
Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

Guillaume Gautier

1 2

R

´

emi Bardenet

1

Michal Valko

2

Abstract

Determinantal point processes (DPPs) are distri-

butions over sets of items that model diversity us-

ing kernels. Their applications in machine learn-

ing include summary extraction and recommen-

dation systems. Yet, the cost of sampling from

a DPP is prohibitive in large-scale applications,

which has triggered an effort towards efficient

approximate samplers. We build a novel MCMC

sampler that combines ideas from combinatorial

geometry, linear programming, and Monte Carlo

methods to sample from DPPs with a fixed sam-

ple cardinality, also called projection DPPs. Our

sampler leverages the ability of the hit-and-run

MCMC kernel to efficiently move across convex

bodies. Previous theoretical results yield a fast

mixing time of our chain when targeting a distri-

bution that is close to a projection DPP, but not a

DPP in general. Our empirical results demon-

strate that this extends to sampling projection

DPPs, i.e., our sampler is more sample-efficient

than previous approaches which in turn translates

to faster convergence when dealing with costly-

to-evaluate functions, such as summary extrac-

tion in our experiments.

1. Introduction

Determinantal point processes (DPPs) are distributions

over configurations of points that encode diversity through

a kernel function. DPPs were introduced by Macchi (1975)

and have then found applications in fields as diverse as

probability (Hough et al., 2006), number theory (Rud-

nick & Sarnak, 1996), statistical physics (Pathria & Beale,

2011), Monte Carlo methods (Bardenet & Hardy, 2016),

and spatial statistics (Lavancier et al., 2015). In machine

learning, DPPs over finite sets have been used as a model

of diverse sets of items, where the kernel function takes the

1

Univ. Lille, CNRS, Centrale Lille, UMR 9189 — CRIStAL

2

INRIA Lille — Nord Europe, SequeL team. Correspondence to:

Guillaume Gautier <g.gautier@inria.fr>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017

by the author(s).

form of a finite matrix, see Kulesza & Taskar (2012) for a

comprehensive survey. Applications of DPPs in machine

learning (ML) since this survey also include recommenda-

tion tasks (Kathuria et al., 2016; Gartrell et al., 2017), text

summarization (Dupuy & Bach, 2016), or models for neu-

ral signals (Snoek et al., 2013).

Sampling generic DPPs over finite sets is expensive.

Roughly speaking, it is cubic in the number r of items

in a DPP sample. Moreover, generic DPPs are sometimes

specified through an n ⇥ n kernel matrix that needs diag-

onalizing before sampling, where n is the number of items

to pick from. In text summarization, r would be the de-

sired number of sentences for a summary, and n the num-

ber of sentences of the corpus to summarize. Thus, sam-

pling quickly becomes intractable for large-scale applica-

tions (Kulesza & Taskar, 2012). This has motivated re-

search on fast sampling algorithms. While fast exact al-

gorithms exist for specific DPPs such as uniform span-

ning trees (Aldous, 1990; Broder, 1989; Propp & Wil-

son, 1998), generic DPPs have so far been addressed with

approximate sampling algorithms, using random projec-

tions (Kulesza & Taskar, 2012), low-rank approximations

(Kulesza & Taskar, 2011; Gillenwater et al., 2012; Affandi

et al., 2013), or using Markov chain Monte Carlo tech-

niques (Kang, 2013; Li et al., 2016a; Rebeschini & Kar-

basi, 2015; Anari et al., 2016; Li et al., 2016b). In partic-

ular, there are polynomial bounds on the mixing rates of

natural MCMC chains with arbitrary DPPs as their limiting

measure; see Anari et al. (2016) for cardinality-constrained

DPPs, and Li et al. (2016b) for the general case.

In this paper, we contribute a non-obvious MCMC chain

to approximately sample from projection DPPs, which are

DPPs with a fixed sample cardinality. Leveraging a combi-

natorial geometry result by Dyer & Frieze (1994), we show

that sampling from a projection DPP over a finite set can be

relaxed into an easier continuous sampling problem with a

lot of structure. In particular, the target of this continu-

ous sampling problem is supported on the volume spanned

by the columns of the feature matrix associated to the pro-

jection DPP, a convex body also called a zonotope. This

zonotope can be partitioned into tiles that uniquely corre-

spond to DPP realizations, and the relaxed target distribu-

tion is flat on each tile. Previous MCMC approaches to

sampling projections DPPs can be viewed as attempting

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

moves between neighboring tiles. Using linear program-

ming, we propose an MCMC chain that moves more freely

across this tiling. Our chain is a natural transformation of a

fast mixing hit-and-run Markov chain (Lov´asz & Vempala,

2003) on the underlying zonotope; this empirically results

in more uncorrelated MCMC samples than previous work.

While the results of Anari et al. (2016) and their general-

ization by Li et al. (2016b) apply to projection DPPs, our

experiments support the fact that our chain mixes faster.

The rest of the paper is organized as follows. In Sec-

tion 2, we introduce projection DPPs and review existing

approaches to sampling. In Section 3, we introduce zono-

topes and we tailor the hit-and-run algorithm to our needs.

In Section 4, we empirically investigate the performance of

our MCMC kernel on synthetic graphs and on a summary

extraction task, before concluding in Section 5.

2. Sampling Projections DPPs

In this section, we introduce projection DPPs in two equiv-

alent ways, respectively following Hough et al. (2006),

Kulesza & Taskar (2012), and Lyons (2003). Both defi-

nitions shed a different light on the algorithms in Section 3.

