Nearly Optimal Robust Matrix Completion

5. Appendix

We divide this section into five parts. In the first part we prove some common lemmas. In the second part we give the
convergence guarantee for PG-RMC . In the third part we give another algorithm which has a sample complexity of

2 *
O(u*r3n log2 nlog %) and prove its convergence guarantees. In the fourth part we prove a generalized form of lemma
[I] In the fifth part we present some additional experiments.

For the sake of convenience in the following proofs, we will define some notations here.

We define p = % and we consider the following equivalent update step for L(**1) in the analysis:

LOFD = P (M) MO =1+ H
H:=E® 4+ 3G E® = §* — 5
S _1 Po,.
SO =HT (M -LY) G:= (Z-—p+)D
O 2vn||D||
D:=L"_[* 48t _ g* =Y P lleo
7
The singular values of L* are denoted by o7,...,0 where [o]| > ... > |oF| and we will let Aq,..., A, denote the

singular values of M) where [A\;| > ... > |\,|.

5.1. Common Lemmas
We will begin by restating some lemmas from previous work that we will use in our proofs.

First, we restate Weyl’s perturbation lemma from (Bhatial [1997), a key tool in our analysis:
Lemma 2. Suppose B = A+ E € R™*"™ matrix. Let \1,--- , \; and o1, -+ , 0y be the singular values of B and A
respectively such that \y > --- > A\, and o1 > - -+ > 0. Then:

[Ai —ai| <||Elly Vi € [K].

This lemma establishes a bound on the spectral norm of a sparse matrix.
Lemma 3. Let S € R"™*™ be a sparse matrix with row and column sparsity p. Then,

151y < pmax{m,n} |5,

Proof. For any pair of unit vectors u and v, we have:

v? 4 u?
’UTSUZ Z viujSij S Z |S”|< ! B) j)

1<i<m,1<j<n 1<i<m,1<j<n

1
<g | 2 v D0 1Syl D0 wl D 18yl < pmax{m.n}|S|,
1<i<m 1<j<n 1<j<n 1<i<m
Lemma now follows by using ||S|l2 = max, . ju/j=1, v[ls=1 & Sv. O

Now, we define a 0-mean random matrix with small higher moments values.
Definition 1 (Definition 7, (Jain & Netrapalli, 2015)). H is a random matrix of size m X n with each of its entries drawn
independently satisfying the following moment conditions:

k
Elhi] =0, |hil <1, Ellhyl"] < sy

fori,j € [n]and2 <k < 2logn.

We now restate two useful lemmas from (Jain & Netrapalli, 2015)):
Lemma 4 (Lemma 8 and 10 of (Jain & Netrapalli, [2015)). We have the following two claims:

e Suppose H satisfies Deﬁnition Then, wp. > 1 —1/nt0%e e have: || H||, < 3y/a.
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o Let A be am x nmatrix with n > m. Suppose Q) C [m] x [n] is obtained by sampling each element with probability
p> ﬁ. Then, the following matrix H satisfies Defintion '

P 1
o= S mlAlL (A pPﬂ(A)> '

Lemma 5 (Lemma 13, (Jain & Netrapalli, 2015)). Let A € R™"*™ be a symmetric matrix with eigenvalues o, -+ ,0p,
where |o1| > --+ > |0, | Let B = A+ C be a perturbation of A satisfying ||C||, < % and let Py,(B) = UAU" be the
rank-k projection of B. Then, A™1 exists and we have:

I ||[A— AUATYUTA||, < logsa| +5]C

2

2. |AUA=UT 4|, < 4 (%)ﬂ” Va > 2.

We now provide a lemma that bounds || - || norm of an incoherent matrix with its operator norm.
Lemma 6. Let A € R™*"™ be a rank r, u-incoherent matrix. Then for any C € R™*"™, we have:

2
wer
IACAlL, < T 14l

Proof. Let A = UXV'". Then, ACA = UUTACAVV . The lemma now follows by using definition of incoherence
with the fact that [|[UT ACAV ||, < ||ACA||s. O

We now present a lemma that shows improvement in the error || — L* || by using gradient descent on L(*).
Lemma 7. Let L*, €, S* satisfy Assumptions 1,2,3 respectively. Also, let the following hold for the t-th inner-iteration of
any stage q:

L|Lr = L0 < % (0 + (3) 7 0f)

oo m

2[5 50 <2 (ot + (3)° o)
3. Supp(g(t)) - Supp(g*)

where z > —3 and o}, and o} ., are the k and (k + 1)™ singular values of L*. Also, let Ey = S®) — §* and By =

(I — %) (L(t) —L*+S® — g*) be the error terms defined also in (). Then, the following holds w.p > 1 —
—(10+log )
n

1/, 1\
[ B + Esly < 100 (%H + <2) Uk) (®)

Proof. Note from Lemmafd]

B B
satisfies Deﬁnitionwith B = % . HL(t) — L+ 80 — g*”oo

P, _ -
lp, =1 (I_Qw> (L9 17+ 50 - 5).
p

We now bound the spectral norm of £, + E3 as follows:

(¢1)

1 - -
1B+ Bal < [B1l, + 8- | 52| € pn 500 - 5
2

+ 36V,
o0
(€)1 . 1\* . 601 [n . 1\*
: zoo(“kqﬂ*(z) ”%)* m ﬁ“& (f’kq““(z)
) 1 . 1\* .
S m Jk‘q+1+ 5 qu .

