
Soft-DTW: a Differentiable Loss Function for Time-Series

Marco Cuturi 1 Mathieu Blondel 2

Abstract

We propose in this paper a differentiable learning

loss between time series, building upon the cel-

ebrated dynamic time warping (DTW) discrep-

ancy. Unlike the Euclidean distance, DTW can

compare time series of variable size and is ro-

bust to shifts or dilatations across the time di-

mension. To compute DTW, one typically solves

a minimal-cost alignment problem between two

time series using dynamic programming. Our

work takes advantage of a smoothed formula-

tion of DTW, called soft-DTW, that computes the

soft-minimum of all alignment costs. We show

in this paper that soft-DTW is a differentiable

loss function, and that both its value and gradi-

ent can be computed with quadratic time/space

complexity (DTW has quadratic time but linear

space complexity). We show that this regular-

ization is particularly well suited to average and

cluster time series under the DTW geometry, a

task for which our proposal significantly outper-

forms existing baselines (Petitjean et al., 2011).

Next, we propose to tune the parameters of a ma-

chine that outputs time series by minimizing its

fit with ground-truth labels in a soft-DTW sense.

1. Introduction

The goal of supervised learning is to learn a mapping that

links an input to an output objects, using examples of such

pairs. This task is noticeably more difficult when the out-

put objects have a structure, i.e. when they are not vec-

tors (Bakir et al., 2007). We study here the case where each

output object is a time series, namely a family of observa-

tions indexed by time. While it is tempting to treat time

as yet another feature, and handle time series of vectors

as the concatenation of all these vectors, several practical

1CREST, ENSAE, Université Paris-Saclay, France 2NTT
Communication Science Laboratories, Seika-cho, Kyoto, Japan.
Correspondence to: Marco Cuturi <marco.cuturi@ensae.fr>,
Mathieu Blondel <mathieu@mblondel.org>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

Input Output

Figure 1. Given the first part of a time series, we trained two

multi-layer perceptron (MLP) to predict the entire second part.

Using the ShapesAll dataset, we used a Euclidean loss for the first

MLP and the soft-DTW loss proposed in this paper for the second

one. We display above the prediction obtained for a given test

instance with either of these two MLPs in addition to the ground

truth. Oftentimes, we observe that the soft-DTW loss enables us

to better predict sharp changes. More time series predictions are

given in Appendix F.

issues arise when taking this simplistic approach: Time-

indexed phenomena can often be stretched in some areas

along the time axis (a word uttered in a slightly slower pace

than usual) with no impact on their characteristics; varying

sampling conditions may mean they have different lengths;

time series may not synchronized.

The DTW paradigm. Generative models for time series

are usually built having the invariances above in mind:

Such properties are typically handled through latent vari-

ables and/or Markovian assumptions (Lütkepohl, 2005,

Part I,§18). A simpler approach, motivated by geometry,

lies in the direct definition of a discrepancy between time

series that encodes these invariances, such as the Dynamic

Time Warping (DTW) score (Sakoe & Chiba, 1971; 1978).

DTW computes the best possible alignment between two

time series (the optimal alignment itself can also be of in-

terest, see e.g. Garreau et al. 2014) of respective length n
and m by computing first the n×m pairwise distance ma-

trix between these points to solve then a dynamic program

(DP) using Bellman’s recursion with a quadratic (nm) cost.

The DTW geometry. Because it encodes efficiently a use-

ful class of invariances, DTW has often been used in a dis-

criminative framework (with a k-NN or SVM classifier) to

predict a real or a class label output, and engineered to run



Soft-DTW: a Differentiable Loss Function for Time-Series

faster in that context (Yi et al., 1998). Recent works by

Petitjean et al. (2011); Petitjean & Gançarski (2012) have,

however, shown that DTW can be used for more innova-

tive tasks, such as time series averaging using the DTW

discrepancy (see Schultz & Jain 2017 for a gentle introduc-

tion to these ideas). More generally, the idea of synthetis-

ing time series centroids can be regarded as a first attempt

to output entire time series using DTW as a fitting loss.

From a computational perspective, these approaches are,

however, hampered by the fact that DTW is not differen-

tiable and unstable when used in an optimization pipeline.

Soft-DTW. In parallel to these developments, several au-

thors have considered smoothed modifications of Bell-

man’s recursion to define smoothed DP distances (Bahl &

Jelinek, 1975; Ristad & Yianilos, 1998) or kernels (Saigo

et al., 2004; Cuturi et al., 2007). When applied to the

DTW discrepancy, that regularization results in a soft-DTW

score, which considers the soft-minimum of the distribution

of all costs spanned by all possible alignments between

two time series. Despite considering all alignments and

not just the optimal one, soft-DTW can be computed with

a minor modification of Bellman’s recursion, in which all

(min,+) operations are replaced with (+,×). As a result,

both DTW and soft-DTW have quadratic in time & linear

in space complexity with respect to the sequences’ lengths.

Because soft-DTW can be used with kernel machines, one

typically observes an increase in performance when using

soft-DTW over DTW (Cuturi, 2011) for classification.

