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A Eigen-analysis of G
In this section, we give a thorough analysis of the spectral
properties of the matrix

G =

"
⇢I ��1/2 bAT

�1/2 bA � bC

#
, (20)

which is critical in analyzing the convergence of the PDBG,
SAGA and SVRG algorithms for policy evaluation. Here
� = �

w

/�
✓

is the ratio between the dual and primal step
sizes in these algorithms. For convenience, we use the fol-
lowing notation:

L , �
max

(

bAT bC�1 bA),

µ , �
min

(

bAT bC�1 bA).

Under Assumption 1, they are well defined and we have
L � µ > 0.

A.1 Diagonalizability of G

First, we examine the condition of � that ensures the diag-
onalizability of the matrix G. We cite the following result
from (Shen et al., 2008).
Lemma 1. Consider the matrix A defined as

A =


A �B>

B C

�
, (21)

where A ⌫ 0, C � 0, and B is full rank. Let ⌧ = �
min

(C),
� = �

max

(A) and � = �
max

(B>C�1B). If ⌧ > �+2

p
⌧�

holds, then A is diagonalizable with all its eigenvalues real
and positive.

Applying this lemma to the matrix G in (20), we have

⌧ = �
min

(� bC) = ��
min

(

bC),

� = �
max

(⇢I) = ⇢,

� = �
max

�
�1/2 bA>

(� bC)

�1�1/2 bA
�
= �

max

(

bA> bC�1 bA).

The condition ⌧ > � + 2

p
⌧� translates into

��
min

(

bC) > ⇢+ 2

q
��

min

(

bC)�
max

(

bA> bC�1 bA),

which can be solved as

p
� >

q
�
max

(

bA> bC�1 bA)+
q
⇢+�

max

(

bA> bC�1 bA)
q
�
min

(

bC)

.

In the rest of our discussion, we choose � to be

� =

8

⇣
⇢+ �

max

� bA> bC�1 bA
�⌘

�
min

(

bC)

=

8(⇢+ L)

�
min

(

bC)

, (22)

which satisfies the inequality above.

A.2 Analysis of eigenvectors

If the matrix G is diagonalizable, then it can be written as

G = Q⇤Q�1,

where ⇤ is a diagonal matrix whose diagonal entries are the
eigenvalues of G, and Q consists of it eigenvectors (each
with unit norm) as columns. Our goal here is to bound
(Q), the condition number of the matrix Q. Our analy-
sis is inspired by Liesen & Parlett (2008). The core is the
following fundamental result from linear algebra.
Theorem 4 (Theorem 5.1.1 of Gohberg et al. (2006)). Sup-
pose G is diagonalizable. If H is a symmetric positive def-
inite matrix and HG is symmetric, then there exist a com-
plete set of eigenvectors of G, such that they are orthonor-
mal with respect to the inner product induced by H:

Q>HQ = I. (23)

If H satisfies the conditions in Theorem 4, then we have
H = Q�>Q�1, which implies (H) = 2

(Q). Therefore,
in order to bound (Q), we only need to find such an H
and analyze its conditioning. To this end, we consider the
matrix of the following form:

H =

"
(� � ⇢)I

p
� bA>

p
� bA � bC � �I

#
. (24)

It is straightforward to check that HG is a symmetric ma-
trix. The following lemma states the conditions for H be-
ing positive definite.
Lemma 2. If � � ⇢ > 0 and � bC � �I � �

��⇢

bA bA> � 0,
then H is positive definite.

Proof. The matrix H in (24) admits the following Schur
decomposition:

H =

"
I 0p
�

��⇢

bA I

# 
(� � ⇢)I

S

� "
I

p
�

��⇢

bA>

0 I

#
,

where S = � bC� �I� �

��⇢

bA bA>. Thus H is congruence to
the block diagonal matrix in the middle, which is positive
definite under the specified conditions. Therefore, the ma-
trix H is positive definite under the same conditions.