where (1) follows from LemmaandH (¢2) follows by our assumptions on p,

and our
o0

LO - 17| ., ||5® - 5

assumption that n = O (m) and ((3) follows from our assumption on p.
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In the following lemma, we prove that the value of the threshold computed using o, (M) = o4 (L* 4+ E; + Es3), where
E4, E3 are defined in (6), closely tracks the threshold that we would have gotten had we had access to the true eigenvalues
of L*, of.
Lemma 8. Ler L*, Q), S* satisfy Assumptions 1,2,3 respectively. Also, let the following hold for the t-th inner-iteration of
any stage q:

1L = 20| < 25 (o4 + (3) o)

2 |3 30| <% (o + () o)

3. Supp(SM) C Supp(S*)

where z > —3 and o}, and o}, are the k and (k + 1)™ singular values of L*. Also, let E, = S® _ S* and Es =

(I - %) (L(t) — L 4+ 80 — §*) be the error terms defined also in (6). Then, the following holds ¥z > —3 w.p
>1-— n7(10+10g oc)'.

7 i 1 z+1 . 1 z+1 9 § 1 z+1 .
g (Uk'—i-l + <2> Uk) S <Ak+1 + <2> Ak S g Uk—i—l + (2> (o " I (9)
where \j, = O’k(M(t)) = oi(L* + E1 + Es) and E\, Es are defined in (6).

Proof. Using Weyl’s inequality (Lemma, we have: : |\, — of| < || E1 + E3|2 and ‘)\kﬂ - o,’gH] < ||Ey + E3||2 We
now proceed to prove the lemma as follows:

1 z+1 1 z+1
Akt1 + <2> Ak = Ok — <2) oy,
1 z+1 (C) 1 i} 1 z . 1 z+1
< ||Ey + Es, <1 + <2) ) < 100 <‘7k+1 + <2> Uk) (1 + <2> ;
1 1 z+1
< 3 Opy1 t+ (2) ok |

where (¢) follows from Lemmaand the last inequality follows from the assumption that z > —3. O

1 z+1
< [ Aeg1 — Opaa| + (2> Ak — okl

Next, we show that the projected gradient descent update (6]) leads to a better estimate of L*, i.e., we bound || L+ —L*|| .
Under the assumptions of the below given Lemma, the proof follows arguments similar to (Netrapalli et al.| [2014) with
additional challenge that arises due to more involved error terms Eq, Es.

Our proof proceeds by first symmetrizing our matrices by rectangular dilation. We first begin by noting some properties of
symmetrized matrices used in the proof of the following lemma.
Remark 1. Let A be a m x n dimensional matrix with singular value decomposition USV T, We denote its symmetrized

. _[o AT )
version by Ag = [A 0 } Then:

1. The eigenvalue decomposition of Ay is given by Ay = U, S U, where

PR A P Y

V2 lU —U 0o —-X
0 Pr(AT)
2 (ATA)] 0 2j+1 _ 0 (AT14)jAT
3. We have A7 = [ 0 (AAT)j] A2 +1 _ [(AAT)jA 0 }
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4. We have g
, —J
U.x;? UsT _ |:VE A \% UZ—OJUT] when j is even
. =iy T
Uy U] = [UZ‘OjvT Ve 0 v } when j is odd

Lemma9. Let L = Py (L* + H), where H is any perturbation matrix that satisfies the following:

O_*
1| Hly < =

*

2. Vi€ [n], a <[5 withv < Tf

e (HTH)" V||, le] (HET) U*[|, < (v)**py/ 757
e HT (HHT) U™ ||, [|le] H (HTH)" V*{|, < (0)** g/ 75
where oy, is the k™ singular value of L*. Also, let L* satisfy Assumption 1. Then, the following holds:

i
m

1L = L™l < = (0ks1 + 20 H[l, + 8v)

where [ and 1 are the rank and incoherence of the matrix L* respectively.

Proof. Let Ls, H; and L7 denote the symmetrized forms of L, H and L* respectively. Now, we have:

Ls = P2k (Lz + Hs)

Letl =m+n. Let Ay, -, A; be the eigenvalues of My = L* + H, with |[\1| > |Aa] -+ > |N|. Let ug, ug, - -+, u; be the
corresponding eigenvectors of M. Using Lemmaalong with the assumption on || H,||,, we have: |Agg| > 3%.

Let UAV be the eigen vector decomposition of L. Let U,A U, to be the eigen vector decomposition of L. Then, using
Remark [I] we have Vi € [2k]:

H Ly,
LY+ Hy)u; = N, ie. (T — =2 )u; = =",
(L + Hy)u u;, i.e ( /\i)u N

As |Agk| > ?f% and ||H,||, < {07, we can apply the Taylor’s series expansion to get the following expression for u;:

1 (& (HN L
Uy = — E — .
Ai \ = ( i ) oy
=
That is,

S t
> (Ij) Lrunl L (f) ,

0<s,t<o0 ¢

2k 2k
Le=)Y Nuu => A7
i=1 i=1

2k
Z Z )\i—(s+t+1)H§L:uiuiTL:H£ — Z H;L: U‘;A;(SJF“FDUJL:H;.

0<s,t<oco 1=1 0<s,t<oco

Subtracting L} on both sides and taking operator norm, we get:

s = Ll = |U:AUS = L]

> HILUMA;CTOUTLiHD - LY

0<s,t<oc0

ot > |ErvaceruT L

1<s+t<oo

= ||LiUA; U LE - L

(10)

oo
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We separately bound the first and the second term of RHS. The first term can be bounded as follows:

* — * * Cl) * 0 VA_IUT * *
||LsUsAs lUS—rLS - Ls” L |:UA1VT 0 :| Ls - Ls - (11)
<||I*VATWUTL - 1| @ |Lva-oTr - o)), € LQT( ) (12)
= Jmn N 2)

where (1) follows Remark (] ({2) from Lemma[6|and (¢3) follows from Claim 1 of Lemma [5 after symmetrization.