2.1. Projection DPPs as Particular DPPs

Let E = [n] , {1, . . . n}. Let also K be a real symmetric

positive semidefinite n ⇥ n matrix, and for I ⇢ E, write

K
I

for the square submatrix of K obtained by keeping only

rows and columns indexed by I ⇢ E. The random subset

X ⇢ E is said to follow a DPP on E = {1, . . . , n} with

kernel K if

P [I ⇢ X] = detK
I

, 8I ⇢ E. (1)

Existence of the DPP described by (1) is guaranteed pro-

vided K has all its eigenvalues in [0, 1], see e.g., Kulesza

& Taskar (2012, Theorem 2.3). Note that (1) encodes

the repulsiveness of DPPs. In particular, for any distinct

i, j 2 [n],

P [{i, j} ⇢ X] =

�

�

�

�

K
ii

K
ij

K
ji

K
jj

�

�

�

�

= P [{i} 2 X]P [{j} 2 X]�K2

ij

 P [{i} 2 X]P [{j} 2 X] .

In other words, K
ij

encodes departure from independence.

Similarly, for constant K
ii

,K
jj

, the larger K2

ij

, the less

likely it is to have items i and j co-occur in a sample.

Projection DPPs are the DPPs such that the eigenvalues of

K are either 0 or 1, that is, K is the matrix of an orthogo-
nal projection. Projection DPPs are also sometimes called

elementary DPPs (Kulesza & Taskar, 2012). One can show

that samples from a projection DPP with kernel matrix K
almost surely contain r = Tr(K) points and that general

DPPs are mixtures of projection DPPs, see e.g., Kulesza &

Taskar (2012, Theorem 2.3).

2.2. Building Projection DPPs from Linear Matroids

Let r < n, and let A be a full-rank r ⇥ n real matrix with

columns (a

j

)

j2[n]

. The linear matroid M [A] is defined as

the pair (E,B), with E = [n] and

B =

n

B⇢ [n] : |B| = r, {a
j

}
j2B

are independent

o

. (2)

A set of indices B ⇢ [n] is in B if and only if it indexes

a basis of the columnspace of A. Because of this analogy,

elements of B are called bases of the matroid M [A]. Note

that elementary algebra yields that for all B

1

, B

2

2 B and

x 2 B

1

\B
2

, there exists an element y 2 B

2

\B
1

such that

(B

1

\ {x}) [{y} 2 B. (3)

Property (3) is known as the basis-exchange property. It is

used in the definition of general matroids (Oxley, 2003).

Lyons (2003) defines a projection DPP as the probabil-

ity measure on B that assigns to B 2 B a mass propor-

tional to | detB|2, where B , A
:B

is the square matrix

formed by the r columns of A indexed by B. Note that this

squared determinant is also the squared volume of the par-

allelotope spanned by the columns indexed by B. In this

light, sampling a projection DPP is akin to volume sam-

pling (Deshpande & Rademacher, 2010). Finally, observe

that the Cauchy-Binet formula gives the normalization

X

B2B
|detA

:B

|2 = detAAT

,

so that the probability mass assigned to B is

detAT

B:

detA
:B

detAAT

= det

h

AT

[AAT

]

�1

A
i

B

.

Letting

K = AT

[AAT

]

�1

A, (4)

gives the equivalence between Sections 2.1 and 2.2.

A fundamental example of DPP defined by a matroid is the

random set of edges obtained from a uniform spanning tree

(Lyons, 2003). Let G be a connected graph with r + 1 ver-

tices and n edges {e
i

}
i2[n]

. Let now A be the first r rows

of the vertex-edge incidence matrix of G. Then B ⇢ [n]

is a basis of M [A] if and only if {e
i

}
i2B

form a spanning

tree of G (Oxley, 2003). The transfer current theorem of

Burton & Pemantle (1993) implies that the uniform distri-

bution on B is a projection DPP, with kernel matrix (4).

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

2.3. On Projection DPPs and k-DPPs in ML

Projection DPPs are DPPs with realizations of constant car-

dinality k = r, where r is the rank of K. This constant

cardinality is desirable when DPPs are used in summary

extraction (Kulesza & Taskar, 2012; Dupuy & Bach, 2016)

and the size of the required output is predefined. Another

way of constraining the cardinality of a DPP is to condition

on the event |X| = k, which leads to the so-called k-DPPs

(Kulesza & Taskar, 2012). Projection DPPs and k-DPPs

are in general different objects. In particular, a k-DPP is

not a DPP in the sense of (1) unless its kernel matrix K
is a projection. In that sense, k-DPPs are non-DPP objects

that generalize projection DPPs. In this paper, we show that

projection DPPs can benefit from fast sampling methods. It

is not obvious how to generalize our algorithm to k-DPPs.

In ML practice, using projection DPPs is slightly different

from using a k-DPP. In some applications, typically with

graphs, the DPP is naturally a projection, such as uniform

spanning trees described in Section 2.2. But quite often,

kernels are built feature-by-feature. That is, for each data

item i 2 [n], a normalized vector of features �

i

2 Rr

is

chosen, a marginal relevance q

i

is assigned to item i, and a

matrix L is defined as

L
ij

=

p
q

i

�

i

�

j

p
q

j

. (5)

In text summarization, for instance, items i, j could be sen-

tences, q

i

the marginal relevance of sentence i to the user’s

query, and �

i

features such as tf-idf frequencies of a choice

of words, and one could draw from a k-DPP associated to

L through P [X = I] / detL
I

, see e.g., Kulesza & Taskar

(2012, Section 4.2.1).

