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5. Appendix

We divide this section into five parts. In the first part we prove some common lemmas. In the second part we give the
convergence guarantee for PG-RMC . In the third part we give another algorithm which has a sample complexity of
O(µ4r3n log2 n log

µ2rσ∗1
ε ) and prove its convergence guarantees. In the fourth part we prove a generalized form of lemma

1. In the fifth part we present some additional experiments.

For the sake of convenience in the following proofs, we will define some notations here.

We define p =
|Ωk,t|
mn and we consider the following equivalent update step for L(t+1) in the analysis:

L(t+1) := Pk(M (t)) M (t) := L∗ +H

H := E(t) + βG E(t) := S̃∗ − S̃(t)

S̃(t) := HT ζ
(
M − L(t)

)
G := 1

β

(
I − PΩq,t

p

)
D

D := L(t) − L∗ + S̃(t) − S̃∗ β :=
2
√
n ‖D‖∞√
p

The singular values of L∗ are denoted by σ∗1 , . . . , σ
∗
r where |σ∗1 | ≥ . . . ≥ |σ∗r | and we will let λ1, . . . , λn denote the

singular values of M (t) where |λ1| ≥ . . . ≥ |λn|.

5.1. Common Lemmas

We will begin by restating some lemmas from previous work that we will use in our proofs.

First, we restate Weyl’s perturbation lemma from (Bhatia, 1997), a key tool in our analysis:
Lemma 2. Suppose B = A + E ∈ Rm×n matrix. Let λ1, · · · , λk and σ1, · · · , σk be the singular values of B and A
respectively such that λ1 ≥ · · · ≥ λk and σ1 ≥ · · · ≥ σk. Then:

|λi − σi| ≤ ‖E‖2 ∀ i ∈ [k].

This lemma establishes a bound on the spectral norm of a sparse matrix.
Lemma 3. Let S ∈ Rm×n be a sparse matrix with row and column sparsity ρ. Then,

‖S‖2 ≤ ρmax{m,n} ‖S‖∞

Proof. For any pair of unit vectors u and v, we have:

v>Su =
∑

1≤i≤m,1≤j≤n

viujSij ≤
∑

1≤i≤m,1≤j≤n

|Sij |

(
v2
i + u2

j

2

)

≤ 1

2

 ∑
1≤i≤m

v2
i

∑
1≤j≤n

|Sij |+
∑

1≤j≤n

u2
j

∑
1≤i≤m

|Sij |

 ≤ ρmax{m,n} ‖S‖∞

Lemma now follows by using ‖S‖2 = maxu,v,‖u‖2=1,‖v‖2=1 u
TSv.

Now, we define a 0-mean random matrix with small higher moments values.
Definition 1 (Definition 7, (Jain & Netrapalli, 2015)). H is a random matrix of size m× n with each of its entries drawn
independently satisfying the following moment conditions:

E[hij ] = 0, |hij | < 1, E[|hij |k] ≤ 1
max{m,n} ,

for i, j ∈ [n] and 2 ≤ k ≤ 2 log n.

We now restate two useful lemmas from (Jain & Netrapalli, 2015):
Lemma 4 (Lemma 8 and 10 of (Jain & Netrapalli, 2015)). We have the following two claims:

• Suppose H satisfies Definition 1. Then, w.p. ≥ 1− 1/n10+logα, we have: ‖H‖2 ≤ 3
√
α.
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• Let A be a m× n matrix with n ≥ m. Suppose Ω ⊆ [m]× [n] is obtained by sampling each element with probability
p ≥ 1

4n . Then, the following matrix H satisfies Defintion 1:

H :=

√
p

2
√
n ‖A‖∞

(
A− 1

p
PΩ(A)

)
.

Lemma 5 (Lemma 13, (Jain & Netrapalli, 2015)). Let A ∈ Rn×n be a symmetric matrix with eigenvalues σ1, · · · , σn
where |σ1| ≥ · · · ≥ |σn|. Let B = A + C be a perturbation of A satisfying ‖C‖2 ≤

σk
2 and let Pk(B) = UΛU> be the

rank-k projection of B. Then, Λ−1 exists and we have:

1.
∥∥A−AUΛ−1U>A

∥∥
2
≤ |σk+1|+ 5 ‖C‖2,

2.
∥∥AUΛ−aU>A

∥∥
2
≤ 4

(
|σk|

2

)−a+2

∀a ≥ 2.

We now provide a lemma that bounds ‖ · ‖∞ norm of an incoherent matrix with its operator norm.
Lemma 6. Let A ∈ Rm×n be a rank r, µ-incoherent matrix. Then for any C ∈ Rn×m, we have:

‖ACA‖∞ ≤
µ2r√
mn
‖ACA‖2

Proof. Let A = UΣV >. Then, ACA = UU>ACAV V >. The lemma now follows by using definition of incoherence
with the fact that ‖U>ACAV ‖2 ≤ ‖ACA‖2.

We now present a lemma that shows improvement in the error ‖L− L∗‖∞ by using gradient descent on L(t).
Lemma 7. Let L∗, Ω, S̃∗ satisfy Assumptions 1,2,3 respectively. Also, let the following hold for the t-th inner-iteration of
any stage q:

1.
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

2.
∥∥∥S̃∗ − S̃(t)

∥∥∥
∞
≤ 8µ2r

m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

3. Supp(S̃(t)) ⊆ Supp(S̃∗)

where z ≥ −3 and σ∗k and σ∗k+1 are the k and (k + 1)th singular values of L∗. Also, let E1 = S̃(t) − S̃∗ and E3 =(
I − PΩq,t

p

)(
L(t) − L∗ + S̃(t) − S̃∗

)
be the error terms defined also in (6). Then, the following holds w.p ≥ 1 −

n−(10+logα):

‖E1 + E3‖2 ≤
1

100

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
(8)

Proof. Note from Lemma 4,
1

β
E3 =

1

β

(
I −
PΩq,t

p

)(
L(t) − L∗ + S̃(t) − S̃∗

)
,

satisfies Definition 1 with β = 2
√
n√
p · ‖L

(t) − L∗ + S̃(t) − S̃∗‖∞.

We now bound the spectral norm of E1 + E3 as follows:

‖E1 + E3‖2 ≤ ‖E1‖2 + β ·
∥∥∥∥ 1

β
E3

∥∥∥∥
2

(ζ1)

≤ ρn
∥∥∥S̃(t) − S̃∗

∥∥∥
∞

+ 3β
√
α,

(ζ2)

≤ 1

200

(
σ∗kq+1 +

(
1

2

)z
σ∗kq

)
+

60µ2r

m

√
n

p

√
α

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)z ∣∣∣σ∗kq ∣∣∣) ,
(ζ3)

≤ 1

100

(
σ∗kq+1 +

(
1

2

)z
σ∗kq

)
.

where (ζ1) follows from Lemma 3 and 4, (ζ2) follows by our assumptions on ρ,
∥∥L(t) − L∗

∥∥
∞,
∥∥∥S̃(t) − S̃∗

∥∥∥
∞

and our

assumption that n = O (m) and (ζ3) follows from our assumption on p.
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In the following lemma, we prove that the value of the threshold computed using σk(M (t)) = σk(L∗ + E1 + E3), where
E1, E3 are defined in (6), closely tracks the threshold that we would have gotten had we had access to the true eigenvalues
of L∗, σ∗k.
Lemma 8. Let L∗, Ω, S̃∗ satisfy Assumptions 1,2,3 respectively. Also, let the following hold for the t-th inner-iteration of
any stage q:

1.
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

2.
∥∥∥S̃∗ − S̃(t)

∥∥∥
∞
≤ 8µ2r

m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

3. Supp(S̃(t)) ⊆ Supp(S̃∗)

where z ≥ −3 and σ∗k and σ∗k+1 are the k and (k + 1)th singular values of L∗. Also, let E1 = S̃(t) − S̃∗ and E3 =(
I − PΩq,t

p

)(
L(t) − L∗ + S̃(t) − S̃∗

)
be the error terms defined also in (6). Then, the following holds ∀z > −3 w.p

≥ 1− n−(10+logα):

7

8

(
σ∗k+1 +

(
1

2

)z+1

σ∗k

)
≤

(
λk+1 +

(
1

2

)z+1

λk

)
≤ 9

8

(
σ∗k+1 +

(
1

2

)z+1

σ∗k

)
, (9)

where λk := σk(M (t)) = σk(L∗ + E1 + E3) and E1, E3 are defined in (6).