Our contributions. We explore in this paper another

important benefit of smoothing DTW: unlike the original

DTW discrepancy, soft-DTW is differentiable in all of its

arguments. We show that the gradients of soft-DTW w.r.t

to all of its variables can be computed as a by-product of

the computation of the discrepancy itself, with an added

quadratic storage cost. We use this fact to propose an al-

ternative approach to the DBA (DTW Barycenter Averag-

ing) clustering algorithm of (Petitjean et al., 2011), and

observe that our smoothed approach significantly outper-

forms known baselines for that task. More generally, we

propose to use soft-DTW as a fitting term to compare the

output of a machine synthesizing a time series segment

with a ground truth observation, in the same way that, for

instance, a regularized Wasserstein distance was used to

compute barycenters (Cuturi & Doucet, 2014), and later

to fit discriminators that output histograms (Zhang et al.,

2015; Rolet et al., 2016). When paired with a flexible

learning architecture such as a neural network, soft-DTW

allows for a differentiable end-to-end approach to design

predictive and generative models for time series, as illus-

trated in Figure 1. Source code is available at https:

//github.com/mblondel/soft-dtw.

Structure. After providing background material, we show

in §2 how soft-DTW can be differentiated w.r.t the locations

of two time series. We follow in §3 by illustrating how

these results can be directly used for tasks that require to

output time series: averaging, clustering and prediction of

time series. We close this paper with experimental results

in §4 that showcase each of these potential applications.

Notations. We consider in what follows multivariate dis-

crete time series of varying length taking values in Ω ⊂ R
p.

A time series can be thus represented as a matrix of p lines

and varying number of columns. We consider a differen-

tiable substitution-cost function δ : Rp × R
p → R+ which

will be, in most cases, the quadratic Euclidean distance be-

tween two vectors. For an integer n we write JnK for the set

{1, . . . , n} of integers. Given two series’ lengths n and m,

we write An,m ⊂ {0, 1}n×m for the set of (binary) align-

ment matrices, that is paths on a n×m matrix that connect

the upper-left (1, 1) matrix entry to the lower-right (n,m)
one using only ↓,→,ց moves. The cardinal of An,m is

known as the delannoy(n−1,m−1) number; that number

grows exponentially with m and n.

2. The DTW and soft-DTW loss functions

We propose in this section a unified formulation for the

original DTW discrepancy (Sakoe & Chiba, 1978) and

the Global Alignment kernel (GAK) (Cuturi et al., 2007),

which can be both used to compare two time series x =
(x1, . . . , xn) ∈ R

p×n and y = (y1, . . . , ym) ∈ R
p×m.

2.1. Alignment costs: optimality and sum

Given the cost matrix ∆(x,y) :=
[
δ(xi, yj)

]

ij
∈ R

n×m,

the inner product 〈A,∆(x,y) 〉 of that matrix with an align-

ment matrix A in An,m gives the score of A, as illustrated

in Figure 2. Both DTW and GAK consider the costs of all

possible alignment matrices, yet do so differently:

DTW(x,y) := min
A∈An,m

〈A,∆(x,y) 〉,

kγGA(x,y) :=
∑

A∈An,m

e−〈A,∆(x,y) 〉/γ .
(1)

DP Recursion. Sakoe & Chiba (1978) showed that the

Bellman equation (1952) can be used to compute DTW.

That recursion, which appears in line 5 of Algorithm 1 (dis-

regarding for now the exponent γ), only involves (min,+)
operations. When considering kernel kγGA and, instead, its

integration over all alignments (see e.g. Lasserre 2009),

Cuturi et al. (2007, Theorem 2) and the highly related for-

mulation of Saigo et al. (2004, p.1685) use an old algo-

rithmic appraoch (Bahl & Jelinek, 1975) which consists

in (i) replacing all costs by their neg-exponential; (ii) re-

place (min,+) operations with (+,×) operations. These

two recursions can be in fact unified with the use of a soft-

https://github.com/mblondel/soft-dtw
https://github.com/mblondel/soft-dtw


Soft-DTW: a Differentiable Loss Function for Time-Series

y1 y2 y3 y4 y5 y6

x1

x2

x3

x4

δ1,1 δ1,2 δ1,3 δ1,4 δ1,5 δ1,6

δ2,1 δ2,2 δ2,3 δ2,4 δ2,5 δ2,6

δ3,1 δ3,2 δ3,3 δ3,4 δ3,5 δ3,6

δ4,1 δ4,2 δ4,3 δ4,4 δ4,5 δ4,6

Figure 2. Three alignment matrices (orange, green, purple, in ad-

dition to the top-left and bottom-right entries) between two time

series of length 4 and 6. The cost of an alignment is equal to the

sum of entries visited along the path. DTW only considers the

optimal alignment (here depicted in purple pentagons), whereas

soft-DTW considers all delannoy(n − 1,m − 1) possible align-

ment matrices.

minimum operator, which we present below.

Unified algorithm Both formulas in Eq. (1) can be com-

puted with a single algorithm. That formulation is new to

our knowledge. Consider the following generalized min
operator, with a smoothing parameter γ ≥ 0:

minγ{a1, . . . , an} :=

{

mini≤n ai, γ = 0,

−γ log
∑n

i=1 e
−ai/γ , γ > 0.

With that operator, we can define γ-soft-DTW:

dtwγ(x,y) := minγ{〈A,∆(x,y) 〉, A ∈ An,m}.

The original DTW score is recovered by setting γ to 0.

When γ > 0, we recover dtwγ = −γ log kγGA. Most

importantly, and in either case, dtwγ can be computed

using Algorithm 1, which requires (nm) operations and

(nm) storage cost as well . That cost can be reduced to

2n with a more careful implementation if one only seeks

to compute dtwγ(x,y), but the backward pass we con-

sider next requires the entire matrix R of intermediary

alignment costs. Note that, to ensure numerical stabil-

ity, the operator minγ must be computed using the usual

log-sum-exp stabilization trick, namely that log
∑

i e
zi =

(maxj zj) + log
∑

i e
zi−maxj zj .