Alternately, let A be the matrix with columns (

p
q

i

�

i

)

i2[r]

,

and assume r < n and A is full-rank. The latter can be en-

sured in practice by adding a small i.i.d. Gaussian noise to

each entry of A. The projection DPP with kernel K in (4)

will yield samples of cardinality r, almost surely, and such

that the corresponding columns of A span a large volume,

hence feature-based diversity. Thus, if the application re-

quires an output of length p, one can pick r = p, as we

do in Section A. Alternatively, if we want an output of size

approximately p, we can pick r � p and independently

thin the resulting sample, which preserves the DPP struc-

ture (Lavancier et al., 2015).

2.4. Exact Sampling of Projection DPPs

Hough et al. (2006) give an algorithm to sample general

DPPs, which is based on a subroutine to sample projection

DPPs. Consider a projection DPP with kernel K such that

Tr(K) = r, Hough et al.’s (2006) algorithm follows the

chain rule to sample a vector (x

1

, . . . , x

r

) 2 [n]

r

with suc-

cessive conditional densities

p (x

`+1

= i|x
1

= i

1

, . . . , x

`

= i

`

) / K
ii

�K
i,I

`

K�1

I

`

K
I

`

,i

,

where I

`

= {i
1

, . . . , i

`

}. Forgetting order, {x
1

, . . . , x

r

}
are a draw from the DPP (Hough et al., 2006, Proposition

19), see also Kulesza & Taskar (2012, Theorem 2.3) for a

detailed treatment of DPPs on [n].

While exact, this algorithm runs in O(nr

3

) operations and

requires computing and storing the n⇥n matrix K. Storage

can be diminished if one has access to A in (4), through

QR decomposition of AT

. Still, depending on n and r,

sampling can become intractable. This has sparked interest

in fast approximate sampling methods for DPPs, which we

survey in Section 2.5.

Interestingly, there exist fast and exact methods for sam-

pling some specific DPPs, which are not based on the ap-

proach of Hough et al. (2006). We introduced the DPP be-

hind uniform spanning trees on a connected graph G in

Section 2.2. Random walk algorithms such as the ones

by Aldous (1990), Broder (1989), and Propp & Wilson

(1998) sample uniform spanning trees in time bounded by

the cover time of the graph, for instance, which is O(r

3

)

and can be o(r

3

) (Levin et al., 2009), where G has r + 1

vertices. This compares favorably with the algorithm of

Hough et al. (2006) above, since each sample contains r

edges. The Aldous-Broder algorithm, for instance, starts

from an empty set T = ; and an arbitrary node x

0

, and

samples a simple random walk (X

t

)

t2N on the edges of

G, starting from X

0

= x

0

, and adding edge [X

t

, X

t+1

] to

T the first time it visits vertex X

t+1

. The algorithm stops

when each vertex has been seen at least once, that is, at the

cover time of the graph.

2.5. Approximate Sampling of Projection DPPs

There are two main sets of methods for approximate sam-

pling from general DPPs. The first set uses the general-

purpose tools from numerical algebra and the other is based

on MCMC sampling.

Consider K = CTC with C of size d ⇥ n, for some

d ⌧ n (Kulesza & Taskar, 2011), but still too large for

exact sampling using the method of Hough et al. (2006),

then Gillenwater et al. (2012) show how projecting C can

give an approximation with bounded error. When this de-

composition of the kernel is not possible, Affandi et al.

(2013) adapt Nystr¨om sampling (Williams & Seeger, 2001)

to DPPs and bound the approximation error for DPPs and

k-DPPs, which thus applies to projection DPPs.

Apart from general purpose approximate solvers, there ex-

ist MCMC-based methods for approximate sampling from

projection DPPs. In Section 2.2, we introduced the basis-
exchange property, which implies that once we remove an

element from a basis B

1

of a linear matroid, any other ba-

sis B

2

has an element we can take and add to B

1

to make

it a basis again. This means we can construct a connected

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

Algorithm 1 basisExchangeSampler
Input: Either A or K
Initialize i 0 and pick B

0

2 B as defined in (2)

while Not converged do

Draw u ⇠ U
[0,1]

if u <

1

2

then

Draw s ⇠ U
B

i

and t ⇠ U
[n]\B

i

P (B

i

\ {s}) [{t}
Draw u

0 ⇠ U
[0,1]

if u

0
<

Vol

2
(A:P)

Vol

2
(B

i

)+Vol

2
(A:P)

=

detK
P

detK
B

i

+detK
P

then

B

i+1

 P

else

B

i+1

 B

i

end if

else

B

i+1

 B

i

end if

i i+ 1

end while

graph G

be

with B as vertex set, and we add an edge between

two bases if their symmetric difference has cardinality 2.

G

be

is called the basis-exchange graph. Feder & Mihail

(1992) show that the simple random walk on G

be

has lim-

iting distribution the uniform distribution on B and mixes

fast, under conditions that are satisfied by the matroids in-

volved by DPPs.

If the uniform distribution on B is not the DPP we want to

sample from,

1

we can add an accept-reject step after each

move to make the desired DPP the limiting distribution of

the walk. Adding such an acceptance step and a probability

to stay at the current basis, Anari et al. (2016); Li et al.