In addition to the choice of � in (22), we choose � to be

� = 4(⇢+ L). (25)

It is not hard to verify that this choice ensures ��⇢ > 0 and
� bC� �I� �

��⇢

bA bA> � 0 so that H is positive definite. We
now derive an upper bound on the condition number of H .
Let � be an eigenvalue of H and [xT yT ]T be its associated
eigenvector, where kxk2 + kyk2 > 0. Then it holds that

(� � ⇢)x+

p
� bAT y = �x, (26)
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p
� bAx+ (� bC � �I)y = �y. (27)

From (26), we have

x =

p
�

�� � + ⇢
bAT y. (28)

Note that �� � + ⇢ 6= 0 because if �� � + ⇢ = 0 we have
bAT y = 0 so that y = 0 since bA is full rank. With y = 0 in
(27), we will have bAx = 0 so that x = 0, which contradicts
the assumption that kxk2 + kyk2 > 0.

Substituting (28) into (27) and multiplying both sides with
yT , we obtain the following equation after some algebra

�2 � p�+ q = 0, (29)

where

p , � � ⇢+
yT (� bC � �I)y

kyk2 ,

q , (� � ⇢)
yT (� bC � �I)y

kyk2 � �
yT bA bAT y

kyk2 .

We can verify that both p and q are positive with our choice
of � and �. The roots of the quadratic equation in (29) are
given by

� =

p±
p
p2 � 4q

2

. (30)

Therefore, we can upper bound the largest eigenvalue as

�
max

(H)  p+
p
p2 � 4q

2

 p = � � ⇢� � + �
yT bCy

kyk2

 �⇢+ ��
max

(

bC)

= �⇢+
8(⇢+ L)

�
min

(

bC)

�
max

(

bC)

 8(⇢+ L)( bC). (31)

Likewise, we can lower bound the smallest eigenvalue:

�
min

(H) � p�
p
p2 � 4q

2

� p� p+ 2q/p

2

=

q

p

=

�
⇣
(� � ⇢)y

T b
Cy

kyk2

� y

T b
A

b
A

T
y

kyk2

⌘
� �(� � ⇢)

�⇢+ � y

T b
Cy

kyk2

(a)

�
�
⇣
(� � ⇢)y

T b
Cy

kyk2

� y

T b
A

b
A

T
y

kyk2

⌘
� �(� � ⇢)

� y

T b
Cy

kyk2

= � � ⇢� yT bA bAT y

yT bCy
� �(� � ⇢)

�
· 1

y

T b
Cy

kyk2

(b)

� � � ⇢� L� �(� � ⇢)

��
min

(

bC)

(c)

= (⇢+ L)

✓
3� 3⇢+ 4L

2(⇢+ L)

◆

� ⇢+ L, (32)

where step (a) uses the fact that both the numerator and
denominator are positive, step (b) uses the fact

L , �
max

⇣
bAT bC�1 bA

⌘
� yT bA bAT y

yT bCy
,

and step (c) substitutes the expressions of � and �. There-
fore, we can upper bound the condition number of H , and
thus that of Q, as follows:

2

(Q) = (H)  8(⇢+ L)( bC)

⇢+ L
= 8( bC). (33)

A.3 Analysis of eigenvalues

Suppose � is an eigenvalue of G and let
�
⇠>, ⌘>

�> be its
corresponding eigenvector. By definition, we have

G


⇠
⌘

�
= �


⇠
⌘

�
,

which is equivalent to the following two equations:

⇢⇠ �
p

� bA>⌘ = �⇠,
p

� bA⇠ + � bC⌘ = �⌘.

Solve ⇠ in the first equation in terms of ⌘, then plug into the
second equation, we obtain:

�2⌘ � �(⇢⌘ + � bC⌘) + �( bA bA>⌘ + ⇢ bC⌘) = 0.

Now left multiply ⌘>, then divide by the k⌘k2
2

, we have:

�2 � p�+ q = 0.

where p and q are defined as

p , ⇢+ �
⌘> bC⌘

k⌘k2 ,

q , �

 
⌘T bA bA>⌘

k⌘k2 + ⇢
⌘T bC⌘

k⌘k2

!
. (34)

Therefore the eigenvalues of G satisfy:

� =

p±
p

p2 � 4q

2

. (35)

Recall that our choice of � ensures that G is diagonaliz-
able and has positive real eigenvalues. Indeed, we can ver-
ify that the diagonalization condition guarantees p2 � 4q
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so that all eigenvalues are real and positive. Now we can
obtain upper and lower bounds based on (35). For upper
bound, notice that