We now bound second term of RHS of (T0) which we again split in two parts. We first bound the terms with s + ¢ > log n:

sy 9\ ~(sFt=1)
, Lzt (2)
k
2 (Sth*l) (<2) 1 (Sthfl)
<l (151, = <, (4
k

(s+t—1—logn) (s+t—1—logn)
4 1 T 1
—Hl; { 5 4” IH], ; (13)
n

where (¢ ) follows from the second claim of Lemmaand noting that || Hy||, = || H||, and ({2) follows from assumption
on || H ||, and using the fact that s + ¢ > logn.

HH;L:USA(;““)UST Lo

HH LAUAZCHHIUT Lot

Summing up over all terms with s + ¢t > log n, we get from (13) and (12):

2
IZe = Ll < 55 D+ Y |mLvaserouT | (14)

0<s+t<logn

where the first inequality follows because m < n.

Now, for terms corresponding to 1 < s 4+ ¢t < log n, we have:

_ T rys* —(s+t+1 T r*grt
= max eq HILIUA; DU T L Hee,,

0o qi1€[m+n],g2€[m+n]

HH;L;USA;“H“)UJL;H;

S( max He HU;

q1 E[m+n]

) [P Az

, (@é?g’jn] leq, H'US |

2) ENGE)

We will now bound the terms, max ||e] H:U; ||, Note from Remark 1|1 that U7 = - V* v . |- Now, we have
q1E[m+n] 2 vz |Ur =U
the following cases for H;:
T2 T Ty L3
HI = (H'H) O, | when siseven HI = 0 L2 HT (HHT) when s is odd
0 (HHT)? H(H'H)"™ 0

In these two cases, we have:

(17 h)
U — (HHT)E U*

HsU* = 1
0=

HSU* L HT (HHT) LEJ U* _HT (HHT) L%J U*

e e

This leads to the following 4 cases for max He HIU?

q1E[m+n]
for s even max | e, (HTH>§ Ve max He , (HHT)§
q'€[n] . 2 q' €[m)] ) 9
forsodd max ||le,H" (HHT)bJ U*H max HeT'H (HTH)L§J N
q'€[n] a 2 7' €[m] q 5
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We can now bound the terms in (I3)) as follows:

_ (¢1) ,uzr X e
(22 Rl AN A el A AN}
m

2

(C ) 2 s+t—1 2 s+t—1
2T <2> <, (1) (16)
m or m 2

o0

where (¢1) follows from the second assumption of the Lemma and the preceding argument and (¢z) follows from Claim 2
of Lemma 5] and the final step follows from our bound on v.

Finally, note from the Remarkthat |L: = Lsll o = ||1L7 — L+ ||Oo Now, summing up (T6) overall 1 < s+t < logn
and combining with (T4), the lemma is proved. O

In the next lemma, we show that with the threshold chosen in the algorithm, we show an improvement in the estimation of
S* by S,
Lemma 10. In the t" iterate of the q"" stage, assume the following holds:

L|Lr = L0 < 22 (0 + (3) 7 0f)

2 Dot (1) ) =0 < B+ (4) )

where o} and o}, | are the k and (k + 1) singular values of L*, A\, and A1y are the k and (k 4+ 1)" singular values of
M® and, r and W are the rank and incoherence of the m x n matrix L* respectively. Then we have

1. Supp (g(t)> C Supp (§*>

2
< (o + (3) )

zH%L@

Proof. We first prove the first claim of the lemma. Consider an index pair (i, j) & Supp(S*).

2M2T 1\~ ¢1) 16'[1,27“ (¢2)
< * - ) T O T () 2 ()
- om <0k+1+(2> J’“) = g &S ¢

t
‘M,-]— .y

where ((;) follows from the second assumption of the lemma and ({) follows from our setting of = % Hence, we
do not threshold any entry that is not corrupted by S*.

Now, we prove the second claim of the lemma. Consider an index entry (i,j) € Supp(§ *). Here, we consider two cases:

1. The entry (i,j) € Supp(S®)): Here the entry (4, §) is thresholded. We know that Lg;) + S’VZ(;) =Lj;+ §;‘j from which
we get

~(t) O * t
;i — 85 L*— LW

= |z - 29| <|

oo

2. The entry (i,5) ¢ Supp(S®): Here the entry (i, j) is not thresholded. We know that
which we get

< ¢ from

* Ox* t
Ly + Sy — LY

Syl < ¢+

() 36p%r [, 1\* ., 2u’r [, 1" ,
S g (Tt \g) o) T (Tt g ) ok
8

* ®
Ly - LY

where ((2) follows from the second assumption along with our setting of = 4%.