(2016b) give precise polynomial bounds on the mixing time

of the resulting Markov chains. This Markov kernel on B
is given in Algorithm 1. Note that we use the acceptance

ratio of Li et al. (2016b). In the following, we make use of

the notation Vol defined as follows. For any P ⇢ [n],

Vol

2

(A
:P

) , detAT

P :

A
:P

/ detK
P

, (6)

which corresponds to the squared volume of the parallelo-

tope spanned by the columns of A indexed by P . In partic-

ular, for subsets P such that |P | > r or such that |P | = r,

P /2 B we have Vol

2

(A
:P

) = 0. However, for B 2 B,

Vol

2

(B) = | detA
:B

|2 > 0.

We now turn to our contribution, which finds its place in

this category of MCMC-based approximate DPP samplers.

1

It may not even be a DPP (Lyons, 2003, Corollary 5.5).

3. Hit-and-run on Zonotopes

Our main contribution is the construction of a fast-mixing

Markov chain with limiting distribution a given projection

DPP. Importantly, we assume to know A in (4).

Assumption 1. We know a full-rank r ⇥ n matrix A such
that K = AT

(AAT

)

�1A.

As discussed in Section 2.3, this is not an overly restrictive

assumption, as many ML applications start with building

the feature matrix A rather than the similarity matrix K.

3.1. Zonotopes

We define the zonotope Z(A) of A as the r-dimensional

volume spanned by the column vectors of A,

Z(A) = A[0, 1]

n

. (7)

As an affine transformation of the unit hypercube, Z(A)

is a r-dimensional polytope. In particular, for a basis B 2
B of the matroid M [A], the corresponding Z(B) is a r-

dimensional parallelotope with volume Vol(B) = |detB|,
see Figure 1(a). On the contrary, any P ⇢ [n], such that

|P | = r, P /2 B also yields a parallelotope Z(A
:P

), but

its volume is null. In the latter case, the exchange move in

Algorithm 1 will never be accepted and the state space of

the corresponding Markov chain is indeed B.

Our algorithm relies on the proof of the following.

Proposition 1 (see Dyer & Frieze, 1994 for details).

Vol(Z(A)) =

X

B2B
Vol(B) =

X

B2B
|detB| (8)

Proof. In short, for a good choice of c 2 Rn

, Dyer &

Frieze (1994) consider for any x 2 Z(A), the following

linear program (LP) noted P

x

(A, c),

min

y2Rn

c

T

y

s.t. Ay = x

0  y  1.

(9)

Standard LP results (Luenberger & Ye, 2008) yield that the

unique optimal solution y

⇤
of P

x

(A, c) takes the form

y

⇤
= A⇠(x) +B

x

u, (10)

with u 2 [0, 1]

r

and ⇠(x) 2 {0, 1}n such that ⇠(x)

i

= 0

for i 2 B

x

. In case the choice of B

x

is ambiguous, Dyer &

Frieze (1994) take the smallest in the lexicographic order.

Decomposition (10) allows locating any point x 2 Z(A)

as falling inside a uniquely defined parallelotope Z(B
x

)

shifted by ⇠(x). Manipulating the optimality conditions of

(9), Dyer & Frieze (1994) prove that each basis B can be

realized as a B

x

for some x, and that x

0 2 Z(B
x

)) B

x

=

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

(a) (b) (c)

Figure 1. (a) The dashed blue lines define the contour of Z(A) where A = (1 2 0 �1
0 1 2 1). Each pair of column vectors corresponds to a

parallelogram, the green one is associated to Z(B) with B = {2, 4}. (b) A step of hit-and-run on the same zonotope. (c) Representation

of ⇡v for the same zonotope.

B

x

0
. This allows to write Z(A) as the tiling of all Z(B),

B 2 B, with disjoint interiors. This leads to Proposition 1.

Note that c is used to fix the tiling of the zonotope, but the

map x 7! B

x

depends on this linear objective. Therefore,

the tiling of Z(A) is may not be unique. An arbitrary c

gives a valid tiling, as long as there are no ties when solv-

ing (9). Dyer & Frieze (1994) use a nonlinear mathematical

trick to fix c. In practice (Section 4.1), we generate a ran-

dom Gaussian c once and for all, which makes sure no ties

appear during the execution, with probability 1.

Remark 1. We propose to interpret the proof of Proposi-
tion 1 as a volume sampling algorithm: if one manages to
sample an x uniformly on Z(A), and then extracts the cor-
responding basis B = B

x

by solving (9), then B is drawn
with probability proportional to Vol(B) = | detB|.
Remark 1 is close to what we want, as sampling from a pro-

jection DPP under Assumption 1 boils down to sampling

a basis B of M [A] proportionally to the squared volume

| detB|2 (Section 2.2). In the rest of this section, we ex-

plain how to efficiently sample x uniformly on Z(A), and

how to change the volume into its square.

3.2. Hit-and-run and the Simplex Algorithm

Z(A) is a convex set. Approximate uniform sampling on

large-dimensional convex bodies is one of the core ques-

tions in MCMC, see e.g., Cousins & Vempala (2016) and

references therein. The hit-and-run Markov chain (Turˇcin,

1971; Smith, 1984) is one of the preferred practical and

theoretical solutions (Cousins & Vempala, 2016).

We describe the Markov kernel P (x, z) of the hit-and-run

Markov chain for a generic target distribution ⇡ supported

on a convex set C. Sample a point y uniformly on the unit

sphere centered at x. Letting d = y � x, this defines the

line D
x

, {x+ ↵d ; ↵ 2 R}. Then, sample z from any

Markov kernel Q(x, ·) supported on D
x

that leaves the re-

striction of ⇡ to D
x

invariant. In particular, Metropolis-

Hastings kernel (MH, Robert & Casella 2004) is often used

with uniform proposal on D
x

, which favors large moves

across the support C of the target, see Figure 1(b). The re-

sulting Markov kernel leaves ⇡ invariant, see e.g., Ander-

sen & Diaconis (2007) for a general proof. Furthermore,

the hit-and-run Markov chain has polynomial mixing time

for log concave ⇡ (Lov´asz & Vempala, 2003, Theorem 2.1).