2.2. Differentiation of soft-DTW

A small variation in the input x causes a small change

in dtw0(x,y) or dtwγ(x,y). When considering dtw0,

that change can be efficiently monitored only when the

optimal alignment matrix A⋆ that arises when computing

dtw0(x,y) in Eq. (1) is unique. As the minimum over a

finite set of linear functions of ∆, dtw0 is therefore locally

differentiable w.r.t. the cost matrix ∆, with gradient A⋆,

a fact that has been exploited in all algorithms designed to

Algorithm 1 Forward recursion to compute dtwγ(x,y)
and intermediate alignment costs

1: Inputs: x,y, smoothing γ ≥ 0, distance function δ
2: r0,0 = 0; ri,0 = r0,j = ∞; i ∈ JnK, j ∈ JmK
3: for j = 1, . . . ,m do

4: for i = 1, . . . , n do

5: ri,j = δ(xi, yj) +minγ{ri−1,j−1, ri−1,j , ri,j−1}
6: end for

7: end for

8: Output: (rn,m, R)

average time series under the DTW metric (Petitjean et al.,

2011; Schultz & Jain, 2017). To recover the gradient of

dtw0(x,y) w.r.t. x, we only need to apply the chain rule,

thanks to the differentiability of the cost function:

∇xdtw0(x,y) =

(
∂∆(x,y)

∂x

)T

A⋆, (2)

where ∂∆(x,y)/∂x is the Jacobian of ∆ w.r.t. x, a linear

map from R
p×n to R

n×m. When δ is the squared Euclidean

distance, the transpose of that Jacobian applied to a matrix

B ∈ R
n×m is (◦ being the elementwise product):

(∂∆(x,y)/∂x)TB = 2
(
(1p1

T
mBT ) ◦ x− yBT

)
.

With continuous data, A⋆ is almost always likely to be

unique, and therefore the gradient in Eq. (2) will be de-

fined almost everywhere. However, that gradient, when it

exists, will be discontinuous around those values x where

a small change in x causes a change in A⋆, which is likely

to hamper the performance of gradient descent methods.

The case γ > 0. An immediate advantage of soft-DTW

is that it can be explicitly differentiated, a fact that was also

noticed by Saigo et al. (2006) in the related case of edit

distances. When γ > 0, the gradient of Eq. (1) is obtained

via the chain rule,

∇x dtwγ(x,y) =

(
∂∆(x,y)

∂x

)T

Eγ [A], (3)

where Eγ [A] :=
1

kγGA(x,y)

∑

A∈An,m

e−〈A,∆(x,y)/γ 〉A,

is the average alignment matrix A under the Gibbs distri-

bution pγ ∝ e−〈A,∆(x,y) 〉/γ defined on all alignments in

An,m. The kernel kγGA(x,y) can thus be interpreted as

the normalization constant of pγ . Of course, since An,m

has exponential size in n and m, a naive summation is not

tractable. Although a Bellman recursion to compute that

average alignment matrix Eγ [A] exists (see Appendix A)

that computation has quartic (n2m2) complexity. Note that



Soft-DTW: a Differentiable Loss Function for Time-Series

this stands in stark contrast to the quadratic complexity ob-

tained by Saigo et al. (2006) for edit-distances, which is due

to the fact the sequences they consider can only take values

in a finite alphabet. To compute the gradient of soft-DTW,

we propose instead an algorithm that manages to remain

quadratic (nm) in terms of complexity. The key to achieve

this reduction is to apply the chain rule in reverse order of

Bellman’s recursion given in Algorithm 1, namely back-

propagate. A similar idea was recently used to compute the

gradient of ANOVA kernels in (Blondel et al., 2016).

2.3. Algorithmic differentiation

Differentiating algorithmically dtwγ(x,y) requires doing

first a forward pass of Bellman’s equation to store all in-

termediary computations and recover R = [ri,j ] when

running Algorithm 1. The value of dtwγ(x,y)—stored

in rn,m at the end of the forward recursion—is then im-

pacted by a change in ri,j exclusively through the terms

in which ri,j plays a role, namely the triplet of terms

ri+1,j , ri,j+1, ri+1,j+1. A straightforward application of

the chain rule then gives

∂rn,m

∂ri,j
︸ ︷︷ ︸
ei,j

=
∂rn,m

∂ri+1,j
︸ ︷︷ ︸
ei+1,j

∂ri+1,j

∂ri,j
+

∂rn,m

∂ri,j+1
︸ ︷︷ ︸
ei,j+1

∂ri,j+1

∂ri,j
+

∂rn,m

∂ri+1,j+1
︸ ︷︷ ︸
ei+1,j+1

∂ri+1,j+1

∂ri,j
,

in which we have defined the notation of the main object

of interest of the backward recursion: ei,j :=
∂rn,m

∂ri,j
. The

Bellman recursion evaluated at (i+1, j) as shown in line 5

of Algorithm 1 (here δi+1,j is δ(xi+1, yj)) yields :

ri+1,j = δi+1,j +minγ{ri,j−1, ri,j , ri+1,j−1},

which, when differentiated w.r.t ri,j yields the ratio:

∂ri+1,j

∂ri,j
= e−ri,j/γ/

(

e−ri,j−1/γ + e−ri,j/γ + e−ri+1,j−1/γ
)

.