The above two cases prove the second statement of the lemma. O
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We will now prove LemmalI]
Proof of Lemma Recall the definitions of Fy = (% — 8, By = (L — L*) , By = (T~ 22 ) (B, — By) and

8= 2\/5 |E2 — E1|| - Recall that H := E; + E3 From Lemma4] we have that lEg satisfies Deﬁnition This implies
that the matrix -+ (E1 + E3) satisfies the conditions of Lemmal Now we have V1 < a < [logn] and Vi € [n]:

T @
1 1
() G) ) v
(C) 2, Pn 2a r r n 2a
<5 (||E1||w+clogn) L < <pn|E1|oo+2c[<||E1Eznoc)logn)
B m m D

where (¢) follows from the application of Lemma along with the incoherence assumption on U*. The other statements
of the lemma can be proved in a similar manner by invocations of the different claims of Lemma|[I4] (|

l|es(HH " )*U*

|, =6

5.2. Algorithm PG-RMC

Proof of Theorem |1t We know that T" > log(w). Consider the stage g reached at the termination of the algorithm.
We know from Lemma [TT] that:

L. ||E(T)Hoo 8# - (UZ +1 + (%)T ’ ) S wr Jk +1 + 1()n

m

2. |2 =L < 2# - (Uk 1t ( m
Combining this with Lemmas ]and[7] we get:
k11 (M) > 0,y = g gL (17)
a = TRatl 100 \ TRt 10nu2r
When the while loop terminates, oy, +1 (M7)) < 5, which from (T7), implies that Thyt1 < 7. So we have:
2u’r € €
L-L* :HL<T>—L* < KT <
PR <

We will now bound the number of iterations required for the PG-RMC to converge.

From claim 2 of Lemma we have a,’; 41 < ;—;U,’;q .41 Vq > 1. By recursively applying this inequality, we get

o, IR (é—g) or. We know that when the algorithm terminates, o;; 41 < Since, (g)q o7 is an upper bound for

7# r* 32

o}, +1» an upper bound for the number of iterations is 5log (M) Also, note that an upper bound to this quantity is

used to partition the samples provided to the algorithm. This happens with probability > 1 —72p~(10+loga) > 1 _p—loga
This concludes the proof. O

In the following lemma, we show that we make progress simultaneously in the estimation of both S* and L* by S® and
L) We make use of Lemmas E] and to show progress in the estimation of one affects the other alternatively. We also
emphasize the roles of the following quantities in enabling us to prove our convergence result:

1. ||H||, - We use Lemma [7|to bound this quantity

2. The analysis of the following 4 quantities is crucial to obtaining error bounds in ||| norm

for j even max e; (HTH)% V* max eq/ (HHT) Uu*
q'€[n] q'€[m] 2
forjodd max el HT (HHT)H Ur|  max |elm (HTH)'# v
q'€[n] 5  q'€[m] 2

We use Lemmal(I]to bound this quantity.
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Lemma 11. Let L*, Q, S* and SO satisfy Assumptions 1,2,3 respectively. Then, in the t™ iteration of the " stage of
Algorithm S®) and LW satisfy:
2
< Su“r (U
00 m

Supp (g(t)> C Supp (g*) )

t—2
N 1
ool + ()

o5

7
5

with probability > 1 — ((q — 1)T +t — 1)n~ (1041989 \phere T is the number of iterations in the inner loop.

Proof. We prove the lemma by induction on both ¢ and . Recall that E(*) = S* — 5@

Base Case: ¢ = 1landt =0
We begin by first proving an upper bound on || L*|| . We do this as follows:

T
* * *
E OpUikVjk
k=1

where the last inequality follows from Cauchy-Schwartz and the incoherence of U*. This directly proves the third claim
of the lemma for the base case. Recall, that ((0) = no;. We now have from the thresholding step and the incoherence
assumption on L*:

*

T 4 2
w2
<D ok fuiti| <ot Y |ujj| < S0
k=1 k=1 mn

ES
|L;;

©
1 [[EOQ| . < 37 (05 + 207) < 27 (807,) , and
2. Supp (g(t)) C Supp (5*) )
where (¢) follows from Lemmal[12]

Finally, from Lemma 8] we have:

n (021+1 + 40;1)

| ©

7 * *
g (0%, 41 +40%,) < W=y <0k1+1(M(t)) + 4oy, (M(t))> <

So the base case of induction is satisfied.

Induction over ¢
We first prove the inductive step over ¢ (for a fixed ¢). By inductive hypothesis we assume that:

D B0, <2 (o7 0+ (1)o7,

b) Supp (§<t>) C Supp (5)

O [|L* = L0, <2 (o 1+ (3) )

& I (Jot, ] + ()7 |or,]) < < < (ot |+ 37 or|)

with probability 1 — ((g — 1)T 4 ¢ — 1)n~(10+1°8)_ Then by Lemma9} we have:

*
O'kq

*
O—kq

2
HL“HJ _|| < % (o—;;q+1 +20 || H|, + 8U> (18)

o0
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From Lemmal[l] we have:

€ 1 (, 1\ @ 1 ( 1\ .
OO—&—SBalogn < 100 Okg+1 T 5 Ok, | +8Balogn < w0 Okgt1 T 3 or, | (19

where ({;) follows from our assumptions on p and our inductive hypothesis on HE(”HOO and ((p) follows from our
assumption on p and by noticing that || D||, < ||[E®|| _ + ||L* — L®|| _. Recall that D = L") — L* + S _ gx,

1 ) Ny
151, < 755 (qu-H + (2> %) (20)

with probability > 1 — n~(10+1°¢ @) From Equations 20), (T9) and (T8}, we have:

. 2 (. N
R O

which by union bound holds with probability > 1 — ((¢—1)T +t)n~ (10192 @) Hence, using Lemmaand our inductive
hypothesis on ¢(*+1) we have:

LB < B (o L+ (5) o)

v < pn HE(t)

From Lemmal[7l

m

2. Supp (g(”l)) C Supp (5*)
which also holds with probability > 1 — ((¢ — 1)T + t)n~ (19418 ®) This concludes the proof for induction over ¢.