Proof. Using Weyl’s inequality (Lemma 2), we have: : |λk − σ∗k| ≤ ‖E1 + E3‖2 and
∣∣λk+1 − σ∗k+1

∣∣ ≤ ‖E1 + E3‖2 We
now proceed to prove the lemma as follows:∣∣∣∣∣λk+1 +

(
1

2

)z+1

λk − σ∗k+1 −
(

1

2

)z+1

σ∗k

∣∣∣∣∣ ≤ ∣∣λk+1 − σ∗k+1

∣∣+

(
1

2

)z+1

|λk − σ∗k| ,

≤ ‖E1 + E3‖2

(
1 +

(
1

2

)z+1
)

(ζ)

≤ 1

100

(
σ∗k+1 +

(
1

2

)z
σ∗k

)(
1 +

(
1

2

)z+1
)
,

≤ 1

8

(
σ∗k+1 +

(
1

2

)z+1

σ∗k

)
,

where (ζ) follows from Lemma 7 and the last inequality follows from the assumption that z ≥ −3.

Next, we show that the projected gradient descent update (6) leads to a better estimate ofL∗, i.e., we bound ‖L(t+1)−L∗‖∞.
Under the assumptions of the below given Lemma, the proof follows arguments similar to (Netrapalli et al., 2014) with
additional challenge that arises due to more involved error terms E1, E3.

Our proof proceeds by first symmetrizing our matrices by rectangular dilation. We first begin by noting some properties of
symmetrized matrices used in the proof of the following lemma.
Remark 1. Let A be a m× n dimensional matrix with singular value decomposition UΣV >. We denote its symmetrized

version by As :=

[
0 A>

A 0

]
. Then:

1. The eigenvalue decomposition of As is given by As = UsΣsU
>
s where

Us :=
1√
2

[
V V
U −U

]
Σs :=

[
Σ 0
0 −Σ

]

2. P2k (As) =

[
0 Pk(A>)

Pk(A) 0

]
3. We have A2j

s =

[
(A>A)j 0

0 (AA>)j

]
A2j+1
s =

[
0 (A>A)jA>

(AA>)jA 0

]
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4. We have

UsΣ
−j
s U>s =

[
V Σ−jV > 0

0 UΣ−jU>

]
when j is even

UsΣ
−j
s U>s =

[
0 V Σ−jU>

UΣ−jV > 0

]
when j is odd

Lemma 9. Let L = Pk(L∗ +H), where H is any perturbation matrix that satisfies the following:

1. ‖H‖2 ≤
σ∗k
4

2. ∀i ∈ [n], a ≤ d logn
2 e with υ ≤ σ∗k

4∥∥e>i (H>H)a V ∗∥∥2
,
∥∥e>i (HH>)a U∗∥∥2

≤ (υ)2aµ
√

r
m∥∥e>i H> (HH>)a U∗∥∥2

,
∥∥e>i H (H>H)a V ∗∥∥2

≤ (υ)2a+1µ
√

r
m

where σ∗k is the kth singular value of L∗. Also, let L∗ satisfy Assumption 1. Then, the following holds:

‖L− L∗‖∞ ≤
µ2r

m

(
σ∗k+1 + 20 ‖H‖2 + 8υ

)
where µ and r are the rank and incoherence of the matrix L∗ respectively.

Proof. Let Ls, Hs and L∗s denote the symmetrized forms of L, H and L∗ respectively. Now, we have:

Ls = P2k (L∗s +Hs)

Let l = m+n. Let λ1, · · · , λl be the eigenvalues of Ms = L∗s +Hs with |λ1| ≥ |λ2| · · · ≥ |λl|. Let u1, u2, · · · , ul be the
corresponding eigenvectors of Ms. Using Lemma 2 along with the assumption on ‖Hs‖2, we have: |λ2k| ≥ 3σ∗k

4 .

Let UΛV be the eigen vector decomposition of L. Let UsΛsU>s to be the eigen vector decomposition of Ls. Then, using
Remark 1 we have ∀ i ∈ [2k]:

(L∗s +Hs)ui = λiui, i.e.
(
I − Hs

λi

)
ui =

L∗sui
λi

.

As |λ2k| ≥ 3σ∗k
4 and ‖Hs‖2 ≤

1
4σ
∗
k, we can apply the Taylor’s series expansion to get the following expression for ui:

ui =
1

λi

 ∞∑
j=0

(
Hs

λi

)j L∗sui
λi

.

That is,

Ls =

2k∑
i=1

λiuiu
>
i =

2k∑
i=1

λ−1
i

∑
0≤s,t<∞

(
Hs

λi

)s
L∗suiu

>
i L
∗
s

(
Hs

λi

)t
,

=
∑

0≤s,t<∞

2k∑
i=1

λ
−(s+t+1)
i Hs

sL
∗
suiu

>
i L
∗
sH

t
s =

∑
0≤s,t<∞

Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s.

Subtracting L∗s on both sides and taking operator norm, we get:

‖Ls − L∗s‖∞ =
∥∥UsΛsU>s − L∗s∥∥∞ =

∥∥∥∥∥∥
∑

0≤s,t<∞

Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s − L∗s

∥∥∥∥∥∥
∞

,

=
∥∥L∗sUsΛ−1

s U>s L
∗
s − L∗s

∥∥
∞ +

∑
1≤s+t<∞

∥∥∥Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞
. (10)
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We separately bound the first and the second term of RHS. The first term can be bounded as follows:

∥∥L∗sUsΛ−1
s U>s L

∗
s − L∗s

∥∥
∞

(ζ1)
=

∥∥∥∥L∗s [ 0 V Λ−1U>

UΛ−1V > 0

]
L∗s − L∗s

∥∥∥∥
∞

(11)

≤
∥∥L∗V Λ−1U>L∗ − L∗

∥∥
∞

(ζ2)

≤ µ2r√
mn

∥∥L∗V Λ−1U>L∗ − L∗
∥∥

2

(ζ3)

≤ µ2r√
mn

(∣∣σ∗k+1

∣∣+ 5 ‖H‖2
)
, (12)

where (ζ1) follows Remark 1, (ζ2) from Lemma 6 and (ζ3) follows from Claim 1 of Lemma 5 after symmetrization.

We now bound second term of RHS of (10) which we again split in two parts. We first bound the terms with s+ t > log n:

∥∥∥Hs
sL
∗
sUsΛ

(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞
≤
∥∥∥Hs

sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
2

(ζ1)

≤ ‖Hs‖s+t2 4

(
2

σ∗k

)−(s+t−1)

≤ 4 ‖H‖2

(
‖H‖2

2

σ∗k

)(s+t−1) (ζ2)

≤ 4 ‖H‖2

(
1

2

)(s+t−1)

≤ 4

n
‖H‖2

(
1

2

)(s+t−1−logn)

≤ 4
µ2r

m
‖H‖2

(
1

2

)(s+t−1−logn)

, (13)

where (ζ1) follows from the second claim of Lemma 5 and noting that ‖Hs‖2 = ‖H‖2 and (ζ2) follows from assumption
on ‖H‖2 and using the fact that s+ t ≥ log n.

