI ∪ DK),
which is required for evaluating α(xj |DI ∪ DK), and 3
optimizing the Monte Carlo approximation to (2). Step 2
can be very expensive when the number of training points
inDI is very large. This step is also considerably challeng-
ing when the model does not allow for exact inference, as
it is often the case with Bayesian neural networks. Step 3
can also take a very long time when the library of candidate
moleculesM is very large (e.g., when it contains millions
of elements) and among all the remaining molecules we
have to find one that maximizes the AF.

Despite these difficulties, the biggest disadvantage in this
approach for parallel BO is that it cannot be parallelized
since it is a sequential process in which (2) needs to be
iteratively optimized, with each optimization step having
a direct effect on the next one. This prevents this method
from fully exploiting the acceleration provided by multiple
processors in a computer cluster. The sequential nature of
the algorithm is illustrated by the plot in the left of Figure 2.
In this plot computer node 1 is controlling the BO process
and decides the batch evaluation locations. Nodes 2, . . . , 5
then perform the evaluations in parallel. Note that steps 2
and 3 from the above description have been highlighted in
green and magenta colors.

In the following section we describe an algorithm for batch
BO which can be implemented in a fully parallel and dis-
tributed manner and which, consequently, can take full ad-
vantage of multiple processors in a computer cluster. This
novel method is based on a parallel implementation of the
Thompson sampling heuristic.

Algorithm 2 Parallel and distributed Thompson sampling

Input: initial data DI(1) = {xi, yi}i∈I(1), batch size S
for t = 1 to T do

Compute current posterior p(θ|DI(t))
for s = 1 to S do

Sample θ from p(θ|DI(t))
Select k(s)← argmaxj 6∈I(t)E[yj |xj ,θ]
Collect yk(s) by evaluating f at xk(s)

end for
DI(t+1) = DI(t) ∪ {xk(s), yk(s)}Ss=1

end for
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Figure 2. A visualization of one iteration of BO using parallel EI as implemented in (Snoek et al., 2012) and PDTS. Note that in PDTS
the model is updated once and sample points are acquired independently by the nodes. With parallel EI, the the location of the next
sample points is dependent on the location of previous sample points in the batch so these are computed sequentially.

3. Parallel and Distributed Thompson
Sampling

We present an implementation of the parallel BO method
from Section 2.1 based on the Thompson sampling (TS)
heuristic. In particular, we propose to apply to (2) the
same approximation that TS applied to (1). For this, we
choose in (2) the same utility function used by TS in the
sequential setting, that is, U(yj |xj ,DI ∪DK) = yj . Then,
we approximate the expectation with respect to {yk}k∈K
in (2) by Monte Carlo, averaging across just one sample
of {yk}k∈K drawn from p({yk}k∈K|{xk}k∈K,DI). After
that, α(xj |DI ∪ DK) in (2) is approximated in the same
way as in the sequential setting by first sampling θ from
p(θ|DI ∪DK) and then approximating p(yj |xj ,DI ∪DK)
with p(yj |xj ,θ). Importantly, in this process, sampling
first {yk}k∈K from p({yk}k∈K|{xk}k∈K,DI) and then θ
from p(θ|DI ∪ DK) is equivalent to sampling θ from just
p(θ|DI). The reason for this is that updating a posterior
distribution with synthetic data sampled from the model’s
predictive distribution produces on average the same ini-
tial posterior distribution. The result is that parallel TS
with batch size S is the same as running sequential TS
S times without updating the current posterior p(θ|DI),
where each execution of sequential TS produces one of the
evaluation locations in the batch. Importantly, these exe-
cutions can be done in distributed manner, with each one
running in parallel in a different node.