Finally, from Lemmaand our bounds on HE(Hl) ||OO and ||L* — [+ ||Oo, we have:

7 . 1\ ¢! 9 . 1\ ¢!
g < qu+1‘ + <2> > < () < 3 ( okq+1‘ + (2>

Induction Over Stages ¢
We now prove the induction over g. Suppose the hypothesis holds for stage q. At the end of stage g, we have:

*

Ok

¥
q O.k

q

LED|| <30 (op 1+ () op,) < YTy e and

m m

2. Supp (g(T)) C Supp (5*)

* T-2 * * T-2 *
3. gn ( qu+1‘ + (%) Ok, ) < ¢ < %’7 ( Uk:q+1‘ + (%) kq )
with probability > 1 — (¢qT — 1)n~(10+1°2®) From Lemmasand we get:
" 1 N me
‘%H (M(T)) - %H‘ <|H|, < 100 (quﬂ + W) 21

with probability 1 — n~(10+1°5¢). We know that 510, 1 (M) > 55 which with 1) implies that |o7 | >

me
10nu2r*

foreo i

2 L me
o _me
00 m kot L 20nu2rn
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where (¢y) follows from Lemma By union bound this holds with probability > 1 — ¢7'n~(10+loga),

Now, from Lemma|10|and the inductive hypothesis on (7!, we have through a similar series of arguments as above:

L B0, < 2 (s, )

2. Supp (g(o)) C Supp (§*>
which holds with probability > 1 — ¢7'n~(10+log),

Recall, now that L(®) = L(T+1) Finally, from Lemmaand our bounds on HE(O) ||Oo and ||L(°) —L* ||Oo we have:

)

7 * *
Lo+

9 " .
) < C(l) < g” (‘o’kq+1+1’ +4 ‘quu

Lemma 12. Suppose at the beginning of the "™ stage of algorithm '

* 2 2 *
Ll = 2O < 20T (207, 4

2 B0, < BT (207, 1)
Then, the following hold:

1. Uzq z %T;Gl:q,lﬂ

2. JZq_H < %U,’;q71+1

with probability > 1 — n~(10+log )

Proof. We know that:

Akg_i+1
)\k?q < Ultq + HH||27 /\kq—1+1 > O-I:qfl*‘rl - HH”27 )‘kq = QT
Combining the three inequalities, we get:
Ok, i1~ S HI,
qu = 9
Applying Lemma[7] we get the first claim of the lemma.
Similar to the first claim, we have:
A, 41> 07 H A < o; H Mo 1 < huatd
ka1 = 01— [ Hly, kor+1 < 0g, 1 + H], kgl = 757

Again, combining the three inequalities, we get:

\ Tiiyr1 3 1H ]
Okg+1 = 9

Another application of Lemma[7] gives the second claim.
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Algorithm 3 L = R-RMC(Q, Po(M), €, 7,1, 0): Non-convex Robust Matrix Completion

1: Input: Observed entries 2, Matrix Pq (M) € R™*™, convergence criterion e, target rank r, thresholding parameter 7,
upper bound on o] o
2
2: T+ 10log M /*Number of inner iterations*/
3: Partition  into 1" + 1 subsets {20} U {Qq,¢ : ¢ €[], € [T]} using[2]
4: LO) =0, ¢ — po
50 MO @1 Po (M — HT (M)
6
7
8
9

g+ 0
: while 7441 (M) > 5= do
g+ q+1
for Iterationt = 0tot =T do
10: S® = He(Pq,, (M — LW)) /*Projection onto set of sparse matrices*/
11: MO =L® - mm—q’ilPQw(L(t) +S® — M) /*Gradient Descent Update*/
12: LY = p(M®) /*Projected Gradient Descent step*/
13: Set threshold ¢(“+1) « 7 (aqH(M(t)) + (%)taq(M(t)))
14:  end for

15 SO — g [O) = [T+ (©) — A1) ¢(0) = ((T+1)
16: end while
17: Return: L(T+D

5.3. Algorithm R-RMC

Proof of Theorem We know that ' > log(w).

Consider the stage ¢ reached at the termination of the algorithm. We know from Lemma T3] that:

T-1

LB, <2 (n, + (3)op) < %or 4+ 55

2L - 1| < 2 (o + (3)op) < Bora +

m

Combining this with Lemmas[2]and[7] we get:

N 1 " me
O'q+1(M(T)) > Uq+1 - m (0q+1 + W) (22)

When the while loop terminates, nog41 (M) < &=, which from (22), implies that Tor1 < 7orsy- So we have:

2,u27“
m

<

* * * €
IL -l = |2 - 27| 07, 2l + 7 <

€
10n — 2n’

O

As in the case of the proof of Theorem |1} the following lemma shows that we simultaneously make progress in both
the estimation of L* and S* by L(Y) and S respectively. Similar to Lemma we make use of Lemmas m and
to show how improvement in estimation of one of the quantities affects the other and the other five terms, || H||,,

T (T v+ T T 7} 1+
el (HTH)'V  and q{ré?élHeq,H(H oY v

ey (HHT) U

max , max e HT (HHT)j U
¢'€ln] 2’ g'elm] !
are analyzed the same way:

Lemma 13. Let L*, ©, S* and S® satisfy Assumptions 1,2,3 respectively. Then, in the t™ iteration of the ¢ stage of

, max
2 q'€[n]

2
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Algorithm S® and L® satisfy:

H 3®

* 8[1427' * 1 = *
75 OOS m <O'q+1+(2> Uq 5

Supp <§(t)> C Supp (§*) )
N
(3)

-2

*

9 1\’

41 *

g ) << 2 <’Uq+1’ + (2)
2ur ! N

oog m 0'q+1+ 5 04 |-

*
Uq

g

;n(a ) and

with probability > 1 — ((q — 1)T +t — 1)n~= (194198 ) ywhere T is the number of iterations in the inner loop.