To implement Remark 1, we need to sample from ⇡

u

/
1Z(A)

. In practice, we can choose the secondary Markov

kernel Q(x, ·) to be MH with uniform proposal on D
x

, as

long as we can determine the endpoints x+↵

m

(y�x) and

x+↵

M

(y�x) of D
x

\Z(A). In fact, zonotopes are tricky

convex sets, as even an oracle saying whether a point be-

longs to the zonotope requires solving LPs (basically, it is

Phase I of the simplex algorithm). As noted by Lov´asz &

Vempala (2003, Section 4.4), hit-and-run with LP is the

state-of-the-art for computing the volume of large-scale

zonotopes. Thus, by definition of Z(A), this amounts to

solving two more LPs: ↵

m

is the optimal solution to the

linear program

min

�2Rn

,↵2R
↵

s.t. x+ ↵d = A�

0  �  1,

(11)

while ↵

M

is the optimal solution of the same linear pro-

gram with objective �↵. Thus, a combination of hit-and-

run and LP solvers such as Dantzig’s simplex algorithm

(Luenberger & Ye, 2008) yields a Markov kernel with in-

variant distribution 1Z(A)

, summarized in Algorithm 2.

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

Algorithm 2 unifZonoHitAndRun
Input: A
Initialization:

i 0

x

0

 Au with u ⇠ U
[0,1]

n

while Not converged do

Draw d ⇠ USr�1
and let D

x

i

, x

i

+ Rd
Draw ex ⇠ UD

x

i

\Z(A)

#Solve 2 LPs, see (11)

x

i+1

 ex

i i+ 1

end while

Algorithm 3 extractBasis
Input: A, c, x 2 Z(A)

Compute y

⇤
the opt. solution of P

x

(A, c) #1 LP, see (9)

B {i ; y⇤
i

2]0, 1[}
return B

The acceptance in MH is 1 due to our choice of the pro-

posal and the target. By the proof of Proposition 1, running

Algorithm 2, taking the output chain (x

i

) and extracting

the bases (B

x

i

) with Algorithm 3, we obtain a chain on B
with invariant distribution proportional to the volume of B.

In terms of theoretical performance, this Markov chain in-

herits Lov´asz & Vempala’s (2003) mixing time as it is a

simple transformation of hit-and-run targeting the uniform

distribution on a convex set. We underline that this is not

a pathological case and it already covers a range of appli-

cations, as changing the feature matrix A yields another

zonotope, but the target distribution on the zonotope stays

uniform. Machine learning practitioners do not use volume

sampling for diversity sampling yet, but nothing prevents

it, as it already encodes the same feature-based diversity as

squared volume sampling (i.e., DPPs). Nevertheless, our

initial goal was to sample from a projection DPP with ker-

nel K under Assumption 1. We now modify the Markov

chain just constructed to achieve that.

3.3. From Volume to Squared Volume

Consider the probability density function on Z(A)

⇡

v

(x) =

|detB
x

|
detAAT

1Z(A)

(x),

represented on our example in Figure 1(c). Observe, in

particular, that ⇡

v

is constant on each Z(B). Running

the hit-and-run algorithm with this target instead of ⇡

u

in

Section 3.2, and extracting bases using Algorithm 3 again,

we obtain a Markov chain on B with limiting distribution

⌫(B) proportional to the squared volume spanned by col-

umn vectors of B, as required. To see this, note that ⌫(B)

is the volume of the “skyscraper” built on top of Z(B) in

Figure 1(c), that is Vol(B)⇥Vol(B).

Algorithm 4 volZonoHitAndRun
Input: A, c, x, B

Draw d ⇠ USr�1
and let D

x

, x+ Rd
Draw ex ⇠ UD

x

\Z(A)

#Solve 2 LPs, see (11)

e

B extractBasis(A, c, ex) #Solve 1 LP, see (9)

Draw u ⇠ U
[0,1]

if u <

Vol(

eB)

Vol(B)

=

�

�

�

detA: eB
detA:B

�

�

�

then

return ex,

e

B

else

return x,B

end if

Algorithm 5 zonotopeSampler
Input: A, c

Initialization:

i 0

x

i

 Au, with u ⇠ U
[0,1]

n

B

i

 extractBasis(A, c, x

i

)
while Not converged do

x

i+1

, B

i+1

 volZonoHitAndRun(A, c, x

i

, B

i

)
i i+ 1

end while

The resulting algorithm is shown in Algorithm 5. Note the

acceptance ratio in the subroutine Algorithm 4 compared to

Algorithm 2, since the target of the hit-and-run algorithm

is not uniform anymore.

3.4. On Base Measures

As described in Section 2.3, it is common in ML to specify

a marginal relevance q

i

of each item i 2 [n], i.e., the base
measure of the DPP. Compared to a uniform base measure,

this means replacing A by

eA with columns ea

i

=

p
q

i

a

i

.