The logarithm of that derivative can be conveniently cast

using evaluations of minγ computed in the forward loop:

γ log
∂ri+1,j

∂ri,j
= minγ{ri,j−1, ri,j , ri+1,j−1} − ri,j

= ri+1,j − δi+1,j − ri,j .

Similarly, the following relationships can also be obtained:

γ log
∂ri,j+1

∂ri,j
= ri,j+1 − ri,j − δi,j+1,

γ log
∂ri+1,j+1

∂ri,j
= ri+1,j+1 − ri,j − δi+1,j+1.

We have therefore obtained a backward recursion to com-

pute the entire matrix E = [ei,j ], starting from en,m =
∂rn,m

∂rn,m
= 1 down to e1,1. To obtain ∇x dtwγ(x,y), notice

that the derivatives w.r.t. the entries of the cost matrix ∆
can be computed by

∂rn,m

∂δi,j
=

∂rn,m

∂ri,j

∂ri,j
∂δi,j

= ei,j · 1 = ei,j ,

and therefore we have that

∇x dtwγ(x,y) =

(
∂∆(x,y)

∂x

)T

E,

where E is exactly the average alignment Eγ [A] in

Eq. (3). These computations are summarized in Algo-

rithm 2, which, once ∆ has been computed, has complexity

nm in time and space. Because minγ has a 1/γ-Lipschitz

continuous gradient, the gradient of dtwγ is 2/γ-Lipschitz

continuous when δ is the squared Euclidean distance.

Algorithm 2 Backward recursion to compute ∇x dtwγ(x,y)

1: Inputs: x,y, smoothing γ ≥ 0, distance function δ
2: (·, R) = dtwγ(x,y), ∆ = [δ(xi, yj)]i,j
3: δi,m+1 = δn+1,j = 0, i ∈ JnK, j ∈ JmK
4: ei,m+1 = en+1,j = 0, i ∈ JnK, j ∈ JmK
5: ri,m+1 = rn+1,j = −∞, i ∈ JnK, j ∈ JmK
6: δn+1,m+1 = 0, en+1,m+1 = 1, rn+1,m+1 = rn,m
7: for j = m, . . . , 1 do

8: for i = n, . . . , 1 do

9: a = exp 1
γ (ri+1,j − ri,j − δi+1,j)

10: b = exp 1
γ (ri,j+1 − ri,j − δi,j+1)

11: c = exp 1
γ (ri+1,j+1 − ri,j − δi+1,j+1)

12: ei,j = ei+1,j · a+ ei,j+1 · b+ ei+1,j+1 · c
13: end for

14: end for

15: Output: ∇x dtwγ(x,y) =
(

∂∆(x,y)
∂x

)T

E

3. Learning with the soft-DTW loss

3.1. Averaging with the soft-DTW geometry

We study in this section a direct application of Algorithm 2

to the problem of computing Fréchet means (1948) of time

series with respect to the dtwγ discrepancy. Given a

family of N times series y1, . . . ,yN , namely N matrices

of p lines and varying number of columns, m1, . . . ,mN ,

we are interested in defining a single barycenter time se-

ries x for that family under a set of normalized weights

λ1, . . . , λN ∈ R+ such that
∑N

i=1 λi = 1. Our goal is thus

to solve approximately the following problem, in which we

have assumed that x has fixed length n:

min
x∈Rp×n

N∑

i=1

λi

mi
dtwγ(x,yi). (4)

Note that each dtwγ(x,yi) term is divided by mi, the

length of yi. Indeed, since dtw0 is an increasing (roughly

linearly) function of each of the input lengths n and mi, we

follow the convention of normalizing in practice each dis-

crepancy by n ×mi. Since the length n of x is here fixed

across all evaluations, we do not need to divide the objec-

tive of Eq. (4) by n. Averaging under the soft-DTW geom-

etry results in substantially different results than those that

can be obtained with the Euclidean geometry (which can

only be used in the case where all lengths n = m1 = · · · =



Soft-DTW: a Differentiable Loss Function for Time-Series

δi,j

δi+1,j

δi,j+1

δi+1,j+1

ri−1,j−1 ri−1,j ri−1,j+1

ri,j−1 ri,j ri,j+1

ri+1,j−1 ri+1,j ri+1,j+1

e
1
γ
(ri+1,j−ri,j−δi+1,j) e

1
γ
(ri+1,j+1−ri,j−δi+1,j+1)

e
1
γ
(ri,j+1−ri,j−δi,j+1)ei,j

ei+1,j ei+1,j+1

ei,j+1

Figure 3. Sketch of the computational graph for soft-DTW, in the forward pass used to compute dtwγ (left) and backward pass used to

compute its gradient ∇x dtwγ (right). In both diagrams, purple shaded cells stand for data values available before the recursion starts,

namely cost values (left) and multipliers computed using forward pass results (right). In the left diagram, the forward computation of

ri,j as a function of its predecessors and δi,j is summarized with arrows. Dotted lines indicate a minγ operation, solid lines an addition.

From the perspective of the final term rn,m, which stores dtwγ(x,y) at the lower right corner (not shown) of the computational graph,

a change in ri,j only impacts rn,m through changes that ri,j causes to ri+1,j , ri,j+1 and ri+1,j+1. These changes can be tracked using

Eq. (2.3,2.3) and appear in lines 9-11 in Algorithm 2 as variables a, b, c, as well as in the purple shaded boxes in the backward pass

(right) which represents the recursion of line 12 in Algorithm 2.

mN are equal), as can be seen in the intuitive interpolations

we obtain between two time series shown in Figure 4.