Proof. We prove the lemma by induction on both ¢ and ¢.

Base Case: ¢ =1andt =0
We begin by first proving an upper bound on ||L*|| . We do this as follows:

T s T

_ * * * * * * * * *

Li;| = E O Ui V5| < E ‘Ukuikvjk‘ <o E |ug v
k=1 k=1 =1

*

where the last inequality follows from Cauchy-Schwartz and the incoherence of U*. This directly proves the third claim
of the lemma for the base case. Recall that ((?) = 7o, We also note that due to the thresholding step and the incoherence

assumption on L*, we have:

LB < % (03 +207)

2. Supp (g(t)) C Supp (§*> )

From Lemmaand our bounds on E(® and HL(” —L*

o We have:

7 * * 9 * *
gn(\02| +lo) < ¢ < gn(\02| + lo7])

So the base case of induction is satisfied.

Induction over ¢
We first prove the inductive step over ¢ (for a fixed ¢). By inductive hypothesis we assume that:

a) ||E(t)HOO < % <|0';;+1‘ + (%)tﬂ \a; )
b) Supp (g(t)) C Supp (§*>
0 12 = L0, < 22 (il + (3 o]

O I (logal+ (3 log]) < ¢ < 2 (loga |+ (3)'

with probability 1 — ((¢ — 1)T + ¢ — 1)p~(10+loga),

)

q

Then by Lemma(9] we have:

2T
HL(m) | < % (|o—?;q+1\ + 20 H|l, + 8’(})

(23)
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From Lemmal[l] we have:
€ 1 [, NN, € 1 [, Nt
OO—!—Sﬁozlogn < 100 Ogt1 + 3 o, | +8Balogn < =0 Ogt1+ 3 o, (24)

where ({;) follows from our assumptions on p and our inductive hypothesis on HE(“HOO and ((y) follows from our
assumption on p and by noticing that || D|| < |[E®|| _+||L* — L®||__. Recall that D = L) — L* + S g*,

1 1 t—1
12 < 355 | o2+ + (2> o (25)

with probability > 1 — n~(10+1°6 ) From Equations 23), (24) and @3], we have:
20 1\’

[* [ t+1 * *

H - Lt )Hoo = m (UQ-H_" (2) %a

which by union bound holds with probability > 1 — ((q —1)T +t)n~(10+1°8®) Hence, using Lemmaand the inductive
hypothesis on ¢*+1) we have:

LB < 2 (o7, + (3)'07)

m q

v < pn HE(t)

From Lemmal[7t

2. Supp (5(”1)) C Supp (§*>
which also holds with probability > 1 — ((¢ — 1)T + t)n~ (19418 @) This concludes the proof for induction over ¢.
Finally, using Lemmaand our bounds on |[|[E¢FV||_and ||L¢+Y) — L

7 ) 1\ . 9 . 1\ )
or{leil = (3) el = < < 3 Il + (3) 7 i

Induction Over Stages ¢
We now prove the induction over g. Suppose the hypothesis holds for stage g. At the end of stage g, we have:

o We have:

m q m

LD <2 (o + () op) < M 4
2. Supp (g(T)) C Supp <§*>

3. 50 (logal + (3) log]) < ¢V < $n (Joga] + (3) o

with probability > 1 — (¢T" — 1)n~(10+log@),

*
Uq

)

From Lemmas [2]and [7]we get:

1 me
T * %
‘UQH (M( )> B U[IH‘ < Il < 100 (J'H'l + 1Onu2r> (26)

with probability 1 — n~=(19+1°8 ) We know that nog41 (M®) > £ which with (26) implies that Og41 > Tomprr-

2u2r 17" 22 me
(T+1 T M * - * 1% *
HL L oo = m (U‘Hl - (2) Uq> = m <0q+1 - 2Ou2rn>
2:“‘2T * J;-‘rl 2#27‘ *
s (Uq+1 t—H )= (20541)
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By union bound this holds with probability > 1 — ¢7'n~(10+loga),
Now, from Lemma|10|and our inductive hypothesis on ({71, we have through a similar series of arguments as above:

LB, < %5 (205:)

2. Supp (5(0)) C Supp (§*>
which holds with probability > 1 — g7~ (10+loga),

Recall, now that L(®) = L(T+1) Finally, from Lemmaand our bounds on HE(O) ||Oo and ||L(°) —L* ||OO, we have:

7 * * 9 * *
3" (logsa] + |oga]) < ¢V < 3 (|ogr2] + |ogia])

5.4. Proof of a generalized form of Lemmal[T]

Lemma 14. Suppose H = H; + Hy and H € R™*™ where H; satisfies Definition |I| (Definition 7 from (Jain &
Netrapalli, |2015)) and Hy is a matrix with column and row sparsity p. Let U be a matrix with rows denoted as
Ui, ..., Uy and let V be a matrix with rows denoted as v, ...,v,. Let e, be the q" vector from standard basis. Let
7 = max{max ||u;|| ,max ||v;||}. Then, for 0 < a <logn:

1€[m] i€[n]

max |le, (H" V‘ max eq (HH") UH (pn||Hal|, + clogn)®®
q€(n] 2 q€[m]
mz[ni eqTHT (HHT Inf),X] qH(HTH VH (pn||Hz||, + clogn)®* ™7
qen 2 q€[m

with probability n~=2108 1+4,

Proof. Similar to (Jain & Netrapalli, [2015)), we will prove the statement for ¢ = 1 and it can be proved for ¢ € [n] by
taking a union bound over all g. For the sake of brevity, we will prove only the inequality:

max
q€[n]

eq (H'H) VH (pn || Ha|| o, + clogn)®*r

The rest of the lemma follows by applying similar arguments to the appropriate quantities.

