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This supplement contains additional derivations to accompany the model definition and Gibbs updates for the
paper “An Infinite Hidden Markov Model with Similariy-Biased Transitions”, published in ICML 2017. Section
1 concerns the derivation of the augmented data representation referred to as the “Markov Jump Process with
Failed Transitions” (MJP-FT). Section 2 fills in details for the Gibbs sampling steps to sample the rescaled HDP
used by the HDP-HMM-LT. Section 3 gives a derivation for the updates to the binary state vectors, 8, in the
version of the HDP-HMM-LT used in the cocktail party experiment. Finally, section 4 gives the details for the
Hamiltonian Monte Carlo update for £ in the version of the model used in the Bach chorale experiment.

1. Details of the Markov Jump Process with Failed Transitions Representation

We can gain stronger intuition, as well as simplify posterior inference, by re-casting the HDP-HMM-LT as a
continuous time Markov Jump Process where some of the attempts to jump from one state to another fail, and
where the failure probability increases as a function of the “distance” between the states.

Let ¢ be defined as in the last section, and let 3, @ and = be defined as in the Normalized Gamma Process
representation of the ordinary HDP-HMM. That is,

B~ GEM(v) (1)
0"~ H 2)
T4 |570N Gamma(aﬁj/71) (3)

Now suppose that when the process is in state j, jumps to state j' are made at rate m;;,. This defines a continuous-
time Markov Process where the off-diagonal elements of the transition rate matrix are the off diagonal elements
of w. In addition, self-jumps are allowed, and occur with rate m;;. If we only observe the jumps and not the
durations between jumps, this is an ordinary Markov chain, whose transition matrix is obtained by appropriately
normalizing 7. If we do not observe the jumps themselves, but instead an observation is generated once per
jump from a distribution that depends on the state being jumped to, then we have an ordinary HMM.

We modify this process as follows. Suppose that each jump attempt from state j to state 7' has a chance of failing,
which is an increasing function of the “distance” between the states. In particular, let the success probability be
¢j; (recall that we assumed above that 0 < ¢;;» <1 for all j,j’). Then, the rate of successful jumps from j to
j'is mjjr¢;j, and the corresponding rate of unsuccessful jump attempts is 7;;/ (1 — ¢;;-). To see this, denote by
N the total number of jump attempts to j' in a unit interval of time spent in state j. Since we are assuming
the process is Markovian, the total number of attempts is Poisson(m;;/) distributed. Conditioned on Nj;/, n,j
will be successful, where

njjr | Ny ~ Binom(Njjr, @) (4)
It is easy to show (and well known) that the marginal distribution of n;;/ is Poisson(m;;/¢;;), and the marginal
distribution of §;; := Nj;» — n;;» is Poisson(mj;:(1 — ¢;;:)). The rate of successful jumps from state j overall is

then TJ = Zj’ ﬂ—jj'd)jj’-

Let ¢ index jumps, so that z; indicates the tth state visited by the process (couting self-jumps as a new time
step). Given that the process is in state j at discretized icime t—1 (that is, z;—1 = j), it is a standard property of



Markov Processes that the probability that the first successful jump is to state j' (that is, z; = j’) is proportional
to the rate of successful attempts to j’, which is 7;;/¢;;.

Let @; indicate the time elapsed between the tth and and ¢ — 1th successful jump (where we assume that the
first observation occurs when the first successful jump from a distinguished initial state is made). We have

| ze—1 ~ Exp(T%,_,) (5)
where u; is independent of z;.

During this period, there will be ¢j-; unsuccessful attempts to jump to state j’, where

jrt | z—1 ~ Poisson(tyms, (1 — ¢z, j1)) (6)

Define the following additional variables

T =A{tlze-1 =j} (7)

G =Y G (8)
teT;

uj =y i (9)
teT;

and let Q = (g;j;v);,7>1 be the matrix of unsuccessful jump attempt counts, and u = (u;);>1 be the vector of
the total times spent in each state.