Summing up over all terms with s+ t > log n, we get from (13) and (12):

‖Ls − L∗s‖∞ ≤
µ2r

m

(∣∣σ∗k+1

∣∣+ 20 ‖H‖2
)

+
∑

0<s+t≤logn

∥∥∥Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞

(14)

where the first inequality follows because m ≤ n.

Now, for terms corresponding to 1 ≤ s+ t ≤ log n, we have:∥∥∥Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞

= max
q1∈[m+n],q2∈[m+n]

∣∣∣e>q1Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
seq2

∣∣∣
≤
(

max
q1∈[m+n]

∥∥e>q1Hs
sU
∗
s

∥∥
2

)∥∥∥Σ∗s(U
∗
s )>UsΛ

−(s+t+1)
s U>s U

∗
sΣ∗s

∥∥∥
2

(
max

q2∈[m+n]

∥∥e>q2HtU∗s
∥∥

2

)
, (15)

We will now bound the terms, max
q1∈[m+n]

∥∥e>q1Hs
sU
∗
s

∥∥
2
. Note from Remark 1.1 that U∗s = 1√

2

[
V ∗ V ∗

U∗ −U∗
]

. Now, we have

the following cases for Hs
s :

Hj
s =

[(
H>H

) s
2 0

0
(
HH>

) s
2

]
when s is even Hj

s =

[
0 H>

(
HH>

)b s2 c
H
(
H>H

)b s2 c 0

]
when s is odd

In these two cases, we have:

Hs
sU
∗
s = 1√

2

[(
H>H

) s
2 V ∗

(
H>H

) s
2 V ∗(

HH>
) s

2 U∗ −
(
HH>

) s
2 U∗

]
Hs
sU
∗
s = 1√

2

[
H>

(
HH>

)b s2 c U∗ −H>
(
HH>

)b s2 c U∗
H
(
H>H

)b s2 c V ∗ H
(
H>H

)b s2 c V ∗
]

This leads to the following 4 cases for max
q1∈[m+n]

∥∥e>q1Hs
sU
∗
s

∥∥
2
:

for s even max
q′∈[n]

∥∥∥e>q′ (H>H) s2 V ∗∥∥∥
2

max
q′∈[m]

∥∥∥e>q′ (HH>) s2 U∗∥∥∥
2

for s odd max
q′∈[n]

∥∥∥e>q′H> (HH>)b s2 c U∗∥∥∥
2

max
q′∈[m]

∥∥∥e>q′H (H>H)b s2 c V ∗∥∥∥
2
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We can now bound the terms in (15) as follows:

∥∥∥Hs
sL
∗
sUsΛ

−(s+t+1)
s U>s L

∗
sH

t
s

∥∥∥
∞

(ζ1)

≤ µ2r

m
υs+t

∥∥∥L∗sUsΛ−(s+t+1)
s U>s L

∗
s

∥∥∥
2

(ζ2)

≤ 4µ2r

m
υs+t

(
2

σ∗k

)s+t−1

≤ 4µ2r

m
υ

(
1

2

)s+t−1

(16)

where (ζ1) follows from the second assumption of the Lemma and the preceding argument and (ζ2) follows from Claim 2
of Lemma 5 and the final step follows from our bound on υ.

Finally, note from the Remark 1 that ‖L∗s − Ls‖∞ =
∥∥L∗ − L(t+1)

∥∥
∞. Now, summing up (16) over all 1 ≤ s+ t ≤ log n

and combining with (14), the lemma is proved.

In the next lemma, we show that with the threshold chosen in the algorithm, we show an improvement in the estimation of
S̃∗ by S̃(t).
Lemma 10. In the tth iterate of the qth stage, assume the following holds:

1.
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

2. 7
8η
(
σ∗k+1 +

(
1
2

)z
σ∗k

)
≤ ζ(t) ≤ 9

8η
(
σ∗k+1 +

(
1
2

)z
σ∗k

)
where σ∗k and σ∗k+1 are the k and (k + 1)th singular values of L∗, λk and λk+1 are the k and (k + 1)th singular values of
M (t) and, r and µ are the rank and incoherence of the m× n matrix L∗ respectively. Then we have

1. Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)

2.
∥∥∥S̃(t) − S̃∗

∥∥∥
∞
≤ 8µ2r

m

(
σ∗k+1 +

(
1
2

)z
σ∗k
)

Proof. We first prove the first claim of the lemma. Consider an index pair (i, j) /∈ Supp(S̃∗).∣∣∣Mij − L(t)
ij

∣∣∣ ≤ 2µ2r

m

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
(ζ1)

≤ 16µ2r

7mη
ζ(t)

(ζ2)

≤ ζ(t)

where (ζ1) follows from the second assumption of the lemma and (ζ2) follows from our setting of η = 4µ2r
m . Hence, we

do not threshold any entry that is not corrupted by S̃∗.

Now, we prove the second claim of the lemma. Consider an index entry (i, j) ∈ Supp(S̃∗). Here, we consider two cases:

1. The entry (i, j) ∈ Supp(S̃(t)): Here the entry (i, j) is thresholded. We know that L(t)
ij + S̃

(t)
ij = L∗ij + S̃∗ij from which

we get ∣∣∣S̃(t)
ij − S̃

∗
ij

∣∣∣ =
∣∣∣L∗ij − L(t)

ij

∣∣∣ ≤ ∥∥∥L∗ − L(t)
∥∥∥
∞

2. The entry (i, j) /∈ Supp(S̃(t)): Here the entry (i, j) is not thresholded. We know that
∣∣∣L∗ij + S̃∗ij − L

(t)
ij

∣∣∣ ≤ ζ(t) from
which we get ∣∣∣S̃∗ij∣∣∣ ≤ ζ(t) +

∣∣∣L∗ij − L(t)
ij

∣∣∣
(ζ2)

≤ 36µ2r

8m

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
+

2µ2r

m

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
≤ 8µ2r

m

(
σ∗k+1 +

(
1

2

)z
σ∗k

)
where (ζ2) follows from the second assumption along with our setting of η = 4µ

2r
m .

The above two cases prove the second statement of the lemma.
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We will now prove Lemma 1
Proof of Lemma 1: Recall the definitions of E1 =

(
S̃∗ − S̃(t)

)
, E2 =

(
L(t) − L∗

)
, E3 =

(
I − PΩq,t

p

)
(E2 − E1) and

β = 2
√

n
p ‖E2 − E1‖∞. Recall that H := E1 +E3 From Lemma 4, we have that 1

βE3 satisfies Definition 1. This implies

that the matrix 1
β (E1 + E3) satisfies the conditions of Lemma 14. Now, we have ∀1 ≤ a ≤ dlog ne and ∀i ∈ [n]:

∥∥ei(HH>)aU∗
∥∥

2
= β2a

∥∥∥∥∥ei
((

1

β
H

)(
1

β
H

)>)a
U∗

∥∥∥∥∥
2

(ζ)

≤ β2a

(
ρn

β
‖E1‖∞ + c log n

)2a

µ

√
r

m
≤ µ

√
r

m

(
ρn ‖E1‖∞ + 2c

√
n

p
(‖E1 − E2‖∞) log n

)2a

where (ζ) follows from the application of Lemma 14 along with the incoherence assumption on U∗. The other statements
of the lemma can be proved in a similar manner by invocations of the different claims of Lemma 14. �

5.2. Algorithm PG-RMC

Proof of Theorem 1: We know that T ≥ log(
20µ2nrσ∗1

ε ). Consider the stage q reached at the termination of the algorithm.
We know from Lemma 11 that:

1.
∥∥E(T )

∥∥
∞ ≤

8µ2r
m

(
σ∗kq+1 +

(
1
2

)T−3
σ∗kq

)
≤ 8µ2r

m σ∗kq+1 + ε
10n

2.
∥∥L(T ) − L∗

∥∥
∞ ≤

2µ2r
m

(
σ∗kq+1 +

(
1
2

)T−3
∣∣∣σ∗kq ∣∣∣) ≤ 2µ2r

m σ∗kq+1 + ε
10n

Combining this with Lemmas 2 and 7, we get:

∣∣∣σkq+1(M (T ))
∣∣∣ ≥ σ∗kq+1 −

1

100

(
σ∗kq+1 +

mε

10nµ2r

)
(17)

When the while loop terminates, ησkq+1

(
M (T )

)
< ε

2n , which from (17), implies that σ∗kq+1 <
mε

7nµ2r . So we have:

‖L− L∗‖∞ =
∥∥∥L(T ) − L∗

∥∥∥
∞
≤ 2µ2r

m
σ∗kq+1 +

ε

10n
≤ ε

2n
.

We will now bound the number of iterations required for the PG-RMC to converge.

From claim 2 of Lemma 12, we have σ∗kq+1 ≤ 17
32σ
∗
kq−1+1 ∀q ≥ 1. By recursively applying this inequality, we get

σ∗kq+1 ≤
(

17
32

)q
σ∗1 . We know that when the algorithm terminates, σ∗kq+1 <

ε
7µ2r . Since,

(
17
32

)q
σ∗1 is an upper bound for

σ∗kq+1, an upper bound for the number of iterations is 5 log
(

7µ2rσ∗1
ε

)
. Also, note that an upper bound to this quantity is

used to partition the samples provided to the algorithm. This happens with probability≥ 1−T 2n−(10+logα) ≥ 1−n− logα.
This concludes the proof. �

In the following lemma, we show that we make progress simultaneously in the estimation of both S̃∗ and L∗ by S̃(t) and
L(t). We make use of Lemmas 9 and 10 to show progress in the estimation of one affects the other alternatively. We also
emphasize the roles of the following quantities in enabling us to prove our convergence result:

1. ‖H‖2 - We use Lemma 7 to bound this quantity

2. The analysis of the following 4 quantities is crucial to obtaining error bounds in ‖‖∞ norm

for j even max
q′∈[n]

∥∥∥∥e>q′ (H>H) j2 V ∗∥∥∥∥
2

max
q′∈[m]

∥∥∥∥e>q′ (HH>) j2 U∗∥∥∥∥
2

for j odd max
q′∈[n]

∥∥∥∥e>q′H> (HH>)b j2 c U∗∥∥∥∥
2

max
q′∈[m]

∥∥∥∥e>q′H (H>H)b j2 c V ∗∥∥∥∥
2

We use Lemma 1 to bound this quantity.
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Lemma 11. Let L∗, Ω, S̃∗ and S̃(t) satisfy Assumptions 1,2,3 respectively. Then, in the tth iteration of the qth stage of
Algorithm 1, S̃(t) and L(t) satisfy:

∥∥∥S̃(t) − S̃∗
∥∥∥
∞
≤ 8µ2r

m

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−3 ∣∣∣σ∗kq ∣∣∣
)
,

Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
,

7

8
η

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−2 ∣∣∣σ∗kq ∣∣∣
)
≤ ζ(t+1) ≤ 9

8
η

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−2 ∣∣∣σ∗kq ∣∣∣
)

and

∥∥∥L(t) − L∗
∥∥∥
∞
≤ 2µ2r

m

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−3 ∣∣∣σ∗kq ∣∣∣
)
.

with probability ≥ 1− ((q − 1)T + t− 1)n−(10+logα) where T is the number of iterations in the inner loop.

Proof. We prove the lemma by induction on both q and t. Recall that E(t) = S̃∗ − S̃(t)

Base Case: q = 1 and t = 0
We begin by first proving an upper bound on ‖L∗‖∞. We do this as follows:

∣∣L∗ij∣∣ =

∣∣∣∣∣
r∑

k=1

σ∗ku
∗
ikv
∗
jk

∣∣∣∣∣ ≤
r∑

k=1

σ∗k
∣∣u∗ikv∗jk∣∣ ≤ σ∗1 r∑

k=1

∣∣u∗ikv∗jk∣∣ ≤ µ2r√
mn

σ∗1

where the last inequality follows from Cauchy-Schwartz and the incoherence of U∗. This directly proves the third claim
of the lemma for the base case. Recall, that ζ(0) = ησ∗1 . We now have from the thresholding step and the incoherence
assumption on L∗:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m (σ∗2 + 2σ∗1)

(ζ)

≤ 8µ2r
m

(
8σ∗k1

)
, and

2. Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
.

where (ζ) follows from Lemma 12.

Finally, from Lemma 8, we have:

7

8
η
(
σ∗k1+1 + 4σ∗k1

)
≤ ζ(1) = η

(
σk1+1(M (t)) + 4σk1

(M (t))
)
≤ 9

8
η
(
σ∗k1+1 + 4σ∗k1

)
So the base case of induction is satisfied.

Induction over t
We first prove the inductive step over t (for a fixed q). By inductive hypothesis we assume that:

a)
∥∥E(t)

∥∥
∞ ≤

8µ2r
m

(
σ∗kq+1 +

(
1
2

)t−3
σ∗kq

)
b) Supp

(
S̃(t)

)
⊆ Supp

(
S̃∗
)

.

c)
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
σ∗kq+1 +

(
1
2

)t−3
σ∗kq

)
d) 7

8η
(∣∣∣σ∗kq+1

∣∣∣+
(

1
2

)t−2
∣∣∣σ∗kq ∣∣∣) ≤ ζ(t+1) ≤ 9

8η
(∣∣∣σ∗kq+1

∣∣∣+
(

1
2

)t−2
∣∣∣σ∗kq ∣∣∣)

with probability 1− ((q − 1)T + t− 1)n−(10+logα). Then by Lemma 9, we have:∥∥∥L(t+1) − L∗
∥∥∥
∞
≤ µ2r

m

(
σ∗kq+1 + 20 ‖H‖2 + 8υ

)
(18)
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From Lemma 1, we have:

υ ≤ ρn
∥∥∥E(t)

∥∥∥
∞

+ 8βα log n
(ζ1)

≤ 1

100

(
σ∗kq+1 +

(
1

2

)t−3

σ∗kq

)
+ 8βα log n

(ζ2)

≤ 1

50

(
σ∗kq+1 +

(
1

2

)t−3

σ∗kq

)
(19)

where (ζ1) follows from our assumptions on ρ and our inductive hypothesis on
∥∥E(t)

∥∥
∞ and (ζ2) follows from our

assumption on p and by noticing that ‖D‖∞ ≤
∥∥E(t)

∥∥
∞ +

∥∥L∗ − L(t)
∥∥
∞. Recall that D = L(t) − L∗ + S̃(t) − S̃∗.