Let w : [2a] — {1,2} be a function used to index a single term in the expansion of (H " H)?®. We express the term as
follows:

a

(HTH)a = Z H HJ(zi—l)Hw(%)

w =1

We will now fix one such term w and then bound the length of the following random vector:

Vo = € H w(Zz 1)H 21))V

Let « be used to denote a tuple (7, j) of integers used to index entries in a matrix. Let 7'(¢) be used to denote the parity
function computed on 4, i.e, 0 if ¢ is divisible by 2 and 1 otherwise. This function indicates if the matrix in the expansion
is transposed or not. We now introduce BZ"?) P €1{1,2}, ¢ €{0,1} and Ap ,p € {1,2} which are defined as
follows:
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A](Du = 0i,1(0p1 + 0p,2 L (1. 5)eSupp(i)})

By iy = (0q,1050 + 04,005%) (Op,1 + 0p 2 L{ (1) Supp(Hi2)})

where §; ; = 1if ¢ = j and 0 otherwise. We will subsequently write the random vector v, in terms of the individual entries
of the matrices. The role of B?;% and A 1s to ensure consistency in the terms used to describe v,,. We will use

(4,9, (k,1)
hi,q to refer to (H;)q.

With this notation in hand, we are ready to describe v,,,.

Z Aw Bw ?l)ZT(Q) Bw(za) (2a)hw(1),(x1 Tt hw(?a),aza vaza(2)

Q2q—-1%2q
aq,...,02q
al(l):

We now write the squared length of v,, as follows:

w(l w(2 w(2a),T(2a
X, = Z A ( )B(m(a)z @ ) Baz(u )1a2(a )hw(l),al o 'hw(za)’a%
041,.---,062(1,70417---70/2
ai(l)=1,a}(1)=1
w( 2) T(2) w(2a), T(2a)
AL Barar By e h(t).ag e Pus(2a) 04, (Vana (21 Vo, (2))

We can see from the above equations that the entries used to represent v,, are defined with respect to paths in a bipartite
graph. In the following, we introduce notations to represent entire paths rather than just individual edges:

Let & == (aq,...,Q9,) and

C Aw(l)Bw(Q) T(2) Bw(Za) T(Za)h

ajaz Q2q-1024 w(l),oq = -+ hW(QG)»QQa

Now, we can write:

Xo= Y CabarlVas,(2) vay,2)
ar(1)=a} (1)=1

Calculating the £™ moment expansion of X, for some number k, we obtain:

E[Xu]ﬂ = Z E[Cal o Cazw <va§a(2)a vaga(2)> s <Ua§i—1(2)7 Ua§§(2)>] (27)

al,... a2k

We now show how to bound the above moment effectively. Notice that the moment is defined with respect to a collection
of 2k paths. We denote this collection by A = (a, ..., a?*). For each such collection, we define a partition I'(A) of
the index set {(s,1) : s € [2k],l € [2a]} where (s,!) and (s',1’) are in the same equivalence class if w(l) = w(l’) = 1 and
o] = als/l. Additionally, each (s, ) such that w(l) = 2 is in a separate equivalence class.

We bound the expression in by partitioning all possible collections of 2k paths based on the partitions defined by them
in the above manner. We then proceed to bound the contribution of any one specific path to following a particular
partition I', the number of paths satisfying that particular partition and finally, the total number of partitions. Consider a
partition " with non-zero contribution to the k' moment. Since, H is a matrix with 0 mean, any equivalence class of
T" containing an index (s,!) such that w(l) = 1 contains at least two elements (Otherwise, for any A satisfying T" has 0
contribution to the k" as the element in the singleton equivalence class has mean 0).

We proceed to bound by taking absolute values:

EXE < Y Ellar]- 1o 1(vas, @) Vaz, @) - - (V4251 (2 Vazi ()] (28)

al,.. a2k
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We now fix one particular partition and bound the contribution to (28) of all collections of paths A that correspond to a
valid partition I".

We construct from I" a directed multigraph G. The equivalence classes of I' form the vertex set of G, V(G). There are
4 kinds of edges in G where each type is indexed by a tuple (p, q) where p € {1,2}, ¢ € {0,1}. We denote the edge
sets corresponding to these 4 edge types by E(;1 0y, E(1,1), E(2,0) and E(3 1y respectively. An edge of type (p,q) exists
from equivalence class ~y; to equivalence class 75 if there exists (s,1) € 71 and (s',1') € yo such that!’ =1+ 1,s = ¢,
w(s)=pand T(l") = ¢q

The summation in 28] can be written as follows:

E[|Ca1| |<a2’“|

< O‘za(2 a2a(2)>’ c ’<va2k71(2)’ va§§(2)> ’}

2a
( )2(1 1 ( )T ) 2k 2a
2k w(l w(l+1),T(1+1
(H A H BO‘L LG ) £ (H H ‘hw(l)(yf >‘|
s=11=1

(Cl 2a—1
(HM”H Bia! ””) 1= 10 il

YeVI(G)  vEVR(G)

w 2a—1
|H | (H A“(l) (z+1),T(z+1)>
aj,afiy

=1

where ((7) follows from the moment conditions on Hy. V1(G) and Va(G) are the vertices in the graph corresponding to
tuples (4, 7) such that w(j) = 1 and w(j) = 2 respectively and wy = |V1(G)], we = |V2(G)|.