Since each of the @; with ¢ € T; are i.i.d. Exp(T}), we get the marginal distribution
U |z,7r,¢%d Gamma(n;., T;) (10)

by the standard property that sums of i.i.d. Exponential distributions has a Gamma distribution with shape
equal to the number of variates in the sum, and rate equal to the rate of the individual exponentials. Moreover,
since the g;/+ with t € T; are Poisson distributed, the total number of failed attempts in the total duration u; is

ind .
gy "~ Poisson(u;m;; (1 — ¢;0)). (11)

Thus if we marginalize out the individual %; and g;+, we have a joint distribution over z, u, and Q, conditioned
on the transition rate matrix 7 and the success probability matrix ¢, which is

p(z,u,Q|m, ¢) = (Hp zt| 21 ) 1o 12,7 8) [T @y [wimsir é550) (12)
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Setting aside terms that do not depend on 7, we get the conditional likelihood function used in sampling 7r:

(Z u, Q|7T (,i) X HH nJJ’Jran e~ i i (18)



which, combined with the independent Gamma priors on 7 yields conditionally independent Gamma posteriors:
i z,u,Q, B, a - Gamma(aB; +n;i + qjjr, 1+ uy) (19)
2. Inference details for hyperparameters of the rescaled HDP

2.1. Sampling 7, 3, @ and v

The joint conditional over 7, a, 8 and 7 given the augmented data D = (z,u, Q, M, r,w) factors as

p(v,a,B,m|D) = p(y|D)p(a| D)p(B |7, D)p(r | v, B, D) (20)

We will derive these four factors in reverse order.

Sampling w The entries in 7 are conditionally independent given « and 3, so we have the prior

p(r| B, HHF afy) g exp(—mjp), (21)
and the likelihood given {z,u, Q} given by (17). Combining these, we have
p(m,z,u, Q| B, o, @) = Hu?j'Jrqj HF (B )™t aé gty (22)
J
R G (1= ) a3 (29

Conditioning on everything except 7, we get
p(w|Q.u,z, B, 0) o H H T (= (14 ) m0) (24)
and thus we see that the 7;;, are conditionally independent given u, z and @, and distributed according to
w0 [ ngges @0, Byr, o % Gamma(ay + e + g0, 1+ uy) (25)

Sampling 3 Consider the conditional distribution of g having integrated out 7. The prior density of 3 is

p(B17) 57 Hﬁ"l (26)

After integrating out 7 in (22), we have

J J
Pz, QB0 7,¢) = [ ug? T whort a0 = (1 uy)= (@bt (27)
j=1 §'=1
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j
J 1 1 u; nj.4q;
T ron) s (1) (29)
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where we have used the fact that the 3; sum to 1. Therefore
J
F-1 D(aBy + njjr + 455 )
p(Blz.u.Q,a,7) o<Hﬁ II (b, (31)

j=1 Jj'=1



Following (Teh et al., 2006), we can write the ratios of Gamma functions as polynomials in j3;, as

J J 7ij/
71 .
p(B12z,1,Q,a,7) x H B H Z s(njjr + qjjrs myjr ) (B )™ (32)
j=1 J'=1m, ;=1

where s(m,n) is an unsigned Stirling number of the first kind, which is used to represent the number of permu-
tations of n elements such that there are m distinct cycles.

This admits an augmented data representation, where we introduce a random matrix M = (m;;/)1<; js<.j, whose
entries are conditionally independent given 3, Q and z, with

sy =3 )2 S gy
pimyjr = mj B, G, N5, 455 ) = ..
ZZIJ;OQJJ’ s(njj’ + qjj/vm/)am/ﬁ;-y/l/

(33)

for integer m ranging between 0 and nj;: + g;;,. Note that s(n,0) =0if n > 0, 5(0,0) =1, s(0,m) =0if m > 0,
and we have the recurrence relation s(n + 1,m) = ns(n,m) + s(n,m — 1), and so we could compute each of
these coefficients explicitly; however, it is typically simpler and more computationally efficient to sample from
this distribution by simulating the number of occupied tables in a Chinese Restaurant Process with n customers,
than it is to enumerate its probabilities.