From Lemma 7:

‖H‖2 ≤
1

100

(
σ∗kq+1 +

(
1

2

)t−3

σ∗kq

)
(20)

with probability ≥ 1− n−(10+logα). From Equations (20), (19) and (18), we have:∥∥∥L∗ − L(t+1)
∥∥∥
∞
≤ 2µ2r

m

(
σ∗kq+1 +

(
1

2

)t−2

σ∗kq

)

which by union bound holds with probability≥ 1− ((q−1)T + t)n−(10+logα). Hence, using Lemma 10 and our inductive
hypothesis on ζ(t+1) we have:

1.
∥∥E(t+1)

∥∥
∞ ≤

8µ2r
m

(
σ∗kq+1 +

(
1
2

)t−2
σ∗kq

)
2. Supp

(
S̃(t+1)

)
⊆ Supp

(
S̃∗
)

.

which also holds with probability ≥ 1− ((q − 1)T + t)n−(10+logα). This concludes the proof for induction over t.

Finally, from Lemma 8 and our bounds on
∥∥E(t+1)

∥∥
∞ and

∥∥L∗ − L(t+1)
∥∥
∞, we have:

7

8
η

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−1 ∣∣∣σ∗kq ∣∣∣
)
≤ ζ(t+2) ≤ 9

8
η

(∣∣∣σ∗kq+1

∣∣∣+

(
1

2

)t−1 ∣∣∣σ∗kq ∣∣∣
)

Induction Over Stages q
We now prove the induction over q. Suppose the hypothesis holds for stage q. At the end of stage q, we have:

1.
∥∥E(T )

∥∥
∞ ≤

8µ2r
m

(
σ∗kq+1 +

(
1
2

)T−3
σ∗kq

)
≤

8µ2rσ∗kq+1

m + ε
10n , and

2. Supp
(
S̃(T )

)
⊆ Supp

(
S̃∗
)

.

3. 7
8η
(∣∣∣σ∗kq+1

∣∣∣+
(

1
2

)T−2
∣∣∣σ∗kq ∣∣∣) ≤ ζ(T+1) ≤ 9

8η
(∣∣∣σ∗kq+1

∣∣∣+
(

1
2

)T−2
∣∣∣σ∗kq ∣∣∣)

with probability ≥ 1− (qT − 1)n−(10+logα). From Lemmas 2 and 7, we get:∣∣∣σkq+1

(
M (T )

)
− σ∗kq+1

∣∣∣ ≤ ‖H‖2 ≤ 1

100

(
σ∗kq+1 +

mε

10nµ2r

)
(21)

with probability 1− n−(10+logα). We know that ησkq+1

(
M (t)

)
≥ ε

2n which with (21) implies that
∣∣∣σ∗kq+1

∣∣∣ > mε
10nµ2r .

∥∥∥L(T+1) − L∗
∥∥∥
∞
≤ 2µ2r

m

(
σ∗kq+1 +

(
1

2

)T−2

σ∗kq

)
≤ 2µ2r

m

(
σ∗kq+1 +

mε

20nµ2rn

)
≤ 2µ2r

m

(
σ∗kq+1 +

σ∗kq+1

2

)
≤ 2µ2r

m

(
2σ∗kq+1

) (ζ4)

≤ 2µ2r

m

(
8σ∗kq+1

)
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where (ζ4) follows from Lemma 12. By union bound this holds with probability ≥ 1− qTn−(10+logα).

Now, from Lemma 10 and the inductive hypothesis on ζT+1, we have through a similar series of arguments as above:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m

(
8σ∗kq+1

)
2. Supp

(
S̃(0)

)
⊆ Supp

(
S̃∗
)

which holds with probability ≥ 1− qTn−(10+logα).

Recall, now that L(0) = L(T+1). Finally, from Lemma 8 and our bounds on
∥∥E(0)

∥∥
∞ and

∥∥L(0) − L∗
∥∥
∞, we have:

7

8
η
(∣∣∣σ∗kq+1+1

∣∣∣+ 4
∣∣∣σ∗kq+1

∣∣∣) ≤ ζ(1) ≤ 9

8
η
(∣∣∣σ∗kq+1+1

∣∣∣+ 4
∣∣∣σ∗kq+1

∣∣∣)

Lemma 12. Suppose at the beginning of the qth stage of algorithm 1:

1.
∥∥L∗ − L(0)

∥∥
∞ ≤

2µ2r
m

(
2σ∗kq−1+1

)
2.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m

(
2σ∗kq−1+1

)
Then, the following hold:

1. σ∗kq ≥
15
32σ
∗
kq−1+1

2. σ∗kq+1 ≤ 17
32σ
∗
kq−1+1

with probability ≥ 1− n−(10+logα)

Proof. We know that:

λkq ≤ σ∗kq + ‖H‖2 , λkq−1+1 ≥ σ∗kq−1+1 − ‖H‖2 , λkq ≥
λkq−1+1

2

Combining the three inequalities, we get:

σ∗kq ≥
σ∗kq−1+1 − 3 ‖H‖2

2

Applying Lemma 7, we get the first claim of the lemma.

Similar to the first claim, we have:

λkq+1 ≥ σ∗kq+1 − ‖H‖2 , λkq−1+1 ≤ σ∗kq−1+1 + ‖H‖2 , λkq+1 ≤
λkq−1+1

2

Again, combining the three inequalities, we get:

σ∗kq+1 ≤
σ∗kq−1+1 + 3 ‖H‖2

2

Another application of Lemma 7 gives the second claim.
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Algorithm 3 L̂ = R-RMC(Ω,PΩ(M), ε, r, η, σ): Non-convex Robust Matrix Completion

1: Input: Observed entries Ω, Matrix PΩ(M) ∈ Rm×n, convergence criterion ε, target rank r, thresholding parameter η,
upper bound on σ∗1 σ

2: T ← 10 log 20µ2nrσ
ε /*Number of inner iterations*/

3: Partition Ω into rT + 1 subsets {Ω0} ∪ {Ωq,t : q ∈ [r], t ∈ [T ]} using 2
4: L(0) = 0, ζ(0) ← ησ
5: M (0) ← mn

|Ω0|PΩ0
(M −HT ζ(M))

6: q ← 0
7: while σq+1(M (0)) > ε

2ηm do
8: q ← q + 1
9: for Iteration t = 0 to t = T do

10: S(t) = Hζ(PΩq,t(M − L(t))) /*Projection onto set of sparse matrices*/
11: M (t) = L(t) − mn

|Ωq,t|PΩq,t(L
(t) + S(t) −M) /*Gradient Descent Update*/

12: L(t+1) = Pq(M
(t)) /*Projected Gradient Descent step*/

13: Set threshold ζ(t+1) ← η
(
σq+1(M (t)) +

(
1
2

)t
σq(M

(t))
)

14: end for
15: S(0) = S(T ), L(0) = L(T+1),M (0) = M (T ), ζ(0) = ζ(T+1)

16: end while
17: Return: L(T+1)

5.3. Algorithm R-RMC

Proof of Theorem 2: We know that T ≥ log(
20µ2nrσ∗1

ε ).

Consider the stage q reached at the termination of the algorithm. We know from Lemma 13 that:

1.
∥∥E(T )

∥∥
∞ ≤

8µ2r
m

(
σ∗q+1 +

(
1
2

)T−1
σ∗q

)
≤ 8µ2r

m σ∗q+1 + ε
10n

2.
∥∥L(T ) − L∗

∥∥
∞ ≤

2µ2r
m

(
σ∗q+1 +

(
1
2

)T−1
σ∗q

)
≤ 2µ2r

m σ∗q+1 + ε
10n

Combining this with Lemmas 2 and 7, we get:

σq+1(M (T )) ≥ σ∗q+1 −
1

100

(
σ∗q+1 +

mε

10nµ2r

)
(22)

When the while loop terminates, ησq+1

(
M (T )

)
< ε

2n , which from (22), implies that σ∗q+1 <
mε

7nµ2r . So we have:

‖L− L∗‖∞ =
∥∥∥L(T ) − L∗

∥∥∥
∞
≤ 2µ2r

m
|σ∗kq+1|+

ε

10n
≤ ε

2n
.

