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Abstract
Approximate Markov chain Monte Carlo
(MCMC) offers the promise of more rapid sam-
pling at the cost of more biased inference. Since
standard MCMC diagnostics fail to detect these
biases, researchers have developed computable
Stein discrepancy measures that provably de-
termine the convergence of a sample to its
target distribution. This approach was recently
combined with the theory of reproducing kernels
to define a closed-form kernel Stein discrepancy
(KSD) computable by summing kernel evalua-
tions across pairs of sample points. We develop
a theory of weak convergence for KSDs based
on Stein’s method, demonstrate that commonly
used KSDs fail to detect non-convergence even
for Gaussian targets, and show that kernels with
slowly decaying tails provably determine con-
vergence for a large class of target distributions.
The resulting convergence-determining KSDs
are suitable for comparing biased, exact, and
deterministic sample sequences and simpler to
compute and parallelize than alternative Stein
discrepancies. We use our tools to compare bi-
ased samplers, select sampler hyperparameters,
and improve upon existing KSD approaches
to one-sample hypothesis testing and sample
quality improvement.

1. Introduction
When Bayesian inference and maximum likelihood estima-
tion (Geyer, 1991) demand the evaluation of intractable ex-
pectations E

P

[h(Z)] =

R
p(x)h(x)dx under a target dis-

tribution P , Markov chain Monte Carlo (MCMC) methods
(Brooks et al., 2011) are often employed to approximate
these integrals with asymptotically correct sample aver-
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). However, many exact
MCMC methods are computationally expensive, and recent
years have seen the introduction of biased MCMC proce-
dures (see, e.g., Welling & Teh, 2011; Ahn et al., 2012; Ko-
rattikara et al., 2014) that exchange asymptotic correctness
for increased sampling speed.

Since standard MCMC diagnostics, like mean and trace
plots, pooled and within-chain variance measures, effective
sample size, and asymptotic variance (Brooks et al., 2011),
do not account for asymptotic bias, Gorham & Mackey
(2015) defined a new family of sample quality measures
– the Stein discrepancies – that measure how well E

Q

n

approximates E
P

while avoiding explicit integration under
P . Gorham & Mackey (2015); Mackey & Gorham (2016);
Gorham et al. (2016) further showed that specific mem-
bers of this family – the graph Stein discrepancies – were
(a) efficiently computable by solving a linear program and
(b) convergence-determining for large classes of targets P .
Building on the zero mean reproducing kernel theory of
Oates et al. (2016b), Chwialkowski et al. (2016) and Liu
et al. (2016) later showed that other members of the Stein
discrepancy family had a closed-form solution involving
the sum of kernel evaluations over pairs of sample points.

This closed form represents a significant practical advan-
tage, as no linear program solvers are necessary, and the
computation of the discrepancy can be easily parallelized.
However, as we will see in Section 3.2, not all kernel Stein
discrepancies are suitable for our setting. In particular, in
dimension d � 3, the kernel Stein discrepancies previously
recommended in the literature fail to detect when a sam-
ple is not converging to the target. To address this short-
coming, we develop a theory of weak convergence for the
kernel Stein discrepancies analogous to that of (Gorham &
Mackey, 2015; Mackey & Gorham, 2016; Gorham et al.,
2016) and design a class of kernel Stein discrepancies that
provably control weak convergence for a large class of tar-
get distributions.

After formally describing our goals for measuring sam-
ple quality in Section 2, we outline our strategy, based
on Stein’s method, for constructing and analyzing practical
quality measures at the start of Section 3. In Section 3.1,
we define our family of closed-form quality measures – the
kernel Stein discrepancies (KSDs) – and establish several
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appealing practical properties of these measures. We an-
alyze the convergence properties of KSDs in Sections 3.2
and 3.3, showing that previously proposed KSDs fail to de-
tect non-convergence and proposing practical convergence-
determining alternatives. Section 4 illustrates the value
of convergence-determining kernel Stein discrepancies in
a variety of applications, including hyperparameter selec-
tion, sampler selection, one-sample hypothesis testing, and
sample quality improvement. Finally, in Section 5, we con-
clude with a discussion of related and future work.