For each m;;; we simply draw n;;; assignments of customers to tables according to the Chinese Restaurant
Process and set m;;» to be the number of distinct tables realized; that is, assign the first customer to a table,
setting m;;» to 1, and then, after n customers are assigned, assign the n + 1th customer to a new table with
probability a8,/ /(n+af;/), in which case we increment m,;/, and to an existing table with probability n/(n+«a),
in which case we do not increment m;;.

Then, we have joint distribution

J J
2-1 M aM
p(,@,M‘Z,LLQ,Ck,’Y) X Hﬁjj H s(njj’ +ij’7mjj’)a 7 Bj/‘] (34)
j=1 j'=1

which yields (32) when marginalized over M. Again discarding constants in 3 and regrouping yields

J
p(BI M, z,u,0,a,7) < H ﬁ;-km'j/_l (35)
i1
which is Dirichlet:
ﬁ|M,7~Dirichlet(%+m.1,...,%+m.J) (36)

Sampling o and v Assume that o« and v have Gamma priors, parameterized by shape, a and rate, b:

.
o) = pat " exp(—boa) (37)
) = g™ () (39)

Having integrated out w, we have

_ F(’Y) m.. ! T+m.j—1 1 -1 u u; nj.+q;.
p(B,2,u,Q,M|a,~,d) = S Hﬁj T(ny) " u; (1 +uy) (30)



We can also integrate out 3, to yield

; Tr
.. QM 07, ) = o e S sl L fjn__) (41)

XII§}+nwLL1( y )”*” (42)
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demonstrating that a and ~ are independent given ¢ and the augmented data, with

pla|z,u,Q, M) oc a® ™ exp(—(by + Zlog(l +uj))o) (44)

J

and

T T3 +m.)

p(v|z,u,Q, M) oc 7~ exp(—byy 45
So we see that
al|z,u,Q,M ~ Gamma(aa+m..7ba+ZIOg(1+uj)) (46)
J
To sample 7, we introduce a new set of auxiliary variables, r = (71, ...,7s) and w with the following distributions:
r(3) Ty
= i = " - =1,...,m. 47
p(T] 7‘|mja7) F(%—I—m.jf)S(m],T) (J) T ) m.; (47)
POAM) gy
plw|m.y) = ————5w 1—w)™ we (0,1 48
so that
J T
Py, | M) oc 9= exp(=byy)u = (1 = w)™ 7 T s(meyr,ry) (3) (49)
i'=1
and
p(y|r,w) oy "L exp(—(by — log(w))v), (50)
which is to say
vlr,w,z,u,Q,M ~ Gamma(ay + 7., by — log(w)) (51)

3. Derivation of np update in the Cocktail Party and Synthetic Data Experiments

In principle, i can have any distribution over binary vectors, but we will suppose for simplicity that it can be
factored into D independent coordinate-wise Bernoulli variates. Let pg be the Bernoulli parameter for the dth
coordinate.

The similarity function ¢;;+ is the Laplacian kernel:
Gjjr = B(ny;myr) = exp(=Adj;r) (52)

where d;jq = [njq — ;4| is Hamming distance in the dth coordinate, d;; = 25:1 djj is the total Hamming
distance between 7, and n;,, and A > 0 (if A = 0, the ¢;;» are identically 1, and so do not have any influence,
reducing the model to an ordinary HDP-HMM).



Let
bjjr—a = exp(—A(djj — djjia)) (53)

so that ¢j;r = ¢jjr_qe *%is'a,

Since the matrix ¢ is assumed to be symmetric, we have

p(2, Q|0 = 1,0\ 1;0) et Oral(1 — 50 g Oralyassrtars (54)
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where c;jq0 and c;jq1 are the number of successful jumps to or from state j, to or from states with a 0 or 1,
respectively, in position d. That is,

Gao= Y mptng  Ga= ) ngytng; (56)
{5’ ‘gj’dZO} {j'|9j’d:1}

Therefore, we can Gibbs sample 7,4 from its conditional posterior Bernoulli distribution given the rest of n,
where we compute the Bernoulli parameter via the log-odds

log (p(njd =1]Y,z,Q,n\ 77jd)> ~log (p(njd = Dp(z,Q[nja =1,1m\nja)p(Y [2,n;a =1,m\ rw)) (57)
p(nja =01Y,2,Q,n\ nja) p(nja = 0)p(z, Q| nja = 0, \ 1ja)p(Y [ 2,150 = 0,1\ 14)