Non-convexity of dtwγ . A natural question that arises

from Eq. (4) is whether that objective is convex or not. The

answer is negative, in a way that echoes the non-convexity

of the k-means objective as a function of cluster centroids

locations. Indeed, for any alignment matrix A of suitable

size, each map x 7→ 〈A,∆(x,y) 〉 shares the same convex-

ity/concavity property that δ may have. However, both min
and minγ can only preserve the concavity of elementary

functions (Boyd & Vandenberghe, 2004, pp.72-74). There-

fore dtwγ will only be concave if δ is concave, or become

instead a (non-convex) (soft) minimum of convex functions

if δ is convex. When δ is a squared-Euclidean distance,

dtw0 is a piecewise quadratic function of x, as is also the

case with the k-means energy (see for instance Figure 2

in Schultz & Jain 2017). Since this is the setting we con-

sider here, all of the computations involving barycenters

should be taken with a grain of salt, since we have no way

of ensuring optimality when approximating Eq. (4).

Smoothing helps optimizing dtwγ . Smoothing can be

regarded, however, as a way to “convexify” dtwγ . In-

deed, notice that dtwγ converges to the sum of all costs

as γ → ∞. Therefore, if δ is convex, dtwγ will gradually

become convex as γ grows. For smaller values of γ, one

can intuitively foresee that using minγ instead of a mini-

mum will smooth out local minima and therefore provide a

better (although slightly different from dtw0) optimization

landscape. We believe this is why our approach recovers

better results, even when measured in the original dtw0

discrepancy, than subgradient or alternating minimization

approaches such as DBA (Petitjean et al., 2011), which can,

on the contrary, get more easily stuck in local minima. Ev-

idence for this statement is presented in the experimental

section.

(a) Euclidean loss (b) Soft-DTW loss (γ = 1)

Figure 4. Interpolation between two time series (red and blue) on

the Gun Point dataset. We computed the barycenter by solving Eq.

(4) with (λ1, λ2) set to (0.25, 0.75), (0.5, 0.5) and (0.75, 0.25).

The soft-DTW geometry leads to visibly different interpolations.

3.2. Clustering with the soft-DTW geometry

The (approximate) computation of dtwγ barycenters can

be seen as a first step towards the task of clustering time

series under the dtwγ discrepancy. Indeed, one can nat-

urally formulate that problem as that of finding centroids

x1, . . . ,xk that minimize the following energy:

min
x1,...,xk∈Rp×n

N∑

i=1

1

mi
min
j∈[[k]]

dtwγ(xj ,yi). (5)

To solve that problem one can resort to a direct generaliza-

tion of Lloyd’s algorithm (1982) in which each centering

step and each clustering allocation step is done according

to the dtwγ discrepancy.

3.3. Learning prototypes for time series classification

One of the de-facto baselines for learning to classify time

series is the k nearest neighbors (k-NN) algorithm, com-

bined with DTW as discrepancy measure between time se-

ries. However, k-NN has two main drawbacks. First, the

time series used for training must be stored, leading to

potentially high storage cost. Second, in order to com-



Soft-DTW: a Differentiable Loss Function for Time-Series

pute predictions on new time series, the DTW discrep-

ancy must be computed with all training time series, lead-

ing to high computational cost. Both of these drawbacks

can be addressed by the nearest centroid classifier (Hastie

et al., 2001, p.670), (Tibshirani et al., 2002). This method

chooses the class whose barycenter (centroid) is closest

to the time series to classify. Although very simple, this

method was shown to be competitive with k-NN, while re-

quiring much lower computational cost at prediction time

(Petitjean et al., 2014). Soft-DTW can naturally be used

in a nearest centroid classifier, in order to compute the

barycenter of each class at train time, and to compute the

discrepancy between barycenters and time series, at predic-

tion time.

3.4. Multistep-ahead prediction

Soft-DTW is ideally suited as a loss function for any task

that requires time series outputs. As an example of such a

task, we consider the problem of, given the first 1, . . . , t
observations of a time series, predicting the remaining

(t + 1), . . . , n observations. Let xt,t′ ∈ R
p×(t′−t+1) be

the submatrix of x ∈ R
p×n of all columns with indices be-

tween t and t′, where 1 ≤ t < t′ < n. Learning to predict

the segment of a time series can be cast as the problem

min
θ∈Θ

N∑

i=1

dtwγ

(

fθ(x
1,t
i ),xt+1,n

i

)

,

where {fθ} is a set of parameterized function that take

as input a time series and outputs a time series. Natural

choices would be multi-layer perceptrons or recurrent neu-

ral networks (RNN), which have been historically trained

with a Euclidean loss (Parlos et al., 2000, Eq.5).

4. Experimental results

Throughout this section, we use the UCR (University

of California, Riverside) time series classification archive

(Chen et al., 2015). We use a subset containing 79 datasets

encompassing a wide variety of fields (astronomy, geology,

medical imaging) and lengths. Datasets include class infor-

mation (up to 60 classes) for each time series and are split

into train and test sets. Due to the large number of datasets

in the UCR archive, we choose to report only a summary

of our results in the main manuscript. Detailed results are

included in the appendices for interested readers.