Notation We will use µ to denote a generic probabil-
ity measure and ) to denote the weak convergence of a
sequence of probability measures. We will use k·k

r

for
r 2 [1,1] to represent the `r norm on Rd and occasion-
ally refer to a generic norm k·k with associated dual norm
kak⇤ , sup

b2Rd

,kbk=1

ha, bi for vectors a 2 Rd. We
let e

j

be the j-th standard basis vector. For any function
g : Rd ! Rd

0
, we define M

0

(g) , sup

x2Rd

kg(x)k
2

,
M

1

(g) , sup

x 6=y

kg(x)� g(y)k
2

/kx� yk
2

, and rg as
the gradient with components (rg(x))

jk

, r
x

k

g
j

(x). We
further let g 2 Cm indicate that g is m times continu-
ously differentiable and g 2 Cm

0

indicate that g 2 Cm

and rlg is vanishing at infinity for all l 2 {0, . . . ,m}.
We define C(m,m) (respectively, C

(m,m)

b

and C
(m,m)

0

)
to be the set of functions k : Rd ⇥ Rd ! R with
(x, y) 7! rl

x

rl

y

k(x, y) continuous (respectively, contin-
uous and uniformly bounded, continuous and vanishing at
infinity) for all l 2 {0, . . . ,m}.

2. Quality measures for samples
Consider a target distribution P with continuously differ-
entiable (Lebesgue) density p supported on all of Rd. We
assume that the score function b , r log p can be eval-
uated1 but that, for most functions of interest, direct inte-
gration under P is infeasible. We will therefore approxi-
mate integration under P using a weighted sample Q

n

=P
n

i=1

q
n

(x
i

)�
x

i

with sample points x
1

, . . . , x
n

2 Rd and
q
n

a probability mass function. We will make no assump-
tions about the origins of the sample points; they may be
the output of a Markov chain or even deterministically gen-
erated.

Each Q
n

offers an approximation E
Q

n

[h(X)] =P
n

i=1

q
n

(x
i

)h(x
i

) for each intractable expectation
E
P

[h(Z)], and our aim is to effectively compare the
quality of the approximation offered by any two samples
targeting P . In particular, we wish to produce a quality
measure that (i) identifies when a sequence of samples is
converging to the target, (ii) determines when a sequence
of samples is not converging to the target, and (iii) is
efficiently computable. Since our interest is in approx-

1No knowledge of the normalizing constant is needed.

imating expectations, we will consider discrepancies
quantifying the maximum expectation error over a class of
test functions H:

dH(Q
n

, P ) , sup

h2H
|E

P

[h(Z)]� E
Q

n

[h(X)]|. (1)

When H is large enough, for any sequence of probability
measures (µ

m

)

m�1

, dH(µ
m

, P ) ! 0 only if µ
m

) P . In
this case, we call (1) an integral probability metric (IPM)
(Müller, 1997). For example, when H = BLk·k2

, {h :

Rd ! R |M
0

(h) + M
1

(h)  1}, the IPM d
BLk·k2

is
called the bounded Lipschitz or Dudley metric and exactly
metrizes convergence in distribution. Alternatively, when
H = Wk·k2

, {h : Rd ! R |M
1

(h)  1} is the set of
1-Lipschitz functions, the IPM dWk·k in (1) is known as the
Wasserstein metric.

An apparent practical problem with using the IPM dH as a
sample quality measure is that E

P

[h(Z)] may not be com-
putable for h 2 H. However, if H were chosen such that
E
P

[h(Z)] = 0 for all h 2 H, then no explicit integra-
tion under P would be necessary. To generate such a class
of test functions and to show that the resulting IPM still
satisfies our desiderata, we follow the lead of Gorham &
Mackey (2015) and consider Charles Stein’s method for
characterizing distributional convergence.

3. Stein’s method with kernels
Stein’s method (Stein, 1972) provides a three-step recipe
for assessing convergence in distribution:

1. Identify a Stein operator T that maps functions g :

Rd ! Rd from a domain G to real-valued functions
T g such that

E
P

[(T g)(Z)] = 0 for all g 2 G.

For any such Stein operator and Stein set G, Gorham
& Mackey (2015) defined the Stein discrepancy as

S(µ, T ,G) , sup

g2G
|E

µ

[(T g)(X)]| = dT G(µ, P ) (2)

which, crucially, avoids explicit integration under P .

2. Lower bound the Stein discrepancy by an IPM dH
known to dominate weak convergence. This can be
done once for a broad class of target distributions
to ensure that µ

m

) P whenever S(µ
m

, T ,G) !
0 for a sequence of probability measures (µ

m

)

m�1

(Desideratum (ii)).

3. Provide an upper bound on the Stein discrepancy en-
suring that S(µ

m

, T ,G) ! 0 under suitable conver-
gence of µ

m

to P (Desideratum (i)).
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While Stein’s method is principally used as a mathemat-
ical tool to prove convergence in distribution, we seek,
in the spirit of (Gorham & Mackey, 2015; Gorham et al.,
2016), to harness the Stein discrepancy as a practical tool
for measuring sample quality. The subsections to follow
develop a specific, practical instantiation of the abstract
Stein’s method recipe based on reproducing kernel Hilbert
spaces. An empirical analysis of the Stein discrepancies
recommended by our theory follows in Section 4.