�
max

(G)  p  ⇢+ ��
max

(

bC)

= ⇢+
8(⇢+ L)

�
min

(

bC
�
max

(

bC)

= ⇢+ 8(⇢+ L)( bC)

 9( bC)

�
⇢+ L

�

= 9( bC)�
max

�
⇢I + bAT bC�1 bA

�
. (36)

For lower bound, notice that

�
min

(G) � p�
p
p2 � 4q

2

� p� p+ 2q/p

2

= q/p

=

�
⇣

⌘

T b
A

b
A

T
⌘

⌘

T b
C⌘

+ ⇢
⌘

⇢ k⌘k2

⌘

T b
C⌘

+ �

(a)

� �(⇢+ µ)

⇢/�
min

(

bC) + �
=

��
min

(

bC)(⇢+ µ)

⇢+ ��
min

(

bC)

(b)

=

8(⇢+ L)(⇢+ µ)

⇢+ 8(⇢+ L)

� 8

9

(⇢+ µ)

=

8

9

(⇢+ �
min

(

bAT bC�1 bA))

=

8

9

�
min

(⇢I + bAT bC�1 bA), (37)

where the second inequality is by the concavity property of
the square root function, step (a) used the fact

µ , �
min

⇣
bAT bC�1 bA

⌘
 yT bA bAT y

yT bCy
,

and step (b) substitutes the expressions of �.

Since G is not a normal matrix, we cannot use their eigen-
value bounds to bound its condition number (G).

B Linear convergence of PDBG
Recall the saddle-point problem we need to solve:

min

✓

max

w

L(✓, w),

where the Lagrangian is defined as

L(✓, w) = ⇢

2

k✓k2 � w> bA✓ � 1

2

w> bCw +

bb>w. (38)

Our assumption is that bC is positive definite and bA has full
rank. The optimal solution can be expressed as

✓
?

=

⇣
bA> bC�1 bA+ ⇢I

⌘�1 bA> bC�1bb,

w
?

=

bC�1

⇣
bb� bA>✓

?

⌘
.

The gradients of the Lagrangian with respect to ✓ and w,
respectively, are

r
✓

L (✓, w) = ⇢✓ � bA>w

r
w

L (✓, w) = � bA✓ � bCw +

bb.

The first-order optimality condition is obtained by setting
them to zero, which is satisfied by (✓

?

, w
?

):
"
⇢I � bA>

bA bC

# 
✓
?

w
?

�
=


0

bb

�
. (39)

The PDBG method in Algorithm 1 takes the following iter-
ation:


✓
m+1

w
m+1

�
=


✓
m

w
m

�
�

�
✓

0

0 �
w

�
B(✓

m

, w
m

),

where

B(✓, w) =


r

✓

L(✓, w)
�r

w

L(✓, w)

�
=

"
⇢I � bA>

bA bC

# 
✓
w

�
�

0

bb

�
.

Letting � = �
w

/�
✓

, we have

✓
m+1

w
m+1

�
=


✓
m

w
m

�
� �

✓

 "
⇢I � bA>

� bA � bC

# 
✓
m

w
m

�
�

0

�bb

�!
.

Subtracting both sides of the above recursion by (✓
?

, w
?

)

and using (39), we obtain

✓
m+1

� ✓
?

w
m+1

�w
?

�
=


✓
m

� ✓
?

w
m

�w
?

�
��

✓

"
⇢I � bAT

� bA � bC

#
✓
m

�✓
?

w
m

�w
?

�
.

We analyze the convergence of the algorithms by examin-
ing the differences between the current parameters to the
optimal solution. More specifically, we define a scaled
residue vector

�

m

,


✓
m

� ✓
?

1p
�

(w
m

� w
?

)

�
, (40)

which obeys the following iteration:

�

m+1

= (I � �
✓

G)�

m

, (41)

where G is exactly the matrix defined in (20). As ana-
lyzed in Section A.1, if we choose � sufficiently large,
such as in (22), then G is diagonalizable with all its eigen-
values real and positive. In this case, we let Q be the
matrix of eigenvectors in the eigenvalue decomposition
G = Q⇤Q�1, and use the potential function

P
m

,
��Q�1

�

m

��2
2
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in our convergence analysis. We can bound the usual Eu-
clidean distance by P

m

as

k✓
m

� ✓
?

k2 + kw
m

� w
?

k2  (1 + �)�2

max

(Q)P
m

.