We first consider an equivalence class «; such that there exists an index (s,l) € v; and [ = 1. We form a spanning tree
T of all the nodes reachable from ~; with y; as root. We then remove the nodes V(Tl) from the graph G and repeat

this procedure until we obtain a set of [ trees 17, . . ., 7} with roots 7y, . . ., y; such that U V(G;) = V(G). This happens

because every node is reachable from some equivalence class which contains an 1ndex of the form (s,1). Also, each of
these trees T;, V4 € [l] is disjoint in their vertex sets. Given this decomposition, we can factorize the above product as
follows:

s « U T S e [T s,

J=1ay,veT; {77V }EE@1,0)(T})
H Bi.\}a ’ H Bi_?a ’ H Bi.\}awz (29)
{77 }eEH,1)(T)) {7V }EE(2,0)(T5) {77 }EE@2,1)(T))

where the inner sum is over all possible assignments to the elements in the equivalence classes of tree T);.

For a single connected component, we can compute the summation bottom up from the leaves. First, notice that as each
B%J is bounded by 1:

O(&

ZBCX,\,OL/—pTL ZBOL.YOL/—pn

1,1 — 1,0 _
Z Ba,yaw/ =n Z Boz,yawz =n

CM,YI OLW/

Where the first two follow from the sparsity of H». Every node in the tree T); with the exception of the root has a single
incoming edge. For the root, -y;, we have:
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ZAﬁEl) < pnforw(l) =2 ZAZ?) =nforw(l) =1
(%) [e5}

From the above two observations, we have:

} : w(1) 1,0 1,1 2,0
Aa1 H BOé.Ya,Y/ H BQ.YO(,Y/ H BOé.Ya,Y/
Qlyeesy {7V }EE@1,0)(T}) {vY'}YeEn,1)(T)) {7V }EE(2,0)(T})
2,1 W2, j oy W1, j
Baﬂ,a,yz < (pn) I
{V ' }EE@2,1)(T))

where wy, ; represents the number of vertices in the j* component which contain tuples (y, z) such that w(z) = k for
ke {1,2}.

Plugging the above in (29) gives us

2k w2
k T [ Ha |
E[X5(I)] < T

LS (pm) S o = 7 | Hy |22 (n)

Let a; and ay be defined as [{i:w(i) =1} and |{i:w(i) = 2}| respectively (Note that wy = 2agk). Sum-

ming up over all possible partitions (there are at most (2a;k)?*1*

T2 (pn | Ha|| o )?*2* (201 k) > "

of them), we get our final bound on E [)A(ﬂ as

logn

. 1 and applying the k' moment Markov

Now, we bound the probability that X, is too large. Choosing k = [
inequality, we obtain:

Pr[

Xw‘ > (clogn)2“172(pn||H2||oo)2a2} <E

ik 1 k

Xw :| ( 2(11 2 2(12)
(clogn)™ = (pn || Hzll,)

2]@0,1 >2ka1

clogn
—2log §

IN

IN

n

Taking a union bound over all the 22¢ possible w, over values of a from 1 to log n and over the n values of ¢, and summing
up the high probability bound over all possible values of w, we get the required result. O

5.5. Additional Experimental Results

We detail some additional experiments performed with Algorithm [I|in this section. The experiments were performed on
synthetic data and real world data sets.

Synthetic data. We generate a random matrix M € R2000%2000 jp the same way as described in Section ] In these
experiments our aim is to analyze the behavior of the algorithm in extremal cases. We consider two of such cases : 1)
sampling probability is very low (Figure 3] (a)), 2) number of corruptions is very large (Figure[3](b)). In the first case, we
see that the we get a reasonably good probability of recovery (~ 0.8) even with very low sampling probability (0.07). In
the second case, we observe that the time taken to recover seems almost independent of the number of corruptions as long
as they are below a certain threshold. In our experiments we saw that on increasing the p to 0.2 the probability of recovery
went to 0. To compute the probability of recovery we ran the experiment 20 times and counted the number of successful
runs.

Foreground-background separation. We present results for one more real world data set in this section. We applied
our PG-RMC method (with varying p) to the Escalator video. Figure [4] (a) shows one frame from the video. Figure [
(b) shows the extracted background from the video by using our method (PG-RMC , Algorithm |1)) with probability of
sampling p = 0.05. Figure d] (c) compares objective function value for different p values.
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n=2000,p=1r=25p=0.01 n=2000p=1r=5p=01
log ||L* — L||r < 0.1 log ||L* — L||r < 0.

O 7\ S/ \ 7\ \\

)

X 3 M M M M v 1 ’V/_\V/_\V/_\/
> 1 —e—e—=5—&2—5=—4& > ©p = 0.08 ‘
O o
> > -o-p = 0.1
9 3 p=0.18
@
205 = 05¢
° o
o o
o o
O 9 O ogle—wwov
0 5 10 0 5 10
Time(s) Time(s)
(a) (b)

Figure 3: We run the PG-RMC algorithm with extremal values of sampling probability and fraction of corruptions, and
record the probability with which we recover the original matrix, (a) : time vs probability of recovery for very small values
of sampling probability, (b) : time vs probability of recovery for large number of corruptions (pn?)

~o-p = 0.01
-©-p =0.05
p=0.1
--St-NcRPCA
20 40 60
Time(s)

(b) (©)
Figure 4: PG-RMC on Escalator video. (a): a video frame (b): an extracted background frame (c): time vs error for
different sampling probabilities; PG-RMC takes 7.3s while St-NcRPCA takes 52.9s
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