3.1. Selecting a Stein operator and a Stein set

A standard, widely applicable univariate Stein operator is
the density method operator (see Stein et al., 2004; Chat-
terjee & Shao, 2011; Chen et al., 2011; Ley et al., 2017),

(T g)(x) , 1

p(x)

d

dx

(p(x)g(x)) = g(x)b(x) + g0(x).

Inspired by the generator method of Barbour (1988; 1990)
and Götze (1991), Gorham & Mackey (2015) general-
ized this operator to multiple dimensions. The resulting
Langevin Stein operator

(T
P

g)(x) , 1

p(x)

hr, p(x)g(x)i = hg(x), b(x)i+ hr, g(x)i
for functions g : Rd ! Rd was independently devel-
oped, without connection to Stein’s method, by Oates et al.
(2016b) for the design of Monte Carlo control function-
als. Notably, the Langevin Stein operator depends on P
only through its score function b = r log p and hence is
computable even when the normalizing constant of p is not.
While our work is compatible with other practical Stein op-
erators, like the family of diffusion Stein operators defined
in (Gorham et al., 2016), we will focus on the Langevin
operator for the sake of brevity.

Hereafter, we will let k : Rd ⇥Rd ! R be the reproducing
kernel of a reproducing kernel Hilbert space (RKHS) K

k

of functions from Rd ! R. That is, K
k

is a Hilbert space
of functions such that, for all x 2 Rd, k(x, ·) 2 K

k

and
f(x) = hf, k(x, ·)iK

k

whenever f 2 K
k

. We let k·kK
k

be
the norm induced from the inner product on K

k

.

With this definition, we define our kernel Stein set G
k,k·k

as the set of vector-valued functions g = (g
1

, . . . , g
d

) such
that each component function g

j

belongs to K
k

and the vec-
tor of their norms kg

j

kK
k

belongs to the k·k⇤ unit ball:2

G
k,k·k , {g = (g

1

, . . . , g
d

) | kvk⇤  1 for v
j

, kg
j

kK
k

}.
The following result, proved in Section B, establishes that
this is an acceptable domain for T

P

.

Proposition 1 (Zero mean test functions). If k 2 C
(1,1)

b

and E
P

[kr log p(Z)k
2

] < 1, then E
P

[(T
P

g)(Z)] = 0 for
all g 2 G

k,k·k.

2Our analyses and algorithms support each gj belonging to a
different RKHS Kk

j

, but we will not need that flexibility here.

The Langevin Stein operator and kernel Stein set together
define our quality measure of interest, the kernel Stein dis-
crepancy (KSD) S(µ, T

P

,G
k,k·k). When k·k = k·k

2

, this
definition recovers the KSD proposed by Chwialkowski
et al. (2016) and Liu et al. (2016). Our next result shows
that, for any k·k, the KSD admits a closed-form solution.
Proposition 2 (KSD closed form). Suppose k 2 C(1,1),
and, for each j 2 {1, . . . d}, define the Stein kernel

kj
0

(x, y) , 1

p(x)p(y)

r
x

j

r
y

j

(p(x)k(x, y)p(y)) (3)

= b
j

(x)b
j

(y)k(x, y) + b
j

(x)r
y

j

k(x, y)

+ b
j

(y)r
x

j

k(x, y) +r
x

j

r
y

j

k(x, y).

If
P

d

j=1

E
µ

h
kj
0

(X,X)

1/2

i
< 1, then S(µ, T

P

,G
k,k·k) =

kwk where w
j

,
q

E
µ⇥µ

[kj
0

(X, ˜X)] with X, ˜X
iid⇠ µ.

The proof is found in Section C. Notably, when µ is the
discrete measure Q

n

=

P
n

i=1

q
n

(x
i

)�
x

i

, the KSD reduces
to evaluating each kj

0

at pairs of support points as w
j

=qP
n

i,i

0
=1

q
n

(x
i

)kj
0

(x
i

, x
i

0
)q

n

(x
i

0
), a computation which

is easily parallelized over sample pairs and coordinates j.

Our Stein set choice was motivated by the work of Oates
et al. (2016b) who used the sum of Stein kernels k

0

=P
d

j=1

kj
0

to develop nonparametric control variates. Each
term w

j

in Proposition 2 can also be viewed as an instance
of the maximum mean discrepancy (MMD) (Gretton et al.,
2012) between µ and P measured with respect to the Stein
kernel kj

0

. In standard uses of MMD, an arbitrary kernel
function is selected, and one must be able to compute ex-
pectations of the kernel function under P . Here, this re-
quirement is satisfied automatically, since our induced ker-
nels are chosen to have mean zero under P .