If we have linear convergence in P
m

, then the extra factor
(1 + �)�2

max

(Q) will appear inside a logarithmic term.

Remark: This potential function has an intrinsic geometric
interpretation. We can view column vectors of Q�1 a basis
for the vector space, which is not orthogonal. Our goal is to
show that in this coordinate system, the distance to optimal
solution shrinks at every iteration.

We proceed to bound the growth of P
m

:

P
m+1

=

��Q�1

�

m+1

��2
2

=

��Q�1

(I � �
✓

G)�

m

��2
2

=

��Q�1

�
QQ�1 � �

✓

Q⇤Q�1

�
�

m

��2
2

=

��
(I � �

✓

⇤)Q�1

�

m

��2
2

 kI � �
✓

⇤k2
2

��Q�1

�

m

��2
2

= kI � �
✓

⇤k2
2

P
m

(42)

The inequality above uses sub-multiplicity of spectral
norm. We choose �

✓

to be

�
✓

=

1

�
max

(⇤)

=

1

�
max

(G)

, (43)

Since all eigenvalues of G are real and positive, we have

kI � �
✓

⇤k2 =

✓
1� �

min

(G)

�
max

(G)

◆
2


 
1� 8

81

· 1

( bC)(⇢I + bAT bC�1 bA)

!
2

,

where we used the bounds on the eigenvalues �
max

(G) and
�
min

(G) in (36) and (37) respectively. Therefore, we can
achieve an ✏-close solution with

m = O

✓
( bC)(⇢I + bAT bC�1 bA) log

✓
P
0

✏

◆◆

iterations of the PDBG algorithm.

In order to minimize kI � �
✓

⇤k, we can choose

�
✓

=

2

�
max

(G) + �
min

(G)

,

which results in kI � �
✓

⇤k = 1� 2/(1+ (⇤)) instead of
1�1/(⇤). The resulting complexity stays the same order.

The step sizes stated in Theorem 1 is obtained by replacing
�
max

in (43) with its upper bound in (36) and setting �
w

through the ratio � = �
w

/�
✓

as in (22).

C Analysis of SVRG
Here we establish the linear convergence of the SVRG al-
gorithm for policy evaluation described in Algorithm 2.

Recall the finite sum structure in bA, bb and bC:

bA =

1

n

nX

t=1

A
t

, bb = 1

n

nX

t=1

b
t

, bC =

1

n

nX

t=1

C
t

.

This structure carries over to the Lagrangian L(✓, w) as
well as the gradient operator B(✓, w), so we have

B(✓, w) =
1

n

nX

t=1

B
t

(✓, w),

where

B
t

(✓, w) =


⇢I �A>

t

A
t

C
t

� 
✓
w

�
�

0

b
t

�
. (44)

Algorithm 2 has both an outer loop and an inner loop. We
use the index m for the outer iteration and j for the inner
iteration. Fixing the outer loop index m, we look at the
inner loop of Algorithm 2. Similar to full gradient method,
we first simplify the dynamics of SVRG.

✓
m,j+1

w
m,j+1

�
=


✓
m,j

w
m,j

�
�

�
✓

�
w

�
⇥
✓
B(✓

m�1

, w
m�1

)

+B
tj (✓m,j

, w
m,j

)�B
t

(✓
m�1

, w
m�1

)

◆

=


✓
m,j

w
m,j

�
�

�
✓

�
w

�

⇥
 "

⇢I � bA>

bA bC

# 
✓
m�1

w
m�1

�
�

0

bb

�

+


⇢I �A>

t

A
t

C
t

� 
✓
m,j

w
m,j

�
�

0

b
t

�

�

⇢I �A>

t

A
t

C
t

� 
✓
m�1

w
m�1

�
+


0

b
t

�!
.

Subtracting (✓
?

, w
?

) from both sides and using the optimal-
ity condition (39), we have

✓
m,j+1

� ✓
?

w
m,j+1

� w
?

�
=


✓
m,j

� ✓
?

w
m,j

� w
?

�
�

�
✓

�
w

�

⇥
 "

⇢I � bA>

bA bC

# 
✓
m�1

� ✓
?

w
m�1

� w
?