�

As in the case of the proof of Theorem 1, the following lemma shows that we simultaneously make progress in both
the estimation of L∗ and S̃∗ by L(t) and S̃(t) respectively. Similar to Lemma 11, we make use of Lemmas 10 and
9 to show how improvement in estimation of one of the quantities affects the other and the other five terms, ‖H‖2,

max
q′∈[n]

∥∥∥e>q′ (H>H)j V ∗∥∥∥
2
, max
q′∈[m]

∥∥∥e>q′ (HH>)j U∗∥∥∥
2
, max
q′∈[n]

∥∥∥e>q′H> (HH>)j U∗∥∥∥
2

and max
q′∈[m]

∥∥∥e>q′H (H>H)j V ∗∥∥∥
2

are analyzed the same way:
Lemma 13. Let L∗, Ω, S̃∗ and S̃(t) satisfy Assumptions 1,2,3 respectively. Then, in the tth iteration of the qth stage of
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Algorithm 3, S̃(t) and L(t) satisfy:

∥∥∥S̃(t) − S̃∗
∥∥∥
∞
≤ 8µ2r

m

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
,

Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
,

7

8
η

(∣∣σ∗q+1

∣∣+

(
1

2

)t ∣∣σ∗q ∣∣
)
≤ ζ(t+1) ≤ 9

8
η

(∣∣σ∗q+1

∣∣+

(
1

2

)t ∣∣σ∗q ∣∣
)

and

∥∥∥L(t) − L∗
∥∥∥
∞
≤ 2µ2r

m

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
.

with probability ≥ 1− ((q − 1)T + t− 1)n−(10+logα) where T is the number of iterations in the inner loop.

Proof. We prove the lemma by induction on both q and t.

Base Case: q = 1 and t = 0
We begin by first proving an upper bound on ‖L∗‖∞. We do this as follows:

∣∣L∗ij∣∣ =

∣∣∣∣∣
r∑

k=1

σ∗ku
∗
ikv
∗
jk

∣∣∣∣∣ ≤
r∑

k=1

∣∣σ∗ku∗ikv∗jk∣∣ ≤ σ∗1 r∑
k=1

∣∣u∗ikv∗jk∣∣ ≤ µ2r

m
σ∗1

where the last inequality follows from Cauchy-Schwartz and the incoherence of U∗. This directly proves the third claim
of the lemma for the base case. Recall that ζ(0) = ησ∗1 . We also note that due to the thresholding step and the incoherence
assumption on L∗, we have:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m (σ∗2 + 2σ∗1)

2. Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)
.

From Lemma 8 and our bounds on E(0) and
∥∥L(1) − L∗

∥∥
∞, we have:

7

8
η (|σ∗2 |+ |σ∗1 |) ≤ ζ(1) ≤ 9

8
η (|σ∗2 |+ |σ∗1 |)

So the base case of induction is satisfied.

Induction over t
We first prove the inductive step over t (for a fixed q). By inductive hypothesis we assume that:

a)
∥∥E(t)

∥∥
∞ ≤

8µ2r
m

(
|σ∗q+1|+

(
1
2

)t−1 |σ∗q |
)

b) Supp
(
S̃(t)

)
⊆ Supp

(
S̃∗
)

.

c)
∥∥L∗ − L(t)

∥∥
∞ ≤

2µ2r
m

(
|σ∗q+1|+

(
1
2

)t−1 |σ∗q |
)

d) 7
8η
(∣∣σ∗q+1

∣∣+
(

1
2

)t ∣∣σ∗q ∣∣) ≤ ζ(t+1) ≤ 9
8η
(∣∣σ∗q+1

∣∣+
(

1
2

)t ∣∣σ∗q ∣∣)
with probability 1− ((q − 1)T + t− 1)n−(10+logα).

Then by Lemma 9, we have: ∥∥∥L(t+1) − L∗
∥∥∥
∞
≤ µ2r

m

(
|σ∗kq+1|+ 20 ‖H‖2 + 8υ

)
(23)
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From Lemma 1, we have:

υ ≤ ρn
∥∥∥E(t)

∥∥∥
∞

+ 8βα log n
(ζ1)

≤ 1

100

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
+ 8βα log n

(ζ2)

≤ 1

50

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
(24)

where (ζ1) follows from our assumptions on ρ and our inductive hypothesis on
∥∥E(t)

∥∥
∞ and (ζ2) follows from our

assumption on p and by noticing that ‖D‖∞ ≤
∥∥E(t)

∥∥
∞ +

∥∥L∗ − L(t)
∥∥
∞. Recall that D = L(t) − L∗ + S̃(t) − S̃∗.

From Lemma 7:

‖H‖2 ≤
1

100

(
σ∗q+1 +

(
1

2

)t−1

σ∗q

)
(25)

with probability ≥ 1− n−(10+logα). From Equations (25), (24) and (23), we have:∥∥∥L∗ − L(t+1)
∥∥∥
∞
≤ 2µ2r

m

(
σ∗q+1 +

(
1

2

)t
σ∗q

)

which by union bound holds with probability≥ 1− ((q−1)T + t)n−(10+logα). Hence, using Lemma 10 and the inductive
hypothesis on ζ(t+1) we have:

1.
∥∥E(t+1)

∥∥
∞ ≤

8µ2r
m

(
σ∗q+1 +

(
1
2

)t
σ∗q

)
2. Supp

(
S̃(t+1)

)
⊆ Supp

(
S̃∗
)

.

which also holds with probability ≥ 1− ((q − 1)T + t)n−(10+logα). This concludes the proof for induction over t.

Finally, using Lemma 8 and our bounds on
∥∥E(t+1)

∥∥
∞ and

∥∥L(t+1) − L∗
∥∥
∞, we have:

7

8
η

(∣∣σ∗q+1

∣∣+

(
1

2

)t+1 ∣∣σ∗q ∣∣
)
≤ ζ(t+2) ≤ 9

8
η

(∣∣σ∗q+1

∣∣+

(
1

2

)t+1 ∣∣σ∗q ∣∣
)

Induction Over Stages q
We now prove the induction over q. Suppose the hypothesis holds for stage q. At the end of stage q, we have:

1.
∥∥E(T )

∥∥
∞ ≤

8µ2r
m

(
σ∗q+1 +

(
1
2

)T−1
σ∗q

)
≤ 8µ2rσ∗q+1

m + ε
10n

2. Supp
(
S̃(T )

)
⊆ Supp

(
S̃∗
)

3. 7
8η
(∣∣σ∗q+1

∣∣+
(

1
2

)T ∣∣σ∗q ∣∣) ≤ ζ(T+1) ≤ 9
8η
(∣∣σ∗q+1

∣∣+
(

1
2

)T ∣∣σ∗q ∣∣)
with probability ≥ 1− (qT − 1)n−(10+logα).

From Lemmas 2 and 7 we get:∣∣∣σq+1

(
M (T )

)
− σ∗q+1

∣∣∣ ≤ ‖H‖2 ≤ 1

100

(
σ∗q+1 +

mε

10nµ2r

)
(26)

with probability 1− n−(10+logα). We know that ησq+1

(
M (t)

)
≥ ε

2n which with (26) implies that σ∗q+1 >
mε

10nµ2r .