For clarity we will focus on the specific kernel Stein set
choice G

k

, G
k,k·k2

for the remainder of the paper, but our
results extend directly to KSDs based on any k·k, since all
KSDs are equivalent in a strong sense:
Proposition 3 (Kernel Stein set equivalence). Un-
der the assumptions of Proposition 2, there are con-
stants c

d

, c0
d

> 0 depending only on d and k·k
such that c

d

S(µ, T
P

,G
k,k·k)  S(µ, T

P

,G
k,k·k2

) 
c0
d

S(µ, T
P

,G
k,k·k).

The short proof is found in Section D.

3.2. Lower bounding the kernel Stein discrepancy

We next aim to establish conditions under which the KSD
S(µ

m

, T
P

,G
k

) ! 0 only if µ
m

) P (Desideratum (ii)).
Recently, Gorham et al. (2016) showed that the Langevin
graph Stein discrepancy dominates convergence in distri-
bution whenever P belongs to the class P of distantly dis-
sipative distributions with Lipschitz score function b:
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Definition 4 (Distant dissipativity (Eberle, 2015; Gorham
et al., 2016)). A distribution P is distantly dissipative if

0

, lim inf

r!1 (r) > 0 for

(r) = inf{�2

hb(x)�b(y),x�yi
kx�yk2

2
: kx� yk

2

= r}. (4)

Examples of distributions in P include finite Gaussian
mixtures with common covariance and all distributions
strongly log-concave outside of a compact set, including
Bayesian linear, logistic, and Huber regression posteriors
with Gaussian priors (see Gorham et al., 2016, Section 4).
Moreover, when d = 1, membership in P is sufficient
to provide a lower bound on the KSD for most common
kernels including the Gaussian, Matérn, and inverse multi-
quadric kernels.
Theorem 5 (Univariate KSD detects non-convergence).
Suppose that P 2 P and k(x, y) = �(x � y) for � 2 C2

with a non-vanishing generalized Fourier transform. If
d = 1, then S(µ

m

, T
P

,G
k

) ! 0 only if µ
m

) P .

The proof in Section E provides a lower bound on the
KSD in terms of an IPM known to dominate weak con-
vergence. However, our next theorem shows that in higher
dimensions S(Q

n

, T
P

,G
k

) can converge to 0 without the
sequence (Q

n

)

n�1

converging to any probability measure.
This deficiency occurs even when the target is Gaussian.
Theorem 6 (KSD fails with light kernel tails). Suppose
k 2 C

(1,1)

b

and define the kernel decay rate

�(r) , sup{max(|k(x, y)|, kr
x

k(x, y)k
2

,

|hr
x

,r
y

k(x, y)i|) : kx� yk
2

� r}.
If d � 3, P = N (0, I

d

), and �(r) = o(r�↵

) for ↵ , (

1

2

�
1

d

)

�1, then S(Q
n

, T
P

,G
k

) ! 0 does not imply Q
n

) P .

Theorem 6 implies that KSDs based on the commonly used
Gaussian kernel, Matérn kernel, and compactly supported
kernels of Wendland (2004, Theorem 9.13) all fail to de-
tect non-convergence when d � 3. In addition, KSDs
based on the inverse multiquadric kernel (k(x, y) = (c2 +

kx� yk2
2

)

�) for � < �1 fail to detect non-convergence
for any d > 2�/(� + 1). The proof in Section F shows
that the violating sample sequences (Q

n

)

n�1

are simple to
construct, and we provide an empirical demonstration of
this failure to detect non-convergence in Section 4.

The failure of the KSDs in Theorem 6 can be traced to
their inability to enforce uniform tightness. A sequence
of probability measures (µ

m

)

m�1

is uniformly tight if for
every ✏ > 0, there is a finite number R(✏) such that
lim sup

m

µ
m

(kXk
2

> R(✏))  ✏. Uniform tightness
implies that no mass in the sequence of probability mea-
sures escapes to infinity. When the kernel k decays more
rapidly than the score function grows, the KSD ignores ex-
cess mass in the tails and hence can be driven to zero by a

non-tight sequence of increasingly diffuse probability mea-
sures. The following theorem demonstrates uniform tight-
ness is the missing piece to ensure weak convergence.
Theorem 7 (KSD detects tight non-convergence). Suppose
that P 2 P and k(x, y) = �(x�y) for � 2 C2 with a non-
vanishing generalized Fourier transform. If (µ

m

)

m�1

is
uniformly tight, then S(µ

m

, T
P

,G
k

) ! 0 only if µ
m

) P .

Our proof in Section G explicitly lower bounds the KSD
S(µ, T

P

,G
k

) in terms of the bounded Lipschitz metric
d
BLk·k(µ, P ), which exactly metrizes weak convergence.