Contrary to A, in Algorithm 4, both the zonotope and the

acceptance ratio are scaled by the corresponding products

of

p
q

i

s. We could equally well define

eA by multiplying

each column of A by q

i

instead of its square root, and

leave the acceptance ratio in Algorithm 4 use columns of

the original A. By the arguments in Section 3.3, the chain

(B

i

) would leave the same projection DPP invariant. In

particular, we have some freedom in how to introduce the

marginal relevance q

i

, so we can choose the latter solution

that simply scales the zonotope and its tiles to preserve

outer angles, while using unscaled volumes to decide ac-

ceptance. This way, we do not create harder-to-escape or

sharper corners for hit-and-run, which could lead the algo-

rithm to be stuck for a while (Cousins & Vempala, 2016,

Section 4.2.1). Finally, since hit-and-run is efficient at

moving across convex bodies (Lov´asz & Vempala, 2003),

the rationale is that if hit-and-run was empirically mixing

fast before scaling, its performance should not decrease.

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

4. Experiments

We investigate the behavior of our Algorithm 5 on synthetic

graphs in Section 4.1, in summary extraction in Section 4.2,

and on MNIST in Appendix A.

4.1. Non-uniform Spanning Trees

We compare Algorithm 1 studied by Anari et al. (2016); Li

et al. (2016b) and our Algorithm 5 on two types of graphs,

in two different settings. The graphs we consider are the

complete graph K

10

with 10 vertices (and 45 edges) and

a realization BA(20, 2) of a Barab´asi-Albert graph with 20

vertices and parameter 2. We chose BA as an example of

structured graph, as it has the preferential attachment prop-

erty present in social networks (Barab´asi & Albert, 1999).

The input matrix A is a weighted version of the vertex-edge

incidence matrix of each graph for which we keep only

the 9 (resp. 19) first rows, so that it satisfies Assumption 1.

For more generality, we introduce a base measure, as de-

scribed in Section 2.3 and 3.4, by reweighting the columns

of A with i.i.d. uniform variables in [0, 1]. Samples from

the corresponding projection DPP are thus spanning trees

drawn proportionally to the products of their edge weights.

For Algorithm 5, a value of the linear objective c is drawn

once and for all, for each graph, from a standard Gaussian

distribution. This is enough to make sure no ties appear

during the execution, as mentioned in Section 3.1. This

linear objective is kept fixed throughout the experiments

so that the tiling of the zonotope remains the same. We

run both algorithms for 70 seconds, which corresponds to

roughly 50 000 iterations of Algorithm 5. Moreover, we

run 100 chains in parallel for each of the two algorithms.

For each of the 100 repetitions, we initialize the two al-

gorithms with the same random initial basis, obtained by

solving (9) once, with x = Au and u ⇠ U
[0,1]

n

. For both

graphs, the total number |B| of bases is of order 10

8

, so

computing total variation distances is impractical. We in-

stead compare Algorithms 1 and 5 based on the estima-

tion of inclusion probabilities P [S ⇢ B] for various sub-

sets S ⇢ [n] of size 3. We observed similar behaviors

across 3-subsets, so we display here the typical behavior

on a 3-subset.

The inclusion probabilities are estimated via a running av-

erage of the number of bases containing the subsets S. Fig-

ures 2(a) and 3(a) show the behavior of both algorithms

vs. MCMC iterations for the complete graph K

10

and a re-

alization of BA(20, 2), respectively. Figures 2(b) and 3(b)

show the behavior of both algorithms vs. wall-clock time

for the complete graph K

10

and a realization of BA(20, 2),

respectively. In these four figures, bold curves correspond

to the median of the relative errors, whereas the frontiers

of colored regions indicate the first and last deciles of the

relative errors.

In Figures 2(c) and 3(c) we compute the Gelman-Rubin

statistic (Gelman & Rubin, 1992), also called the potential

scale reduction factor (PSRF). We use the PSRF implemen-

tation of CODA (Plummer et al., 2006) in R, on the 100 bi-

nary chains indicating the presence of the typical 3-subset

in the current basis.

In terms of number of iterations, our Algorithm 5 clearly

mixes faster. Relatedly, we observed typical acceptance

rates for our algorithm an order of magnitude larger than

Algorithm 1, while simultaneously attempting more global

moves than the local basis-exchange moves of Algorithm 1.

The high acceptance is partly due to the structure of the

zonotope: the uniform proposal in the hit-and-run algo-

rithm already favors bases with large determinants, as the

length of the intersection of D

x

in Algorithm 4 with any

Z(B) is an indicator of its volume, see also Figure 1(b).

Under the time-horizon constraint, see Figures 2(b) and

3(b), Algorithm 1 has time to perform more than 10

6

it-

erations compared to roughly 50 000 steps for our chain.

The acceptance rate of Algorithm 5 is still 10 times larger,

but the time required to solve the linear programs at each

MCMC iteration clearly hinders our algorithm in terms

of CPU time. Both algorithms are comparable in perfor-

mance, but given its large acceptance, we would expect our

algorithm to perform better if it was allowed to do even

only 10 times more iterations. Now this is implementation-

dependent, and our current implementation of Algorithm 5

is relatively naive, calling the simplex algorithm in the

GLPK (Oki, 2012) solver with CVXOPT (Andersen et al.,

2008) from Python. We think there are big potential speed-

ups to realize in the integration of linear programming

solvers in our code. Moreover, we initialize our simplex

algorithms randomly, while the different LPs we solve are

related, so there may be additional smart mathematical

speed-ups in using the path followed by one simplex in-

stance to initialize the next.

Finally, we note that the performance of our Algorithm 5

seems stable and independent of the structure of the graph,

while the performance of the basis-exchange Algorithm 1

seems more graph-dependent. Further investigation is

needed to make stronger statements.