The resulting parallel and distributed TS (PDTS) method is
highly scalable and can be applied to very large batch sizes
by running each execution of sequential TS on the same
computer node that will then later evaluate f at the selected
evaluation location. Algorithm 2 contains the pseudocode
for PDTS. The parallel nature of the algorithm is illustrated
by the plot in the right of Figure 2. In this plot computer
node 1 is controlling the BO process. To collect four new
function evaluations in parallel, computer node 1 sends the
current posterior p(θ|DI) and I to nodes 2, . . . , 5. Each
of them samples then a value for θ from the posterior and
optimizes its own AF given by E[yj |xj ,θ], with j 6∈ I.
The objective function is evaluated at the selected input and
the resulting data is sent back to node 1. Figure 1 illustrates

how PDTS selects two parallel evaluation locations. For
this, sequential TS is run twice.

The scalability of PDTS makes it a promising method for
parallel BO in high-throughput screening. However, in this
type of problem, the optimization of the AF is done over a
discrete set of molecules. Therefore, whenever we collect a
batch of data in parallel with PDTS, several of the simulta-
neous executions of sequential TS may choose to evaluate
the same molecule. A central computer node (e.g. the node
controlling the BO process) maintaining a list of molecules
currently selected for evaluation can be used to avoid this
problem. In this case, each sequential TS node sends to the
central node a ranked list with the top S (the batch size)
molecules according to its AF. From this list, the central
node then selects the highest ranked molecule that has not
been selected for evaluation before.

4. Related Work
Ginsbourger et al. (Ginsbourger et al., 2010) proposed the
following framework for parallel BO: given a set of cur-
rent observations DI and pending experiments {xk}Kk=1,
an additional set of fantasies DK = {(xk, yk)}Kk=1 can be
assumed to be the result of those pending experiments. A
step of Bayesian optimization can then be performed using
the augmented dataset DI ∪ DK and the acquisition func-
tion α(x|DI ∪DK). Two different values are proposed for
the fantasies: the constant liar, where yk = L for some
constant L and all k = 1 . . .K, and the Kriging believer,
where yk is given by the GP predictive mean at xk.

Snoek et al. (2012) compute a Monte Carlo approximation
of the expected acquisition function over potential fantasies
sampled from the model’s predictive distribution. Recent
methods have been proposed to modify the parallel EI pro-
cedure to recommend points jointly (Chevalier & Gins-
bourger, 2013; Marmin et al., 2015; Wang et al., 2016).

Azimi et al. (2010) describe a procedure called simulated
matching whose goal is to propose a batch DK of points
which is a good match for the set of samples that a sequen-
tial BO policy π would recommend. The authors consider
a batch “good” if it contains a sample that yields, with high
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probability, an objective value close to that of the best sam-
ple produced by a sequential execution of π.

Several authors have proposed to extend the upper confi-
dence bound (UCB) heuristic to the parallel setting. Since
the GP predictive variance depends only on the input lo-
cation of the observations, Desautels et al. (2014) pro-
pose GP-BUCP acquisition which uses the UCB acquisi-
tion with this updated variance. Contal et al. (2013) intro-
duce the Gaussian Process Upper Confidence Bound with
Pure Exploration (GP-UCB-PE). Under this procedure, the
first point is obtained using the standard UCB acquisition
function while the remaining points are sequentially se-
lected to be the ones yielding the highest predictive vari-
ance, while still lying in a region that contains the maxi-
mizer with high probability.

Shah & Ghahramani (2015) extend the Predictive Entropy
Search (PES) heuristic to the parallel setting (PPES). PPES
seeks to recommend a collection of samplesDK that yields
the greatest reduction in entropy for the posterior distribu-
tion of x?, the latent objective maximizer. Wu & Frazier
(2016) propose the Parallel Knowledge Gradient Method
which optimizes an acquisition function called the paral-
lel knowledge gradient (q-KG), a measure of the expected
incremental solution quality after q samples.

An advantage of PDTS over parallel EI and other related
methods is that the approximate marginalization of poten-
tial experimental outcomes adds no extra computational
cost to our procedure and so PDTS is highly parallelizable.
Finally, unlike other approaches, PDTS can be applied to a
wide variety of models, such as GPs and Bayesian neural
networks, since it only requires samples from an exact or
approximate posterior distribution.