Ideally, when a sequence of probability measures is not uni-
formly tight, the KSD would reflect this divergence in its
reported value. To achieve this, we consider the inverse
multiquadric (IMQ) kernel k(x, y) = (c2 + kx� yk2

2

)

�

for some � < 0 and c > 0. While KSDs based on IMQ
kernels fail to determine convergence when � < �1 (by
Theorem 6), our next theorem shows that they automati-
cally enforce tightness and detect non-convergence when-
ever � 2 (�1, 0).
Theorem 8 (IMQ KSD detects non-convergence). Sup-
pose P 2 P and k(x, y) = (c2 + kx� yk2

2

)

� for c > 0

and � 2 (�1, 0). If S(µ
m

, T
P

,G
k

) ! 0, then µ
m

) P .

The proof in Section H provides a lower bound on the KSD
in terms of the bounded Lipschitz metric d

BLk·k(µ, P ).
The success of the IMQ kernel over other common char-
acteristic kernels can be attributed to its slow decay rate.
When P 2 P and the IMQ exponent � > �1, the func-
tion class T

P

G
k

contains unbounded (coercive) functions.
These functions ensure that the IMQ KSD S(µ

m

, T
P

,G
k

)

goes to 0 only if (µ
m

)

m�1

is uniformly tight.

3.3. Upper bounding the kernel Stein discrepancy

The usual goal in upper bounding the Stein discrepancy
is to provide a rate of convergence to P for particular
approximating sequences (µ

m

)

1
m=1

. Because we aim to
directly compute the KSD for arbitrary samples Q

n

, our
chief purpose in this section is to ensure that the KSD
S(µ

m

, T
P

,G
k

) will converge to zero when µ
m

is converg-
ing to P (Desideratum (i)).
Proposition 9 (KSD detects convergence). If k 2 C

(2,2)

b

and r log p is Lipschitz with E
P

[kr log p(Z)k2
2

] < 1,
then S(µ

m

, T
P

,G
k

) ! 0 whenever the Wasserstein dis-
tance dWk·k2

(µ
m

, P ) ! 0.

Proposition 9 applies to common kernels like the Gaussian,
Matérn, and IMQ kernels, and its proof in Section I pro-
vides an explicit upper bound on the KSD in terms of the
Wasserstein distance dWk·k2

. When Q
n

=

1

n

P
n

i=1

�
x

i

for

x
i

iid⇠ µ, (Liu et al., 2016, Thm. 4.1) further implies that
S(Q

n

, T
P

,G
k

) ) S(µ, T
P

,G
k

) at an O(n�1/2

) rate under
continuity and integrability assumptions on µ.
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4. Experiments
We next conduct an empirical evaluation of the KSD qual-
ity measures recommended by our theory, recording all
timings on an Intel Xeon CPU E5-2650 v2 @ 2.60GHz.
Throughout, we will refer to the KSD with IMQ base ker-
nel k(x, y) = (c2 + kx� yk2

2

)

� , exponent � = � 1

2

,
and c = 1 as the IMQ KSD. Code reproducing all ex-
periments can be found on the Julia (Bezanson et al.,
2014) package site https://jgorham.github.io/
SteinDiscrepancy.jl/.

4.1. Comparing discrepancies

Our first, simple experiment is designed to illustrate sev-
eral properties of the IMQ KSD and to compare its be-
havior with that of two preexisting discrepancy measures,
the Wasserstein distance dWk·k2

, which can be computed
for simple univariate targets (Vallender, 1974), and the
spanner graph Stein discrepancy of Gorham & Mackey
(2015). We adopt a bimodal Gaussian mixture with p(x) /
e�

1
2kx+�e1k2

2
+ e�

1
2kx��e1k2

2 and � = 1.5 as our target
P and generate a first sample point sequence i.i.d. from the
target and a second sequence i.i.d. from one component of
the mixture, N (��e

1

, I
d

). As seen in the left panel of
Figure 1 where d = 1, the IMQ KSD decays at an n�0.51

rate when applied to the first n points in the target sample
and remains bounded away from zero when applied to the
to the single component sample. This desirable behavior is
closely mirrored by the Wasserstein distance and the graph
Stein discrepancy.

The middle panel of Figure 1 records the time consumed
by the graph and kernel Stein discrepancies applied to the
i.i.d. sample points from P . Each method is given access to
d cores when working in d dimensions, and we use the re-
leased code of Gorham & Mackey (2015) with the default
Gurobi 6.0.4 linear program solver for the graph Stein dis-
crepancy. We find that the two methods have nearly iden-
tical runtimes when d = 1 but that the KSD is 10 to 1000

times faster when d = 4. In addition, the KSD is straight-
forwardly parallelized and does not require access to a lin-
ear program solver, making it an appealing practical choice
for a quality measure.