4.1. Averaging experiments

In this section, we compare the soft-DTW barycenter ap-

proach presented in §3.1 to DBA (Petitjean et al., 2011)

and a simple batch subgradient method.

Experimental setup. For each dataset, we choose a class

at random, pick 10 time series in that class and compute

Table 1. Percentage of the datasets on which the proposed soft-

DTW barycenter is achieving lower DTW loss (Equation (4) with

γ = 0) than competing methods.

Random
initialization

Euclidean mean
initialization

Comparison with DBA

γ = 1 40.51% 3.80%

γ = 0.1 93.67% 46.83%

γ = 0.01 100% 79.75%

γ = 0.001 97.47% 89.87%

Comparison with subgradient method

γ = 1 96.20% 35.44%

γ = 0.1 97.47% 72.15%

γ = 0.01 97.47% 92.41%

γ = 0.001 97.47% 97.47%

their barycenter. For quantitative results below, we repeat

this procedure 10 times and report the averaged results. For

each method, we set the maximum number of iterations

to 100. To minimize the proposed soft-DTW barycenter

objective, Eq. (4), we use L-BFGS.

Qualitative results. We first visualize the barycenters ob-

tained by soft-DTW when γ = 1 and γ = 0.01, by DBA

and by the subgradient method. Figure 5 shows barycen-

ters obtained using random initialization on the ECG200

dataset. More results with both random and Euclidean

mean initialization are given in Appendix B and C.

We observe that both DBA or soft-DTW with low smooth-

ing parameter γ yield barycenters that are spurious. On

the other hand, a descent on the soft-DTW loss with suf-

ficiently high γ converges to a reasonable solution. For

example, as indicated in Figure 5 with DTW or soft-DTW

(γ = 0.01), the small kink around x = 15 is not repre-

sentative of any of the time series in the dataset. However,

with soft-DTW (γ = 1), the barycenter closely matches the

time series. This suggests that DTW or soft-DTW with too

low γ can get stuck in bad local minima.

When using Euclidean mean initialization (only possible if

time series have the same length), DTW or soft-DTW with

low γ often yield barycenters that better match the shape of

the time series. However, they tend to overfit: they absorb

the idiosyncrasies of the data. In contrast, soft-DTW is able

to learn barycenters that are much smoother.

Quantitative results. Table 1 summarizes the percentage

of datasets on which the proposed soft-DTW barycenter

achieves lower DTW loss when varying the smoothing pa-

rameter γ. The actual loss values achieved by different

methods are indicated in Appendix G and Appendix H.

As γ decreases, soft-DTW achieves a lower DTW loss than

other methods on almost all datasets. This confirms our



Soft-DTW: a Differentiable Loss Function for Time-Series

Figure 5. Comparison between our proposed soft barycenter and

the barycenter obtained by DBA and the subgradient method,

on the ECG200 dataset. When DTW is insufficiently smoothed,

barycenters often get stuck in a bad local minimum that does not

correctly match the time series.

claim that the smoothness of soft-DTW leads to an objec-

tive that is better behaved and more amenable to optimiza-

tion by gradient-descent methods.

4.2. k-means clustering experiments

We consider in this section the same computational tools

used in §4.1 above, but use them to cluster time series.

Experimental setup. For all datasets, the number of clus-

ters k is equal to the number of classes available in the

dataset. Lloyd’s algorithm alternates between a centering

step (barycenter computation) and an assignment step. We

set the maximum number of outer iterations to 30 and the

maximum number of inner (barycenter) iterations to 100,

as before. Again, for soft-DTW, we use L-BFGS.

Qualitative results. Figure 6 shows the clusters obtained

when runing Lloyd’s algorithm on the CBF dataset with

soft-DTW (γ = 1) and DBA, in the case of random initial-

ization. More results are included in Appendix E. Clearly,

DTW absorbs the tiny details in the data, while soft-DTW

is able to learn much smoother barycenters.

Quantitative results. Table 2 summarizes the percentage

of datasets on which soft-DTW barycenter achieves lower

k-means loss under DTW, i.e. Eq. (5) with γ = 0. The

actual loss values achieved by all methods are indicated in

Appendix I and Appendix J. The results confirm the same

trend as for the barycenter experiments. Namely, as γ de-

creases, soft-DTW is able to achieve lower loss than other

methods on a large proportion of the datasets. Note that

we have not run experiments with smaller values of γ than

0.001, since dtw0.001 is very close to dtw0 in practice.

(a) Soft-DTW (γ = 1) (b) DBA

Figure 6. Clusters obtained on the CBF dataset when plugging our

proposed soft barycenter and that of DBA in Lloyd’s algorithm.

DBA absorbs the idiosyncrasies of the data, while soft-DTW can

learn much smoother barycenters.

4.3. Time-series classification experiments

In this section, we investigate whether the smoothing in

soft-DTW can act as a useful regularization and improve

classification accuracy in the nearest centroid classifier.

Experimental setup. We use 50% of the data for training,

25% for validation and 25% for testing. We choose γ from

15 log-spaced values between 10−3 and 10.

Quantitative results. Each point in Figure 7 above the di-

agonal line represents a dataset for which using soft-DTW

for barycenter computation rather than DBA improves the

accuracy of the nearest centroid classifier. To summarize,

we found that soft-DTW is working better or at least as well

as DBA in 75% of the datasets.

4.4. Multistep-ahead prediction experiments

In this section, we present preliminary experiments for the

task of multistep-ahead prediction, described in §3.4.