5. Bayesian Neural Networks for
High-throughput Screening

Neural networks are well-suited for implementing BO on
molecules. They produce state-of-the-art predictions of
chemical properties (Ma et al., 2015; Mayr et al., 2016;
Ramsundar et al., 2015) and can be applied to large data
sets by using stochastic optimization (Bousquet & Bot-
tou, 2008). Typical applications of neural networks fo-
cus on the deterministic prediction scenario. However,
in large search spaces with multiple local optima (which
is the case when navigating chemical space), it is desir-
able to use a probabilistic approach that can produce ac-
curate estimates of uncertainty for efficient exploration
and so, we use probabilistic back-propagation (PBP), a
recently-developed technique for the scalable training of
Bayesian neural networks (Hernández-Lobato & Adams,
2015). Note that other methods for approximate infer-
ence in Bayesian neural networks could have been cho-
sen as well (Blundell et al., 2015; Snoek et al., 2015; Gal

& Ghahramani, 2016). We prefer PBP because it is fast
and it does not require the tuning of hyper-parameters such
as learning rates or regularization constants (Hernández-
Lobato & Adams, 2015).

Given a dataset DI = {(xi, yi)}i∈I , we assume that
yi = f(xi;W) + εi, where f(·;W) is the output of a neu-
ral network with weights W . The network output is cor-
rupted with additive noise variables εi ∼ N (0, γ−1). The
network has L layers, with Vl hidden units in layer l, and
W = {Wl}Ll=1 is the collection of Vl×(Vl−1+1) synaptic
weight matrices. The +1 is introduced here to account for
the additional per-layer biases. The activation functions for
the hidden layers are rectifiers: ϕ(x) = max(x, 0).

The likelihood for the network weights W and the noise
precision γ is

p({yi}i∈|I |W, {xi}i∈I , γ) =
∏
i∈I

N (yi|f(xi;W), γ−1) .

We specify a Gaussian prior distribution for each entry in
each of the weight matrices inW:

p(W|λ) =
L∏
l=1

Vl∏
k=1

Vl−1+1∏
j=1

N (wkj,l|0, λ−1) , (3)

where wkj,l is the entry in the k-th row and j-th column of
Wl and λ is a precision parameter. The hyper-prior for λ
is gamma: p(λ) = Gam(λ|αλ0 , βλ0 ) with shape αλ0 = 6
and inverse scale βλ0 = 6. This relatively low value for
the shape and inverse scale parameters makes this prior
weakly-informative. The prior for the noise precision γ
is also gamma: p(γ) = Gam(γ|αγ0 , β

γ
0 ). We assume that

the yi have been normalized to have unit variance and, as
above, we fix αγ0 = 6 and βγ0 = 6.

The exact computation of the posterior distribution for the
model parameters p(W, γ, λ|DI) is not tractable in most
cases. PBP approximates the intractable posterior onW , γ
and λ with the tractable approximation

q(W, γ, λ) =

 L∏
l=1

Vl∏
k=1

Vl−1+1∏
j=1

N (wkj,l|mkj,l, vkj,l)


Gam(γ |αγ , βγ)Gam(λ |αλ, βλ) , (4)

whose parameters are tuned by iteratively running an as-
sumed density filtering (ADF) algorithm over the training
data (Opper, 1998). The main operation in PBP is the
update of the mean and variance parameters of q, that is,
the mkj,l and vkj,l in (4), after processing each data point
{(xi, yi)}. For this, PBP matches moments between the
new q and the product of the old q with the correspond-
ing likelihood factorN (yi | f(xi;W), γ−1). The matching
of moments for the distributions on the weights is achieved
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by using well-known Gaussian ADF updates, see equations
5.12 and 5.1 in (Minka, 2001).

To compute the ADF updates, PBP finds a Gaussian
approximation to the distribution of the network output
f(xi;W) when W ∼ q. This is achieved by doing a
forward pass of xi through the network, with the weights
W being randomly sampled from q. In this forward pass
the non-Gaussian distributions followed by the output of
the neurons are approximated with Gaussians that have
the same means and variances as the original distributions.
This is a Gaussian approximation by moment matching.
We refer the reader to Hernández-Lobato & Adams (2015)
for full details on PBP.