Finally, the right panel displays the optimal Stein func-

tions, g
j

(y) =

E
Q

n

[

b

j

(X)k(X,y)+r
x

j

k(X,y)

]

S(Q

n

,T
P

,G
k

)

, recovered by
the IMQ KSD when d = 1 and n = 10

3. The associated

test functions h(y) = (T
P

g)(y) =

P
d

j=1 E
Q

n

[

k

j

0(X,y)

]

S(Q

n

,T
P

,G
k

)

are
the mean-zero functions under P that best discriminate the
target P and the sample Q

n

. As might be expected, the
optimal test function for the single component sample fea-
tures large magnitude values in the oversampled region far
from the missing mode.

4.2. The importance of kernel choice

Theorem 6 established that kernels with rapidly decay-
ing tails yield KSDs that can be driven to zero by off-
target sample sequences. Our next experiment provides
an empirical demonstration of this issue for a multivari-
ate Gaussian target P = N (0, I

d

) and KSDs based on
the popular Gaussian (k(x, y) = e�kx�yk2

2/2) and Matérn
(k(x, y) = (1 +

p
3kx� yk

2

)e�
p
3kx�yk2 ) radial kernels.

Following the proof Theorem 6 in Section F, we construct
an off-target sequence (Q

n

)

n�1

that sends S(Q
n

, T
P

,G
k

)

to 0 for these kernel choices whenever d � 3. Specifically,
for each n, we let Q

n

=

1

n

P
n

i=1

�
x

i

where, for all i and j,
kx

i

k
2

 2n1/d

log n and kx
i

� x
j

k
2

� 2 log n. To select
these sample points, we independently sample candidate
points uniformly from the ball {x : kxk

2

 2n1/d

log n},
accept any points not within 2 log n Euclidean distance of
any previously accepted point, and terminate when n points
have been accepted.

For various dimensions, Figure 2 displays the result of
applying each KSD to the off-target sequence (Q

n

)

n�1

and an “on-target” sequence of points sampled i.i.d. from
P . For comparison, we also display the behavior of the
IMQ KSD which provably controls tightness and domi-
nates weak convergence for this target by Theorem 8. As
predicted, the Gaussian and Matérn KSDs decay to 0 under
the off-target sequence and decay more rapidly as the di-
mension d increases; the IMQ KSD remains bounded away
from 0.

4.3. Selecting sampler hyperparameters

The approximate slice sampler of DuBois et al. (2014)
is a biased MCMC procedure designed to accelerate in-
ference when the target density takes the form p(x) /
⇡(x)

Q
L

l=1

⇡(y
l

|x) for ⇡(·) a prior distribution on Rd and
⇡(y

l

|x) the likelihood of a datapoint y
l

. A standard slice
sampler must evaluate the likelihood of all L datapoints to
draw each new sample point x

i

. To reduce this cost, the
approximate slice sampler introduces a tuning parameter ✏
which determines the number of datapoints that contribute
to an approximation of the slice sampling step; an appropri-
ate setting of this parameter is imperative for accurate infer-
ence. When ✏ is too small, relatively few sample points will
be generated in a given amount of sampling time, yield-
ing sample expectations with high Monte Carlo variance.
When ✏ is too large, the large approximation error will pro-
duce biased samples that no longer resemble the target.

To assess the suitability of the KSD for tolerance parame-
ter selection, we take as our target P the bimodal Gaussian
mixture model posterior of (Welling & Teh, 2011). For an
array of ✏ values, we generated 50 independent approxi-
mate slice sampling chains with batch size 5, each with a

https://jgorham.github.io/SteinDiscrepancy.jl/
https://jgorham.github.io/SteinDiscrepancy.jl/
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Figure 1. Left: For d = 1, comparison of discrepancy measures for samples drawn i.i.d. from either the bimodal Gaussian mixture target
P or a single mixture component (see Section 4.1). Middle: On-target discrepancy computation time using d cores in d dimensions.
Right: For n = 103 and d = 1, the Stein functions g and discriminating test functions h = TP g which maximize the KSD.
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Figure 2. Gaussian and Matérn KSDs are driven to 0 by an off-
target sequence that does not converge to the target P = N (0, Id)
(see Section 4.2). The IMQ KSD does not share this deficiency.

budget of 148000 likelihood evaluations, and plotted the
median IMQ KSD and effective sample size (ESS, a stan-
dard sample quality measure based on asymptotic variance
(Brooks et al., 2011)) in Figure 3. ESS, which does not
detect Markov chain bias, is maximized at the largest hy-
perparameter evaluated (✏ = 10

�1), while the KSD is mini-
mized at an intermediate value (✏ = 10

�2). The right panel
of Figure 3 shows representative samples produced by sev-
eral settings of ✏. The sample produced by the ESS-selected
chain is significantly overdispersed, while the sample from
✏ = 0 has minimal coverage of the second mode due to

its small sample size. The sample produced by the KSD-
selected chain best resembles the posterior target. Using 4

cores, the longest KSD computation with n = 10

3 sample
points took 0.16s.