4.2. Text Summarization

Looking at Figures 2 and 3, our algorithm will be most

useful when the bottleneck is mixing vs. number of itera-

tions rather than CPU time. For instance, when integrat-

ing a costly-to-evaluate function against a projection DPP,

the evaluation of the integrand may outweigh the cost of

one iteration. To illustrate this, we adapt an experiment of

Kulesza & Taskar (2012, Section 4.2.1) on minimum Bayes

risk decoding for summary extraction. The idea is to find a

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

(a) Relative error vs. MCMC iterations. (b) Relative error vs. wall-clock time. (c) PSRF vs. MCMC iterations.

Figure 2. Comparison of Algorithms 1 and 5 on the complete graph K10.

(a) Relative error vs. MCMC iterations. (b) Relative error vs. wall-clock time. (c) PSRF vs. MCMC iterations.

Figure 3. Comparison of Algorithms 1 and 5 on a realization of BA(20, 2).

subset Y of sentences of a text that maximizes

1

R

R

X

r=1

ROUGE-1F (Y, Y

r

) , (12)

where (Y

r

)

r

are sampled from a projection DPP. ROUGE-

1F is a measure of similarity of two sets of sentences. We

summarize this 64-sentence article as a subset of 11 sen-

tences. In this setting, evaluating once ROUGE-1F in the

sum (12) takes 0.1s on a modern laptop, while one itera-

tion of our algorithm is 10

�3

s. Our Algorithm 5 can thus

compute (12) for R = 10 000 in about the same CPU time

as Algorithm 1, an iteration of which costs 10

�5

s. We

show in Figure 4 the value of (12) for 3 possible summaries

�

Y

(i)

�

3

i=1

chosen uniformly at random in B, over 50 inde-

pendent runs. The variance of our estimates is smaller, and

the number of different summaries explored is about 50%,

against 10% for Algorithm 1. Evaluating (12) using our al-

gorithm is thus expected to be closer to the maximum of

the underlying integral. Details are given in Appendix B.

5. Discussion

We proposed a new MCMC kernel with limiting distribu-

tion being an arbitrary projection DPP. This MCMC kernel

leverages optimization algorithms to help making global

moves on a convex body that represents the DPP. We pro-

vided empirical results supporting its fast mixing when

compared to the state-of-the-art basis-exchange chain of

Anari et al. (2016); Li et al. (2016b). Future work will fo-

cus on an implementation: while our MCMC chain mixes

faster, when compared based on CPU time our algorithm

suffers from having to solve linear programs at each iter-

Figure 4. Summary extraction results

ation. We note that even answering the question whether

a given point belongs to a zonotope involves linear pro-

gramming, so that chord-finding procedures used in slice

sampling (Neal, 2003, Sections 4 and 5) would not provide

significant computational savings.

We also plan to investigate theoretical bounds on the mix-

ing time of our Algorithm 4. We can build upon the work

of Anari et al. (2016), as our Algorithm 4 is also a weighted

extension of our Algorithm 2, and the polynomial bounds

for the vanilla hit-and-run algorithm (Lov´asz & Vempala,

2003) already apply to the latter. Note that while not tar-

geting a DPP, our Algorithm 2 already samples items with

feature-based repulsion, and could be used independently

if the determinantal aspect is not crucial to the application.

Acknowledgments The research presented was supported by

French Ministry of Higher Education and Research, CPER Nord-

Pas de Calais/FEDER DATA Advanced data science and tech-

nologies 2015-2020, and French National Research Agency

projects EXTRA-LEARN (n.ANR-14-CE24-0010-01) and BOB

(n.ANR-16-CE23-0003).

http://www.slate.com/articles/health_and_science/science/2017/04/explaining_science_won_t_fix_information_illiteracy.html

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

References

Affandi, R. H., Kulesza, A., Fox, E. B., and Taskar,

B. Nystr¨om approximation for large-scale determinantal

processes. International Conference on Artificial Intelli-
gence and Statistics, 31:85–98, 2013.

Aldous, D. J. The random walk construction of uniform

spanning trees and uniform labelled trees. SIAM Journal
on Discrete Mathematics, 3(4):450–465, 1990.

Anari, N., Gharan, S. O., and Rezaei, A. Monte-Carlo

Markov chain algorithms for sampling strongly Rayleigh

distributions and determinantal point processes. In Con-
ference on Learning Theory, pp. 23–26, 2016.

Andersen, H. C. and Diaconis, P. W. Hit and run as a uni-

fying device. Journal de la Société Française de Statis-
tique, 148(4):5–28, 2007.

Andersen, M., Dahl, J., and Vandenberghe, L. CVXOPT:

A python package for convex optimization, 2008.

Barab´asi, A.-L. and Albert, R. Emergence of scaling in

random networks. Science, 286:11, 1999.

Bardenet, R. and Hardy, A. Monte-Carlo with determinan-

tal point processes. arXiv preprint arXiv:1605.00361,

2016.

Broder, A. Generating random spanning trees. In Founda-
tions of Computer Science, 1989., 30th Annual Sympo-
sium on, pp. 442–447. IEEE, 1989.

Burton, R. and Pemantle, R. Local characteristics, entropy

and limit theorems for spanning trees and domino tilings

via transfer impedances. The Annals of Probability, 21:

1329–1371, 1993.

Cousins, B. and Vempala, S. A practical volume algo-

rithm. Mathematical Programming Computation, 8(2):

133–160, 2016.

Deshpande, A. and Rademacher, L. Efficient volume sam-

pling for row/column subset selection. In Foundations of
Computer Science, 2010.