After several ADF iterations over the data by PBP, we can
then make predictions for the unknown target variable y?
associated with a new feature vector x?. For this, we obtain
a Gaussian approximation to f(x?;W) when W ∼ q by
applying the forward pass process described above.

To implement TS, as described in Algorithm 1, we first
sample the model parameters θ from the posterior p(θ|DI)
and then optimize the AF given by E[yj |xj ,θ], with j 6∈ I.
When the model is a Bayesian neural network trained with
PBP, the corresponding operations are sampling W from
q and then optimizing the AF given by f(xj ;W), with
j 6∈ I. This last step requires the use of a deterministic
neural network, with weight values given by the posterior
sample from q, to make predictions on all the molecules
that have not been evaluated yet. Then, the molecule with
highest predictive value is selected for the next evaluation.

6. Experiments with GPs and Parallel EI
We first compare the performance of our parallel and dis-
tributed Thompson sampling (PDTS) algorithm with the
most popular approach for parallel BO: the parallel EI
method from Section 2.1. Existing implementations of par-
allel EI such as spearmint1 use a Gaussian process (GP)
model for the objective function. To compare with these
methods, we also adopt a GP as the model in PDTS. Note
that parallel EI cannot scale to the large batch sizes used
in high-throughput screening. Therefore, we consider here
only parallel optimization problems with small batch sizes
and synthetic objective functions. Besides PDTS and par-
allel EI, we also analyze the performance of the sequential
versions of these algorithms: TS and EI.

To implement Thompson sampling (TS) with a GP model,
we approximate the non-parametric GP with a parametric
approximation based on random features, as described in
the supplementary material of (Hernández-Lobato et al.,
2014). For the experiments, we consider a cluster with 11

1https://github.com/HIPS/Spearmint

nodes: one central node for controlling the BO process and
10 additional nodes for parallel evaluations. We assume
that all objective evaluations take a very large amount of
time and that the cost of training the GPs and recomputing
and optimizing the AF is negligible in comparison. Thus,
in practice, we perform these experiments in a sequential
(non-parallel) fashion with the GP model being updated
only in blocks of 10 consecutive data points at a time.

As objective functions we consider the two dimensional
Bohachevsky and Branin-Hoo functions and the six dimen-
sional Hartmann function, all available in Benchfunk2. We
also consider the optimization of functions sampled from
the GP prior over the 2D unit square using a squared ex-
ponential covariance function with fixed 0.1 length scale.
After each objective evaluation, we compute the immedi-
ate regret (IR), which we define as the difference between
the best objective value obtained so far and the minimum
value of the objective function. The measurement noise is
zero in these experiments.

Figure 3 reports mean and standard errors for the logarithm
of the best IR seen so far, averaged across 50 repetitions of
the experiments. In the plots, the horizontal axis shows the
number of function evaluations performed so far. Note that
in these experiments TS and EI update their GPs once per
sample, while PDTS and parallel EI update only every 10
samples. Figure 3 shows that EI is better than TS in most
cases, although the differences between these two methods
are small in the Branin-Hoo function. However, EI is con-
siderably much better than TS in Hartmann. The reason
for this is that in Hartmann there are multiple equivalent
global minima and TS tends to explore all of them. EI is
by contrast more exploitative and focuses on evaluating the
objective around only one of the minima. The differences
between parallel EI and PDTS are much smaller, with both
obtaining very similar results. The exception is again Hart-
mann, where parallel EI is much better than PDTS, prob-
ably because PDTS is more explorative than parallel EI.
Interestingly, PDTS performs better than parallel EI on the
random samples from the GP prior, although parallel EI
eventually catches up.

These results indicate that PDTS performs in practice very
similarly to parallel EI, one of the most popular methods
for parallel BO.

7. Experiments with Molecule Data Sets
We describe the molecule data sets used in our experiments.
The input features for all molecules are 512-bit Morgan cir-
cular fingerprints (Rogers & Hahn, 2010), calculated with a
bond radius of 2, and derived from the canonical SMILES
as implemented in the RDkit package (Landrum).