�

+


⇢I �A>

t

A
t

C
t

� 
✓
m,j

� ✓
?

w
m,j

� w
?

�

�

⇢I �A>

t

A
t

C
t

� 
✓
m�1

� ✓
?

w
m�1

� w
?

�!
.
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Multiplying both sides of the above recursion by
diag(I, 1/

p
�I), and using a residue vector �

m,j

defined
similarly as in (40), we obtain

�

m,j+1

= �

m,j

� �
✓

(G�

m�1

+G
tj�m,j

�G
tj�m�1

)

= (I � �
✓

G)�

m,j

+ �
✓

�
G�G

tj

�
(�

m,j

��

m�1

) , (45)

where G
tj is defined in (18).

For SVRG, we use the following potential functions to fa-
cilitate our analysis:

P
m

, E
h��Q�1

�

m

��2
i
, (46)

P
m,j

, E
h��Q�1

�

m,j

��2
i
. (47)

Unlike the analysis for the batch gradient methods, the non-
orthogonality of the eigenvectors will lead to additional de-
pendency of the iteration complexity on the condition num-
ber of Q, for which we give a bound in (33).

Multiplying both sides of Eqn. (45) by Q�1, taking squared
2-norm and taking expectation, we obtain

P
m,j+1

= E
h��Q�1

⇥
(I � �

✓

G)�

m,j

+ �
✓

�
G�G

tj

�
(�

m,j

��

m�1

)

⇤��2
i

(a)

= E
h ��

(I � �
✓

⇤)Q�1

�

m,j

��2
i

+ �2

✓

E
h ��Q�1

�
G�G

tj

�
(�

m,j

��

m�1

)

��2
i

(b)

 kI � �
✓

⇤k2 E
h��Q�1

�

m,j

��2
i

+ �2

✓

E
h ��Q�1G

tj (�m,j

��

m�1

)

��2
i

(c)

= kI � �
✓

⇤k2 P
m,j

+ �2

✓

E
h ��Q�1G

tj (�m,j

��

m�1

)

��2
i
. (48)

where step (a) used the facts that G
tj is independent of

�

m,j

and �

m�1

and E[G
tj ] = G so the cross terms are

zero, step (b) used again the same independence and that
the variance of a random variable is less than its second
moment, and step (c) used the definition of P

m,j

in (47).
To bound the last term in the above inequality, we use the
simple notation � = �

m,j

��

m�1

and have
��Q�1G

tj�
��2

= �TGT

tj
Q�TQ�1G

tj�

 �
max

(Q�TQ�1

)�TGT

tj
G

tj�.

Therefore, we can bound the expectation as

E
⇥��Q�1G

tj�
��2⇤

�
max

(Q�TQ�1

)E
⇥
�TGT

tj
G

tj�
⇤

=�
max

(Q�TQ�1

)E
⇥
�TE[GT

tj
G

tj ]�
⇤

�
max

(Q�TQ�1

)L2

G

E
⇥
�T �

⇤

=�
max

(Q�TQ�1

)L2

G

E
⇥
�TQ�TQTQQ�1�

⇤

=�
max

(Q�TQ�1

)�
max

(QTQ)L2

G

E
⇥
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where in the second inequality we used the definition of L2

G

in (18), i.e., L2

G

= kE[GT

tj
G

tj ]k. In addition, we have

E
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.

Then it follows from (48) that
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Next, let �
max

and �
min

denote the largest and smallest
diagonal elements of ⇤ (eigenvalues of G), respectively.
Then we have
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where the last inequality uses the relation
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It follows that
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0 < �
✓

 �
min

32

(Q)L2

G

, (50)

then 3�2
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Iterating the above inequality over j = 1, · · · , N � 1 and
using P

m,0

= P
m�1

and P
m,N

= P
m

, we obtain

P
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We can choose

�
✓
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�
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52

(Q)L2

G
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�
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�
min

=
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(Q)L2
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, (52)

which satisfies the condition in (50) and results in

P
m

 (e�1

+ 2/5)P
m�1

 (4/5)P
m�1

.

There are many other similar choices, for example,

�
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�
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�
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,

which results in

P
m

 (e�3

+ 2/3)P
m�1

 (3/4)P
m�1

.