Experimental setup. We use the training and test sets pre-

defined in the UCR archive. In both the training and test

sets, we use the first 60% of the time series as input and the

remaining 40% as output, ignoring class information. We

then use the training set to learn a model that predicts the

outputs from inputs and the test set to evaluate results with

both Euclidean and DTW losses. In this experiment, we

focus on a simple multi-layer perceptron (MLP) with one



Soft-DTW: a Differentiable Loss Function for Time-Series

Table 2. Percentage of the datasets on which the proposed soft-

DTW based k-means is achieving lower DTW loss (Equation (5)

with γ = 0) than competing methods.

Random
initialization

Euclidean mean
initialization

Comparison with DBA

γ = 1 15.78% 29.31%

γ = 0.1 24.56% 24.13%

γ = 0.01 59.64% 55.17%

γ = 0.001 77.19% 68.97%

Comparison with subgradient method

γ = 1 42.10% 46.44%

γ = 0.1 57.89% 50%

γ = 0.01 76.43% 65.52%

γ = 0.001 96.49% 84.48%

Figure 7. Each point above the diagonal represents a dataset

where using our soft-DTW barycenter rather than that of DBA

improves the accuracy of the nearest nearest centroid classifier.

This is the case for 75% of the datasets in the UCR archive.

hidden layer and sigmoid activation. We also experimented

with linear models and recurrent neural networks (RNNs)

but they did not improve over a simple MLP.

Implementation details. Deep learning frameworks such

as Theano, TensorFlow and Chainer allow the user to spec-

ify a custom backward pass for their function. Implement-

ing such a backward pass, rather than resorting to automatic

differentiation (autodiff), is particularly important in the

case of soft-DTW: First, the autodiff in these frameworks

is designed for vectorized operations, whereas the dynamic

program used by the forward pass of Algorithm 2 is inher-

ently element-wise; Second, as we explained in §2.2, our

backward pass is able to re-use log-sum-exp computations

from the forward pass, leading to both lower computational

cost and better numerical stability. We implemented a cus-

tom backward pass in Chainer, which can then be used to

plug soft-DTW as a loss function in any network architec-

ture. To estimate the MLP’s parameters, we used Chainer’s

implementation of Adam (Kingma & Ba, 2014).

Qualitative results. Visualizations of the predictions ob-

tained under Euclidean and soft-DTW losses are given in

Figure 1, as well as in Appendix F. We find that for sim-

Table 3. Averaged rank obtained by a multi-layer perceptron

(MLP) under Euclidean and soft-DTW losses. Euclidean initial-

ization means that we initialize the MLP trained with soft-DTW

loss by the solution of the MLP trained with Euclidean loss.

Training loss
Random

initialization
Euclidean

initialization

When evaluating with DTW loss

Euclidean 3.46 4.21

soft-DTW (γ = 1) 3.55 3.96

soft-DTW (γ = 0.1) 3.33 3.42

soft-DTW (γ = 0.01) 2.79 2.12

soft-DTW (γ = 0.001) 1.87 1.29

When evaluating with Euclidean loss

Euclidean 1.05 1.70

soft-DTW (γ = 1) 2.41 2.99

soft-DTW (γ = 0.1) 3.42 3.38

soft-DTW (γ = 0.01) 4.13 3.64

soft-DTW (γ = 0.001) 3.99 3.29

ple one-dimensional time series, an MLP works very well,

showing its ability to capture patterns in the training set.

Although the predictions under Euclidean and soft-DTW

losses often agree with each other, they can sometimes be

visibly different. Predictions under soft-DTW loss can con-

fidently predict abrupt and sharp changes since those have

a low DTW cost as long as such a sharp change is present,

under a small time shift, in the ground truth.

Quantitative results. A comparison summary of our

MLP under Euclidean and soft-DTW losses over the UCR

archive is given in Table 3. Detailed results are given in

the appendix. Unsurprisingly, we achieve lower DTW loss

when training with the soft-DTW loss, and lower Euclidean

loss when training with the Euclidean loss. Because DTW

is robust to several useful invariances, a small error in the

soft-DTW sense could be a more judicious choice than an

error in an Euclidean sense for many applications.

5. Conclusion

We propose in this paper to turn the popular DTW discrep-

ancy between time series into a full-fledged loss function

between ground truth time series and outputs from a learn-

ing machine. We have shown experimentally that, on the

existing problem of computing barycenters and clusters for

time series data, our computational approach is superior to

existing baselines. We have shown promising results on the

problem of multistep-ahead time series prediction, which

could prove extremely useful in settings where a user’s ac-

tual loss function for time series is closer to the robust per-

spective given by DTW, than to the local parsing of the

Euclidean distance.

Acknowledgements. MC gratefully acknowledges the

support of a chaire de l’IDEX Paris Saclay.



Soft-DTW: a Differentiable Loss Function for Time-Series

References

Bahl, L and Jelinek, Frederick. Decoding for channels with

insertions, deletions, and substitutions with applications

to speech recognition. IEEE Transactions on Informa-

tion Theory, 21(4):404–411, 1975.

Bakir, GH, Hofmann, T, Schölkopf, B, Smola, AJ, Taskar,

B, and Vishwanathan, SVN. Predicting Structured

Data. Advances in neural information processing sys-

tems. MIT Press, Cambridge, MA, USA, 2007.

Bellman, Richard. On the theory of dynamic programming.

Proceedings of the National Academy of Sciences, 38(8):

716–719, 1952.