2https://github.com/mwhoffman/benchfunk

https://github.com/HIPS/Spearmint
https://github.com/mwhoffman/benchfunk
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Figure 3. Immediate regret in experiments with GPs, using TS, EI, PDTS and parallel EI for optimizing synthetic functions (first 3 plots)
and functions sampled from a GP prior (fourth plot).

Harvard Clean Energy Project: The Clean Energy
Project is the world’s largest materials high-throughput
virtual screening effort (Hachmann et al., 2014; 2011),
and has scanned more than 3.5 million molecules to find
those with high power conversion efficiency (PCE) using
quantum-chemical techniques, taking over 30,000 years of
CPU time. The target value within this data set is the power
conversion efficiency (PCE), which is calculated for the
2.3 million publicly released molecules, using the Schar-
ber model (Dennler et al., 2008) and frontier orbitals calcu-
lated at the BP86 (Perdew, 1986; Becke, 1993) def2-SVP
(Weigend & Ahlrichs, 2005) level of theory.

Dose-Response Data Set: These data sets were obtained
from the NCI-cancer database (Many authors). The dose-
response target value has a potential range of -100 to 100,
and reports a percentage cell growth relative to a no-drug
control. Thus, a value of +40 would correspond to a 60%
growth inhibition and a value of -40 would correspond
to 40% lethality. Molecules with a positive value for the
dose-response are known as inhibitors, molecules with a
score less than 0 have a cytotoxic effect. Results against
the NCI-H23 cell line were taken against a constant log-
concentration of -8.00M and where multiple identical con-
ditions were present in the data an average was used for the
target variables. In this data set we are interested in finding
molecules with smaller values of the target variable.

Malaria Data Set: The Malaria data set was taken from the
P. falciparum whole cell screening derived by combining
the GSK TCAMS data set, the Novatis-GNF Malaria Box
data set and the St Jude’s Research Hospital data set, as
released through the Medicines for Malaria Venture web-
site (Spangenberg et al., 2013). The target variable is the
EC50 value, which is defined as the concentration of the
drug which gives half maximal response. Much like the
Dose response data set, the focus here is on minimization:
the lower the concentration, the stronger the drug.

7.1. Results

We evaluate the gains produced by PDTS in experiments
simulating a high throughput virtual screening setting. In
these experiments, we sequentially sample molecules from

libraries of candidate molecules given by the data sets from
Section 7. After each sampling step, we calculate the 1%
recall, that is, the fraction of the top 1% of molecules
from the original library that are found among the sampled
ones. For the CEP data, we compute recall by focusing
on molecules with PCE larger than 10%. In all data sets,
each sampling step involves selecting a batch of molecules
among those that have not been sampled so far. In the
Malaria and One-dose data sets we use batches of size 200.
These data sets each contain about 20,000 molecules. By
contrast, the CEP data set contains 2 million molecules.
In this latter case, we use batches of size 500. We use
Bayesian neural networks with one hidden layer and 100
hidden units.

We compare the performance of PDTS with two baselines.
The first one, greedy, is a sampling strategy that only con-
siders exploitation and does not perform any exploration.
We implement this approach by selecting molecules ac-
cording to the average of the probabilistic predictions gen-
erated by PBP. That is, the greedy approach ignores any
variance in the predictions of the Bayesian neural network
and generates batches by just ranking molecules accord-
ing to the mean of the predictive distribution given by PBP.
The second baseline is a Monte Carlo approach in which
the batches of molecules are selected uniformly at random.
These two baselines are comparable to PDTS in that they
can be easily implemented in a large scale setting in which
the library of candidate molecules contains millions of ele-
ments and data is sampled using large batch sizes.