4.4. Selecting samplers

Ahn et al. (2012) developed two biased MCMC samplers
for accelerated posterior inference, both called Stochas-
tic Gradient Fisher Scoring (SGFS). In the full version of
SGFS (termed SGFS-f), a d⇥ d matrix must be inverted to
draw each new sample point. Since this can be costly for
large d, the authors developed a second sampler (termed
SGFS-d) in which only a diagonal matrix must be inverted
to draw each new sample point. Both samplers can be
viewed as discrete-time approximations to a continuous-
time Markov process that has the target P as its station-
ary distribution; however, because no Metropolis-Hastings
correction is employed, neither sampler has the target as
its stationary distribution. Hence we will use the KSD – a
quality measure that accounts for asymptotic bias – to eval-
uate and choose between these samplers.

Specifically, we evaluate the SGFS-f and SGFS-d samples
produced in (Ahn et al., 2012, Sec. 5.1). The target P is
a Bayesian logistic regression with a flat prior, conditioned
on a dataset of 104 MNIST handwritten digit images. From
each image, the authors extracted 50 random projections of
the raw pixel values as covariates and a label indicating
whether the image was a 7 or a 9. After discarding the first
half of sample points as burn-in, we obtained regression
coefficient samples with 5 ⇥ 10

4 points and d = 51 di-
mensions (including the intercept term). Figure 4 displays
the IMQ KSD applied to the first n points in each sample.
As external validation, we follow the protocol of Ahn et al.
(2012) to find the bivariate marginal means and 95% confi-
dence ellipses of each sample that align best and worst with
those of a surrogate ground truth sample obtained from a
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Figure 3. Left: Median hyperparameter selection criteria across 50 independent approximate slice sampler sample sequences (see Sec-
tion 4.3); IMQ KSD selects ✏ = 10�2; effective sample size selects ✏ = 10�1. Right: Representative approximate slice sampler
samples requiring 148000 likelihood evaluations with posterior equidensity contours overlaid; n is the associated sample size.

Hamiltonian Monte Carlo chain with 10

5 iterates. Both the
KSD and the surrogate ground truth suggest that the moder-
ate speed-up provided by SGFS-d (0.0017s per sample vs.
0.0019s for SGFS-f) is outweighed by the significant loss
in inferential accuracy. However, the KSD assessment does
not require access to an external trustworthy ground truth
sample. The longest KSD computation took 400s using 16

cores.

4.5. Beyond sample quality comparison

While our investigation of the KSD was motivated by the
desire to develop practical, trustworthy tools for sample
quality comparison, the kernels recommended by our the-
ory can serve as drop-in replacements in other inferential
tasks that make use of kernel Stein discrepancies.

4.5.1. ONE-SAMPLE HYPOTHESIS TESTING

Chwialkowski et al. (2016) recently used the KSD
S(Q

n

, T
P

,G
k

) to develop a hypothesis test of whether a
given sample from a Markov chain was drawn from a tar-
get distribution P (see also Liu et al., 2016). However, the
authors noted that the KSD test with their default Gaussian
base kernel k experienced a considerable loss of power as
the dimension d increased. We recreate their experiment
and show that this loss of power can be avoided by using
our default IMQ kernel with � = � 1

2

and c = 1. Fol-
lowing (Chwialkowski et al., 2016, Section 4) we draw
z
i

iid⇠ N (0, I
d

) and u
i

iid⇠ Unif[0, 1] to generate a sample
(x

i

)

n

i=1

with x
i

= z
i

+ u
i

e
1

for n = 500 and various di-
mensions d. Using the authors’ code (modified to include
an IMQ kernel), we compare the power of the Gaussian
KSD test, the IMQ KSD test, and the standard normal-
ity test of Baringhaus & Henze (1988) (B&H) to discern
whether the sample (x

i

)

500

i=1

came from the null distribution
P = N (0, I

d

). The results, averaged over 400 simula-

tions, are shown in Table 1. Notably, the IMQ KSD experi-
ences no power degradation over this range of dimensions,
thus improving on both the Gaussian KSD and the standard
B&H normality tests.