∥∥∥L(T+1) − L∗
∥∥∥
∞
≤ 2µ2r

m

(
σ∗q+1 +

(
1

2

)T
σ∗q

)
≤ 2µ2r

m

(
σ∗q+1 +

mε

20µ2rn

)
≤ 2µ2r

m

(
σ∗q+1 +

σ∗q+1

2

)
≤ 2µ2r

m

(
2σ∗q+1

)
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By union bound this holds with probability ≥ 1− qTn−(10+logα).

Now, from Lemma 10 and our inductive hypothesis on ζ(T+1), we have through a similar series of arguments as above:

1.
∥∥E(0)

∥∥
∞ ≤

8µ2r
m

(
2σ∗q+1

)
2. Supp

(
S̃(0)

)
⊆ Supp

(
S̃∗
)

which holds with probability ≥ 1− qTn−(10+logα).

Recall, now that L(0) = L(T+1). Finally, from Lemma 8 and our bounds on
∥∥E(0)

∥∥
∞ and

∥∥L(0) − L∗
∥∥
∞, we have:

7

8
η
(∣∣σ∗q+2

∣∣+
∣∣σ∗q+1

∣∣) ≤ ζ(1) ≤ 9

8
η
(∣∣σ∗q+2

∣∣+
∣∣σ∗q+1

∣∣)

5.4. Proof of a generalized form of Lemma 1

Lemma 14. Suppose H = H1 + H2 and H ∈ Rm×n where H1 satisfies Definition 1 (Definition 7 from (Jain &
Netrapalli, 2015)) and H2 is a matrix with column and row sparsity ρ. Let U be a matrix with rows denoted as
u1, . . . , um and let V be a matrix with rows denoted as v1, . . . , vn. Let eq be the qth vector from standard basis. Let
τ = max{max

i∈[m]
‖ui‖ ,max

i∈[n]
‖vi‖}. Then, for 0 ≤ a ≤ log n:

max
q∈[n]

∥∥∥e>q (H>H)a V ∥∥∥
2
, max
q∈[m]

∥∥∥e>q (HH>)a U∥∥∥
2
≤ (ρn ‖H2‖∞ + c log n)2aτ

max
q∈[n]

∥∥∥e>q H> (HH>)a U∥∥∥
2
, max
q∈[m]

∥∥∥e>q H (H>H)a V ∥∥∥
2
≤ (ρn ‖H2‖∞ + c log n)2a+1τ

with probability n−2 log c
4 +4.

Proof. Similar to (Jain & Netrapalli, 2015), we will prove the statement for q = 1 and it can be proved for q ∈ [n] by
taking a union bound over all q. For the sake of brevity, we will prove only the inequality:

max
q∈[n]

∥∥∥e>q (H>H)a V ∥∥∥
2
≤ (ρn ‖H2‖∞ + c log n)2aτ

The rest of the lemma follows by applying similar arguments to the appropriate quantities.

Let ω : [2a] → {1, 2} be a function used to index a single term in the expansion of (H>H)a. We express the term as
follows:

(H>H)a =
∑
ω

a∏
i=1

H>ω(2i−1)Hω(2i)

We will now fix one such term ω and then bound the length of the following random vector:

vω = e>1

a∏
i=1

(H>ω(2i−1)Hω(2i))V

Let α be used to denote a tuple (i, j) of integers used to index entries in a matrix. Let T (i) be used to denote the parity
function computed on i, i.e, 0 if i is divisible by 2 and 1 otherwise. This function indicates if the matrix in the expansion
is transposed or not. We now introduce Bp,q(i,j),(k,l), p ∈ {1, 2}, q ∈ {0, 1} and Ap(i,j), p ∈ {1, 2} which are defined as
follows:
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Ap(i,j) := δi,1(δp,1 + δp,21{(i,j)∈Supp(H2)})

Bp,q(i,j),(k,l)
:= (δq,1δj,l + δq,0δi,k)(δp,1 + δp,21{(k,l)∈Supp(H2)})

where δi,j = 1 if i = j and 0 otherwise. We will subsequently write the random vector vω in terms of the individual entries
of the matrices. The role of Bp,q(i,j),(k,l) and Ap(i,j) is to ensure consistency in the terms used to describe vω . We will use
hi,α to refer to (Hi)α.

With this notation in hand, we are ready to describe vω .

vω =
∑

α1,...,α2a

α1(1)=1

Aω(1)
α1

Bω(2),T (2)
α1α2

. . . Bω(2a),T (2a)
α2a−1α2a

hω(1),α1
· · ·hω(2a),α2a

vα2a(2)

We now write the squared length of vω as follows:

Xω =
∑

α1,...,α2a,α
′
1,...,α

′
2a

α1(1)=1,α′1(1)=1

Aω(1)
α1

Bω(2),T (2)
α1α2

. . . Bω(2a),T (2a)
α2a−1α2a

hω(1),α1
· · ·hω(2a),α2a

Aω(1)
α1

B
ω(2),T (2)
α′1α

′
2

. . . B
ω(2a),T (2a)
α′2a−1α

′
2a

hω(1),α′1
· · ·hω(2a),α′2a

〈vα2a(2), vα′2a(2)〉

We can see from the above equations that the entries used to represent vω are defined with respect to paths in a bipartite
graph. In the following, we introduce notations to represent entire paths rather than just individual edges:

Let α := (α1, . . . , α2a) and

ζα := Aω(1)
α1

Bω(2),T (2)
α1α2

. . . Bω(2a),T (2a)
α2a−1α2a

hω(1),α1
. . . hω(2a),α2a

Now, we can write:
Xω =

∑
α,α′

α1(1)=α′1(1)=1

ζαζα′〈vα2a(2), vα′2a(2)〉

Calculating the kth moment expansion of Xω for some number k, we obtain:

E[Xk
ω] =

∑
α1,...,α2k

E[ζα1 . . . ζα2k〈vα1
2a(2), vα2

2a(2)〉 . . . 〈vα2k−1
2a (2), vα2k

2a(2)〉] (27)

We now show how to bound the above moment effectively. Notice that the moment is defined with respect to a collection
of 2k paths. We denote this collection by ∆ := (α1, . . . ,α2k). For each such collection, we define a partition Γ(∆) of
the index set {(s, l) : s ∈ [2k], l ∈ [2a]} where (s, l) and (s′, l′) are in the same equivalence class if ω(l) = ω(l′) = 1 and
αsl = αs

′

l′ . Additionally, each (s, l) such that ω(l) = 2 is in a separate equivalence class.

We bound the expression in (27) by partitioning all possible collections of 2k paths based on the partitions defined by them
in the above manner. We then proceed to bound the contribution of any one specific path to (27) following a particular
partition Γ, the number of paths satisfying that particular partition and finally, the total number of partitions. Consider a
partition Γ with non-zero contribution to the kth moment. Since, H1 is a matrix with 0 mean, any equivalence class of
Γ containing an index (s, l) such that ω(l) = 1 contains at least two elements (Otherwise, for any ∆ satisfying Γ has 0
contribution to the kth as the element in the singleton equivalence class has mean 0).

We proceed to bound (27) by taking absolute values:

E[Xk
ω] ≤

∑
α1,...,α2k

E[|ζα1 | . . . |ζα2k ||〈vα1
2a(2), vα2

2a(2)〉| . . . |〈vα2k−1
2a (2), vα2k

2a(2)〉|] (28)
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We now fix one particular partition and bound the contribution to (28) of all collections of paths ∆ that correspond to a
valid partition Γ.