In the Malaria and One-dose data sets, we average across
50 different realizations of the experiments. This is not pos-
sible in the CEP data set, which is 100 times larger than the
two other data sets. In the CEP case, we report results for
a single realization of the experiment (in a second realiza-
tion we obtained similar results). Figure 4 shows the recall
obtained by each method in the molecule data sets. PDTS
significantly outperforms the Monte Carlo approach, and
also offers better performance than greedy sampling. This
shows the importance of building in exploration into the
sampling strategy, rather than relying on purely exploita-
tive methods. The greedy approach performs best in the



Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space

Figure 4. Recall obtained by PDTS on each data set. For the CEP data, the recall for molecules with a PCE > 10% is reported, whilst
for One-dose and Malaria we report the recall for the molecules in the top 1%. In addition to the Monte Carlo sampling baseline, we also
include results for a greedy sampling approach, in which there is no exploration, and the molecules are chosen according to the mean of
the predictive distribution given by PBP. The overall lower performance of this greedy strategy illustrates the importance of exploration
in this type of problems.

CEP data set. In this case, the greedy strategy initially
finds better molecules than PDTS, but after a while PDTS
overtakes, probably because a promising area of chemical
space initially discovered by the greedy approach starts to
become exhausted.

The previous results allow us to consider the savings pro-
duced by BO. In the CEP data set, PDTS achieves about 20
times higher recall values than the Monte Carlo approach,
which is comparable to the exhaustive enumeration that
was used to collect the CEP data. We estimate that, with
BO, the CEP virtual screening process would have taken
1,500 CPU years instead of the 30,000 that were actually
used. Regarding the One-dose and Malaria data sets, PDTS
can locate in both sets about 70% of the top 1% molecules
by sampling approximately 6,000 molecules. By contrast,
the Monte Carlo approach would require sampling 14,000
molecules. This represents a significant reduction in the
discovery time for new therapeutic molecules and savings
in the economic costs associated with molecule synthesis
and testing.

7.2. Comparison with ε-greedy Approaches
We can easily modify the greedy baseline from the previous
section to include some amount of exploration by replac-
ing a small fraction of the molecules in each batch with
molecules chosen uniformly at random. This approach is
often called ε-greedy (Watkins, 1989), where the variable
ε indicates the fraction of molecules that are sampled uni-
formly at random. The disadvantage of the ε-greedy ap-
proach is that it requires the tuning of ε to the problem of
interest whereas the amount of exploration is automatically
set by PDTS.

We compared PDTS with different versions of ε-greedy in
the same way as above, using ε = 0.01, 0.025, 0.05 and
0.075. The experiments with the One-dose and the Malaria
data sets are similar to the ones done before. However,

Table 1. Average rank and standard errors by each method.
Method Rank
ε = 0.01 3.42±0.28
ε = 0.025 3.02±0.25
ε = 0.05 2.86±0.23
ε = 0.075 3.20±0.26
PDTS 2.51±0.20

we now sub-sample the CEP data set to be able to aver-
age across 50 different realizations of the experiment: we
choose 4,000 molecules uniformly at random and then col-
lect data in batches of size 50 across 50 different repetitions
of the screening process. We compute the average rank ob-
tained by each method across the 3 × 50 = 150 simulated
screening experiments. A ranking equal to 1 indicates that
the method always obtains the highest recall at the end of
the experiment, while a ranking equal to 5 indicates that
the method always obtains the worst recall value. Table 1
shows that the lowest average rank is obtained by PDTS,
which achieves better exploration-exploitation trade-offs
than the ε-greedy approaches.

8. Conclusions
We have presented a Parallel and Distributed implemen-
tation of Thompson Sampling (PDTS), a highly scalable
method for parallel Bayesian optimization. PDTS can be
applied when scalability limits the applicability of com-
peting approaches. We have evaluated the performance of
PDTS in experiments with both Gaussian process and prob-
abilistic neural networks. We show that PDTS compares fa-
vorably with parallel EI in problems with small batch sizes.
We also demonstrate the effectiveness of PDTS on large
scale real world applications that involve searching chem-
ical space for new molecules wit improved properties. We
show that PDTS outperforms other scalable approaches on
these applications, in particular, a greedy search strategy,
ε-greedy approaches and a random search method.
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