Table 1. Power of one sample tests for multivariate normality, av-
eraged over 400 simulations (see Section 4.5.1)

d=2 d=5 d=10 d=15 d=20 d=25
B&H 1.0 1.0 1.0 0.91 0.57 0.26

Gaussian 1.0 1.0 0.88 0.29 0.12 0.02
IMQ 1.0 1.0 1.0 1.0 1.0 1.0

4.5.2. IMPROVING SAMPLE QUALITY

Liu & Lee (2016) recently used the KSD S(Q
n

, T
P

,G
k

)

as a means of improving the quality of a sample. Specifi-
cally, given an initial sample Q

n

supported on x
1

, . . . , x
n

,
they minimize S( ˜Q

n

, T
P

,G
k

) over all measures ˜Q
n

sup-
ported on the same sample points to obtain a new sample
that better approximates P over the class of test functions
H = T

P

G
k

. In all experiments, Liu & Lee (2016) employ
a Gaussian kernel k(x, y) = e�

1
h

kx�yk2
2 with bandwidth

h selected to be the median of the squared Euclidean dis-
tance between pairs of sample points. Using the authors’
code, we recreate the experiment from (Liu & Lee, 2016,
Fig. 2b) and introduce a KSD objective with an IMQ ker-
nel k(x, y) = (1 +

1

h

kx� yk2
2

)

�1/2 with bandwidth se-
lected in the same fashion. The starting sample is given by
Q

n

=

1

n

P
n

i=1

�
x

i

for n = 100, various dimensions d, and
each sample point drawn i.i.d. from P = N (0, I

d

). For
the initial sample and the optimized samples produced by
each KSD, Figure 5 displays the mean squared error (MSE)
1

d

kE
P

[Z]� E
˜

Q

n

[X]k2
2

averaged across 500 independently
generated initial samples. Out of the box, the IMQ kernel
produces better mean estimates than the standard Gaussian.
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5. Related and future work
The score statistic of Fan et al. (2006) and the Gibbs sam-
pler convergence criteria of Zellner & Min (1995) detect
certain forms of non-convergence but fail to detect others
due to the finite number of test functions tested. For ex-
ample, when P = N (0, 1), the score statistic (Fan et al.,
2006) only monitors sample means and variances.

For an approximation µ with continuously differentiable
density r, Chwialkowski et al. (2016, Thm. 2.1) and
Liu et al. (2016, Prop. 3.3) established that if k is C

0

-
universal (Carmeli et al., 2010, Defn. 4.1) or integrally
strictly positive definite (ISPD, Stewart, 1976, Sec. 6) and
E
µ

[k
0

(X,X) + kr log

p(X)

r(X)

k2
2

] < 1 for k
0

, P
d

j=1

kj
0

,
then S(µ, T

P

,G
k

) = 0 only if µ = P . However, this prop-
erty is insufficient to conclude that probability measures
with small KSD are close to P in any traditional sense. In-
deed, Gaussian and Matérn kernels are C

0

universal and
ISPD, but, by Theorem 6, their KSDs can be driven to zero
by sequences not converging to P . On compact domains,

where tightness is no longer an issue, the combined results
of (Oates et al., 2016a, Lem. 4), (Fukumizu et al., 2007,
Lem. 1), and (Simon-Gabriel & Schölkopf, 2016, Thm. 55)
give conditions for a KSD to dominate weak convergence.

While assessing sample quality was our chief objective, our
results may hold benefits for other applications that make
use of Stein discrepancies or Stein operators. In particu-
lar, our kernel recommendations could be incorporated into
the Monte Carlo control functionals framework of Oates
et al. (2016b); Oates & Girolami (2015), the variational
inference approaches of Liu & Wang (2016); Liu & Feng
(2016); Ranganath et al. (2016), and the Stein generative
adversarial network approach of Wang & Liu (2016).

In the future, we aim to leverage stochastic, low-rank, and
sparse approximations of the kernel matrix and score func-
tion to produce KSDs that scale better with the number of
sample and data points while still guaranteeing control over
weak convergence. A reader may also wonder for which
distributions outside of P the KSD dominates weak conver-
gence. The following theorem, proved in Section J, shows
that no KSD with a C

0

kernel dominates weak convergence
when the target has a bounded score function.
Theorem 10 (KSD fails for bounded scores). If r log p is
bounded and k 2 C

(1,1)

0

, then S(Q
n

, T
P

,G
k

) ! 0 does
not imply Q

n

) P .

However, Gorham et al. (2016) developed convergence-
determining graph Stein discrepancies for heavy-tailed
targets by replacing the Langevin Stein operator T

P

with diffusion Stein operators of the form (T g)(x) =

1

p(x)

hr, p(x)(a(x) + c(x))g(x)i. An analogous construc-
tion should yield convergence-determining diffusion KSDs
for P outside of P . Our results also extend to targets P
supported on a convex subset X of Rd by choosing k to
satisfy p(x)k(x, ·) ⌘ 0 for all x on the boundary of X .
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