We construct from Γ a directed multigraph G. The equivalence classes of Γ form the vertex set of G, V (G). There are
4 kinds of edges in G where each type is indexed by a tuple (p, q) where p ∈ {1, 2}, q ∈ {0, 1}. We denote the edge
sets corresponding to these 4 edge types by E(1,0), E(1,1), E(2,0) and E(2,1) respectively. An edge of type (p, q) exists
from equivalence class γ1 to equivalence class γ2 if there exists (s, l) ∈ γ1 and (s′, l′) ∈ γ2 such that l′ = l + 1, s = s′,
ω(s′) = p and T (l′) = q.

The summation in 28 can be written as follows:

E[|ζα1 | . . . |ζα2k |
∣∣∣〈vα1

2a(2), vα2
2a(2)〉

∣∣∣ . . . ∣∣∣〈vα2k−1
2a (2), vα2k

2a(2)〉
∣∣∣]

≤ τ2k

(
2k∏
s=1

A
ω(1)
αs1

2a−1∏
l=1

B
ω(l+1),T (l+1)
αsl ,α

s
l+1

)
E

[(
2k∏
s=1

2a∏
l=1

∣∣∣hω(l),αsl

∣∣∣)]
(ζ1)

≤ τ2k

(
2k∏
s=1

A
ω(1)
αs1

2a−1∏
l=1

B
ω(l+1),T (l+1)
αsl ,α

s
l+1

) ∏
γ∈V1(G)

1

n

∏
γ∈V2(G)

‖H2‖∞

=
τ2k ‖H2‖w2

∞
nw1

(
2k∏
s=1

A
ω(1)
αs1

2a−1∏
l=1

B
ω(l+1),T (l+1)
αsl ,α

s
l+1

)

where (ζ1) follows from the moment conditions on H1. V1(G) and V2(G) are the vertices in the graph corresponding to
tuples (i, j) such that ω(j) = 1 and ω(j) = 2 respectively and w1 = |V1(G)|, w2 = |V2(G)|.

We first consider an equivalence class γ1 such that there exists an index (s, l) ∈ γ1 and l = 1. We form a spanning tree
T1 of all the nodes reachable from γ1 with γ1 as root. We then remove the nodes V (T1) from the graph G and repeat

this procedure until we obtain a set of l trees T1, . . . , Tl with roots γ1, . . . , γl such that
l⋃
i=1

V (Gi) = V (G). This happens

because every node is reachable from some equivalence class which contains an index of the form (s, 1). Also, each of
these trees Ti, ∀ i ∈ [l] is disjoint in their vertex sets. Given this decomposition, we can factorize the above product as
follows:

E[Xk
ω|Γ] ≤

τ2k ‖H2‖w2

∞
nw1

l∏
j=1

∑
αγ ,γ∈Tj

Aω(1)
αγj

∏
{γ,γ′}∈E(1,0)(Tj)

B1,0
αγαγ′∏

{γ,γ′}∈E(1,1)(Tj)

B1,1
αγαγ′

∏
{γ,γ′}∈E(2,0)(Tj)

B2,0
αγαγ′

∏
{γ,γ′}∈E(2,1)(Tj)

B2,1
αγαγ′

(29)

where the inner sum is over all possible assignments to the elements in the equivalence classes of tree Tj .

For a single connected component, we can compute the summation bottom up from the leaves. First, notice that as each
Bi,jαγ ,αγ′ is bounded by 1:

∑
αγ′

B2,1
αγαγ′

≤ ρn
∑
αγ′

B2,0
αγαγ′

≤ ρn∑
αγ′

B1,1
αγαγ′

= n
∑
αγ′

B1,0
αγαγ′

= n

Where the first two follow from the sparsity of H2. Every node in the tree Tj with the exception of the root has a single
incoming edge. For the root, γj , we have:
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α1

A
ω(1)
α1 ≤ ρn for ω(1) = 2

∑
α1

A
ω(1)
α1 = n for ω(1) = 1

From the above two observations, we have:

∑
α1,...,αvj

Aω(1)
α1

∏
{γ,γ′}∈E(1,0)(Tj)

B1,0
αγαγ′

∏
{γ,γ′}∈E(1,1)(Tj)

B1,1
αγαγ′

∏
{γ,γ′}∈E(2,0)(Tj)

B2,0
αγαγ′∏

{γ,γ′}∈E(2,1)(Tj)

B2,1
αγαγ′

≤ (ρn)w2,jnw1,j

where wk,j represents the number of vertices in the jth component which contain tuples (y, z) such that ω(z) = k for
k ∈ {1, 2}.

Plugging the above in (29) gives us

E[Xk
ω(Γ)] ≤

τ2k ‖H2‖w2

∞
nw1

(ρn)
∑
j w2,jn

∑
j w1,j = τ2k ‖H2‖w2

∞ (ρn)w2

Let a1 and a2 be defined as |{i : ω(i) = 1}| and |{i : ω(i) = 2}| respectively (Note that w2 = 2a2k). Sum-
ming up over all possible partitions (there are at most (2a1k)2a1k of them), we get our final bound on E

[
X̂k
ω

]
as

τ2k(ρn ‖H2‖∞)2a2k(2a1k)2a1k.

Now, we bound the probability that X̂ω is too large. Choosing k =
⌈

logn
a1

⌉
and applying the kth moment Markov

inequality, we obtain:

Pr
[∣∣∣X̂ω

∣∣∣ > (c log n)2a1τ2(ρn ‖H2‖∞)2a2

]
≤ E

[∣∣∣X̂ω

∣∣∣k]( 1

(c log n)2a1τ2(ρn ‖H2‖∞)2a2

)k
≤
(

2ka1

c log n

)2ka1

≤ n−2 log c
4

Taking a union bound over all the 22a possible ω, over values of a from 1 to log n and over the n values of q, and summing
up the high probability bound over all possible values of ω, we get the required result.

5.5. Additional Experimental Results

We detail some additional experiments performed with Algorithm 1 in this section. The experiments were performed on
synthetic data and real world data sets.

Synthetic data. We generate a random matrix M ∈ R2000×2000 in the same way as described in Section 4. In these
experiments our aim is to analyze the behavior of the algorithm in extremal cases. We consider two of such cases : 1)
sampling probability is very low (Figure 3 (a)), 2) number of corruptions is very large (Figure 3 (b)). In the first case, we
see that the we get a reasonably good probability of recovery (∼ 0.8) even with very low sampling probability (0.07). In
the second case, we observe that the time taken to recover seems almost independent of the number of corruptions as long
as they are below a certain threshold. In our experiments we saw that on increasing the ρ to 0.2 the probability of recovery
went to 0. To compute the probability of recovery we ran the experiment 20 times and counted the number of successful
runs.

Foreground-background separation. We present results for one more real world data set in this section. We applied
our PG-RMC method (with varying p) to the Escalator video. Figure 4 (a) shows one frame from the video. Figure 4
(b) shows the extracted background from the video by using our method (PG-RMC , Algorithm 1) with probability of
sampling p = 0.05. Figure 4 (c) compares objective function value for different p values.
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Figure 3: We run the PG-RMC algorithm with extremal values of sampling probability and fraction of corruptions, and
record the probability with which we recover the original matrix, (a) : time vs probability of recovery for very small values
of sampling probability, (b) : time vs probability of recovery for large number of corruptions (ρn2)
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Figure 4: PG-RMC on Escalator video. (a): a video frame (b): an extracted background frame (c): time vs error for
different sampling probabilities; PG-RMC takes 7.3s while St-NcRPCA takes 52.9s


	Appendix
	Common Lemmas
	Algorithm PG-RMC 
	Algorithm R-RMC
	Proof of a generalized form of Lemma 1
	Additional Experimental Results