Dupuy, C. and Bach, F. Learning determinantal

point processes in sublinear time. arXiv preprint
arXiv:1610.05925, 2016.

Dyer, M. and Frieze, A. Random walks, totally unimodu-

lar matrices, and a randomised dual simplex algorithm.

Mathematical Programming, 64(1-3):1–16, 1994.

Feder, T. and Mihail, M. Balanced matroids. Proceedings
of the twenty-fourth annual ACM, pp. 26–38, 1992.

Gartrell, M., Paquet, U., and Koenigstein, N. Low-rank

factorization of determinantal point processes for rec-

ommendation. In AAAI Conference on Artificial Intel-
ligence, pp. 1912–1918, 2017.

Gelman, A. and Rubin, D. B. Inference from iterative sim-

ulation using multiple sequences. Statist. Sci., 7(4):457–

472, 11 1992.

Gillenwater, J., Kulesza, A., and Taskar, B. Discovering

diverse and salient threads in document collections. In

Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language
Learning, pp. 710–720, 2012.

Hough, J. B., Krishnapur, M., Peres, Y., and Vir´ag, B.

Determinantal processes and independence. Probability
surveys, 2006.

Kang, B. Fast determinantal point process sampling with

application to clustering. In Neural Information Process-
ing Systems, pp. 2319–2327, 2013.

Kathuria, T., Deshpande, A., and Kohli, P. Batched gaus-

sian process bandit optimization via determinantal point

processes. Neural Information Processing Systems, pp.

pp. 4206–4214, 2016.

Kulesza, A. and Taskar, B. Determinantal point processes

for machine learning. Foundations and Trends in Ma-
chine Learning, 5(2-3):123–286, 2012.

Kulesza, A. and Taskar, B. k-dpps: Fixed-size determinan-

tal point processes. International Conference on Ma-
chine Learning, pp. 1193–1200, 2011.

Lavancier, F., Møller, J., and Rubak, E. Determinantal

point process models and statistical inference. Jour-
nal of the Royal Statistical Society. Series B: Statistical
Methodology, 77(4):853–877, 2015.

Levin, D. A., Peres, Y., and Wilmer, E. L. Markov chains
and mixing times. American Mathematical Soc., 2009.

Li, C., Jegelka, S., and Sra, S. Efficient sampling for k-

determinantal point processes. In Artificial Intelligence
and Statistics, pp. 1328–1337, 2016a.

Li, C., Jegelka, S., and Sra, S. Fast mixing markov chains

for strongly rayleigh measures, dpps, and constrained

sampling. In Neural Information Processing Systems,

pp. 4188–4196, 2016b.

Liang, D. and Paisley, J. Landmarking manifolds with

gaussian processes. In International Conference on Ma-
chine Learning, pp. 466–474, 2015.

Loper, E. and Bird, S. NLTK: The natural language toolkit.

In Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computa-
tional Linguistics, pp. 63–70, 2002.

Zonotope Hit-and-run for Efficient Sampling from Projection DPPs

Lov´asz, L. and Vempala, S. Hit and run is fast and fun.

Technical Report MSR-TR-2003-05, 2003.

Luenberger, D. G. and Ye, Y. Linear and nonlinear pro-
gramming. Springer, fourth edition, 2008.

Lyons, R. Determinantal probability measures. Publica-
tions Mathématiques de l’Institut des Hautes Études Sci-
entifiques, 2003.

Macchi, O. The coincidence approach to stochastic point

processes. Advances in Applied Probability, 7(1):83–

122, 1975.

Neal, R. M. Slice sampling. Annals of statistics, pp. 705–

741, 2003.

Oki, E. Gnu linear programming kit, version 4.61. In

Linear Programming and Algorithms for Communica-
tion Networks - A Practical Guide to Network Design,
Control, and Management. 2012.

Oxley, J. What is a matroid? Cubo Matemática Educa-
cional, 5.3:179–218, 2003.

Pathria, R. K. and Beale, P. D. Statistical Mechanics. 2011.

Plummer, M., Best, N., Cowles, K., and Vines, K. Coda:

Convergence diagnosis and output analysis for MCMC.

R News, 6(1):7–11, 2006.

Propp, J. G. and Wilson, D. B. How to get a perfectly ran-

dom sample from a generic Markov chain and generate

a random spanning tree of a directed graph. Journal of
Algorithms, 27(2):170–217, 1998.

Rebeschini, P. and Karbasi, A. Fast mixing for discrete

point processes. In Conference on Learning Theory, pp.

1480–1500, 2015.

Robert, C. P. and Casella, G. Monte-Carlo Statistical Meth-
ods. Springer-Verlag, New York, 2004.

Rudnick, Z. and Sarnak, P. Zeros of principal L-functions

and random matrix theory. Duke Mathematical Journal,
81(2):269–322, 1996.

Smith, R. L. Efficient Monte-Carlo procedures for gener-

ating points uniformly distributed over bounded regions.

Operations Research, 32:1296–1308, 1984.

Snoek, J., Zemel, R., and Adams, R. P. A determinan-

tal point process latent variable model for inhibition in

neural spiking data. In Neural Information Processing
Systems, pp. 1932–1940, 2013.

Turˇcin, V. F. On the computation of multidimensional inte-

grals by the monte-carlo method. Theory of Probability
& Its Applications, 16(4):720–724, 1971.

Williams, C. and Seeger, M. Using the Nystr¨om method to

speed up kernel machines. In Neural Information Pro-
cessing Systems, pp. 682–688, 2001.