These results imply that the number of outer iterations
needed to have E[P

m

]  ✏] is log(P
0

/✏). For each outer
iteration, the SVRG algorithm need O(nd) operations to
compute the full gradient operator B(✓, w), and then N =

O(2

(Q)L2

G

/�2

min

) inner iterations with each costing O(d)
operations. Therefore the overall computational cost is

O

✓✓
n+

2

(Q)L2
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◆
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✓
P
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◆◆
.

Substituting (33) and (37) in the above bound, we get the
overall cost estimate

O

  
n+

( bC)L2

G

�2

min

(⇢I + bAT bC�1 bA)

!
d log

✓
P
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.

Finally, substituting the bounds in (33) and (37) into (52),
we obtain the �

✓

and N stated in Theorem 2:

�
✓
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�
min

(⇢I + bAT bC�1 bA)
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G

,
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,

which achieves the same complexity.

D Analysis of SAGA
SAGA in Algorithm 3 maintains a table of previously com-
puted gradients. Notation wise, we use �m

t

to denote that

at m-th iteration, g
t

is computed using ✓
�

m
t

and w
�

m
t

. With
this definition, �m

t

has the following dynamics:

�m+1

t

=

(
�m

t

if t
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6= t,

m if t
m

= t.
(53)

We can write the m-th iteration’s full gradient as

B =
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B
t

�
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m
t
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.

For convergence analysis, we define the following quantity:
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Similar to (53), it satisfies the following iterative relation:

�
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t
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(
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m
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6= t,

�
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if t
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With these notations, we can express the vectors used in
SAGA as

B
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.

The dynamics of SAGA can be written as

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w
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�
=


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w
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Subtracting (✓
?

, w
?

) from both sides, and using the opti-
mality condition in (39), we obtain
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w
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w
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m
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.

Multiplying both sides by diag(I, 1/
p
�I), we get

�

m+1

= �

m
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G
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G
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m
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⌘
. (55)

where G
tm is defined in (18).

For SAGA, we use the following two potential functions:

P
m

= E
��Q�1
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��2
2

,

Q
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= E
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The last equality holds because we use uniform sampling.
We first look at how P

m

evolves. To simplify notation, let

v
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,

so that (55) becomes �
m+1

= �
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� v
m

. We have
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Since �
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is independent of t
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, we have
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where the inner expectation is with respect to t
m

condi-
tioned on all previous random variables. Notice that
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which implies E
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Therefore, we have
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where the inequality used �
min

,�
min

(⇤)=�
min

(G) > 0,
which is true under our choice of � = �

w

/�
✓

in Sec-
tion A.1. Next, we bound the last term of Eqn. (56):
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where the first inequality uses ka+ bk2
2

 2 kak2
2

+2 kbk2
2

,
and the second inequality holds because for any random
variable ⇠, E k⇠ � E [⇠]k2
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2
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.
Using similar arguments as in (49), we have
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Therefore, we have
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The inequality (58) shows that the dynamics of P
m

depends
on both P

m

itself and Q
m

. So we need to find another
iterative relation for P

m

and Q
m

. To this end, we have
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where step (a) uses (53) and step (b) uses (57).

To facilitate our convergence analysis on P
m

, we construct
a new Lyapunov function which is a linear combination of
Eqn. (58) and Eqn. (59). Specifically, consider
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Now consider the dynamics of T
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. We have
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Let’s define
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The coefficient for P
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in the previous inequality can be
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(60)

Next we show that with the step size
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(or smaller), the second term on the right-hand side of (60)
is non-positive. To see this, we first notice that with this
choice of �
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, we have
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Then, it holds that
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Therefore (60) implies
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and Q
0

= P
0

. Therefore we have
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⇢ = �
✓

�
min

(G)� 2�2

✓

2

(Q)L2

G

� �2

min

9

�
2

(Q)L2

G

+ n�2

min

� .

To achieve P
m

 ✏, we need at most

m = O

✓✓
n+

2

(Q)L2

G

�2

min

◆
log

✓
P
0

✏

◆◆

iterations. Substituting (37) and (33) in the above bound,
we get the desired iteration complexity
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Finally, using the bounds in (33) and (37), we can replace
the step size in (61) by
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where µ
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(⇢I + bAT bC�1 bA) as defined in (14).