(=d) ,—x
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= log <1 - ) + (cjar = cja) A+ Y (=1)"4(¢;5 + ay05) log <“<_d> ) (58)
Hd jy 1- (bjj/

f(yemia = 1,m; \njd))
1 59
+{t;_j} Og(f(}’t;njd(),nj\njd) (59)

Suppose also that the observed data Y consists of a T' x K matrix, where the tth row y; = (ys1,...,¥ix) ' is a
K-dimensional feature vector associated with time ¢, and let W be a D x K weight matrix with kth column wy,
such that

fyemy) =gy Winy) (60)

for a suitable parametric function g. We assume for simplicity that g factors as

K
9(yi: WTny) = [T ox(vers wi - mj) (61)
k=1
Define x4, = wy, - 0,,, and xi,:d) = w,:d . O;d, where Qj_d and w,:d are 0; and wy, respectively, with the dth

coordinate removed. Then

K (~d)

J(ye;nja = 1,15\ nja 9k (Y Ty, + Wak

log((t.J_O ]\]) :Zlog ek o = ) . (62)
f(yesnia = 0,m; \ nja) 1 i (Yeks Ty, )

If gi(y; x) is a Normal density with mean z and unit variance, then

—d
log (gk(ytk§ ﬂ?gk )+ war)

_ 1
— = —War(Yex — l“ik 4 + —wag) (63)
(=) 2
Ik (Yeks Ltk )



4. Derivation of HMC update for £ in the Bach Chorale Experiment

We have a set of states with parameters £;, j =1,...,J. In the previous version of the model, £; was a binary
state vector on which both the similarities ¢;;, and the emission distribution F; depended. Here, we define the
latent locations £; = (¢;1,¢;p) to be locations in RP, independent of the emission distributions, so that during
inference they are informed solely by the transitions.

We set
Ao
i (8, 45) = exp | =5 dj

where d;;/ is the Euclidean distance between £; and £;,; that is,

43 = Z(ﬁjd —ljrg)?

d

Since now £; are continuous locations, we use Hamlitonian Monte Carlo (Duane et al., 1987; Neal et al., 2011) to
sample them jointly. HMC is a variation on Metropolis-Hastings algorithm which is designed to more efficiently
explore a high-dimensional continuous distribution by adopting a proposal distribution which incorporates an
auxiliary “momentum” variable to make it more likely that proposals will go in useful directions and improve
mixing compared to naive movement.

To do Hamiltonian Monte Carlo to sample from the conditional posterior of £ given z and Q, we need to compute
the gradient of the log posterior, which is just the sum of the gradient of the log prior and the gradient of the
log likelihood.

Assume independent and isotropic Gaussian priors on each £;, so we have

he 9

where hy is the prior precision which does not depend on d.

Then the log prior density, up to an additive constant c, is

The relevant log likelihood is the log of the probability of the z and Q variables given the ¢;;,. In particular, we
have

L:=p(z,Ql¢) x HH(b;;?j/(l — i)
Jj g

so that
log L= Y (n;j log(¢j;) + g log(1 — ¢;;1))
Jj g
The j,d coordinate of the gradient of the log prior is simply —h.{;q.

To get the j,d coordinate of the gradient of the log likelihood, we can apply the chain rule to terms as is
convenient. In particular,

Ji’

dlog(¢y;) Od Dlog(1 — ¢;51) (L — ¢y51) D
aejd ZZ ZAY azjd +zj:zqn o1 —d,) Ok, 0l



We have the following components:

dlog(¢j) A

&, 2
2
ZCZ; = 2d;;0al (j # J')
Olog(1 — ;) _ 1
(1 — ¢j50) L — ¢y
o1 — ¢yj1) §¢__
o2, 2%

which yields

oL oy b
8l =AY D ngpdipal(G # 5 A Y aidiar—2—10 # )
i i

L= ¢y
b
==X Y dyja gy — g2
1 ¢JJ’

(4.97):37#5"
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