Blondel, Mathieu, Fujino, Akinori, Ueda, Naonori, and

Ishihata, Masakazu. Higher-order factorization ma-

chines. In Advances in Neural Information Processing

Systems 29, pp. 3351–3359. 2016.

Boyd, Stephen and Vandenberghe, Lieven. Convex Opti-

mization. Cambridge University Press, 2004.

Chen, Yanping, Keogh, Eamonn, Hu, Bing, Begum, Nurja-

han, Bagnall, Anthony, Mueen, Abdullah, and Batista,

Gustavo. The ucr time series classification archive,

July 2015. www.cs.ucr.edu/˜eamonn/time_

series_data/.

Cuturi, Marco. Fast global alignment kernels. In Proceed-

ings of the 28th international conference on machine

learning (ICML-11), pp. 929–936, 2011.

Cuturi, Marco and Doucet, Arnaud. Fast computation of

Wasserstein barycenters. In Proceedings of the 31st In-

ternational Conference on Machine Learning (ICML-

14), pp. 685–693, 2014.

Cuturi, Marco, Vert, Jean-Philippe, Birkenes, Oystein, and

Matsui, Tomoko. A kernel for time series based on

global alignments. In 2007 IEEE International Con-

ference on Acoustics, Speech and Signal Processing-

ICASSP’07, volume 2, pp. II–413, 2007.

Fréchet, Maurice. Les éléments aléatoires de nature quel-

conque dans un espace distancié. In Annales de l’institut

Henri Poincaré, volume 10, pp. 215–310. Presses uni-

versitaires de France, 1948.

Garreau, Damien, Lajugie, Rémi, Arlot, Sylvain, and Bach,

Francis. Metric learning for temporal sequence align-

ment. In Advances in Neural Information Processing

Systems, pp. 1817–1825, 2014.

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome.

The Elements of Statistical Learning. Springer New York

Inc., 2001.

Kingma, Diederik and Ba, Jimmy. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Lasserre, Jean B. Linear and integer programming vs

linear integration and counting: a duality viewpoint.

Springer Science & Business Media, 2009.

Lloyd, Stuart. Least squares quantization in pcm. IEEE

Trans. on Information Theory, 28(2):129–137, 1982.

Lütkepohl, Helmut. New introduction to multiple time se-

ries analysis. Springer Science & Business Media, 2005.

Parlos, Alexander G, Rais, Omar T, and Atiya, Amir F.

Multi-step-ahead prediction using dynamic recurrent

neural networks. Neural networks, 13(7):765–786, 2000.

Petitjean, François and Gançarski, Pierre. Summarizing a

set of time series by averaging: From steiner sequence

to compact multiple alignment. Theoretical Computer

Science, 414(1):76–91, 2012.

Petitjean, François, Ketterlin, Alain, and Gançarski, Pierre.

A global averaging method for dynamic time warping,

with applications to clustering. Pattern Recognition, 44

(3):678–693, 2011.

Petitjean, François, Forestier, Germain, Webb, Geoffrey I,

Nicholson, Ann E, Chen, Yanping, and Keogh, Eamonn.

Dynamic time warping averaging of time series allows

faster and more accurate classification. In ICDM, pp.

470–479. IEEE, 2014.

Ristad, Eric Sven and Yianilos, Peter N. Learning string-

edit distance. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 20(5):522–532, 1998.

Rolet, A., Cuturi, M., and Peyré, G. Fast dictionary learn-

ing with a smoothed Wasserstein loss. Proceedings of

AISTATS’16, 2016.

Saigo, Hiroto, Vert, Jean-Philippe, Ueda, Nobuhisa, and

Akutsu, Tatsuya. Protein homology detection using

string alignment kernels. Bioinformatics, 20(11):1682–

1689, 2004.

Saigo, Hiroto, Vert, Jean-Philippe, and Akutsu, Tatsuya.

Optimizing amino acid substitution matrices with a local

alignment kernel. BMC bioinformatics, 7(1):246, 2006.

Sakoe, Hiroaki and Chiba, Seibi. A dynamic programming

approach to continuous speech recognition. In Proceed-

ings of the Seventh International Congress on Acoustics,

Budapest, volume 3, pp. 65–69, 1971.

Sakoe, Hiroaki and Chiba, Seibi. Dynamic program-

ming algorithm optimization for spoken word recogni-

tion. IEEE Trans. on Acoustics, Speech, and Sig. Proc.,

26:43–49, 1978.

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/


Soft-DTW: a Differentiable Loss Function for Time-Series

Schultz, David and Jain, Brijnesh. Nonsmooth analysis

and subgradient methods for averaging in dynamic time

warping spaces. arXiv preprint arXiv:1701.06393, 2017.

Tibshirani, Robert, Hastie, Trevor, Narasimhan, Balasubra-

manian, and Chu, Gilbert. Diagnosis of multiple cancer

types by shrunken centroids of gene expression. Pro-

ceedings of the National Academy of Sciences, 99(10):

6567–6572, 2002.

Yi, Byoung-Kee, Jagadish, HV, and Faloutsos, Christos.

Efficient retrieval of similar time sequences under time

warping. In Data Engineering, 1998. Proceedings., 14th

International Conference on, pp. 201–208. IEEE, 1998.

Zhang, C., Frogner, C., Mobahi, H., Araya-Polo, M., and

Poggio, T. Learning with a Wasserstein loss. Advances

in Neural Information Processing Systems 29, 2015.


