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Abstract

Causal inference among high-dimensional time
series data proves an important research problem
in many fields. While in the classical regime one
often establishes causality among time series via
a concept known as “Granger causality,” exist-
ing approaches for Granger causal inference in
high-dimensional data lack the means to char-
acterize the uncertainty associated with Granger
causality estimates (e.g., p-values and confidence
intervals). We make two contributions in this
work. First, we introduce a novel asymptotically
unbiased Granger causality estimator with corre-
sponding test statistics and confidence intervals to
allow, for the first time, uncertainty characteriza-
tion in high-dimensional Granger causal inference.
Second, we introduce a novel method for false dis-
covery rate control that achieves higher power in
multiple testing than existing techniques and that
can cope with dependent test statistics and depen-
dent observations. We corroborate our theoretical
results with experiments on both synthetic data
and real-world climatological data.

1 Introduction
The advent of “big data” in recent years has generated count-
less opportunities for the prediction of real world phenom-
ena with unprecedented accuracy and at unprecedented scale.
Statistical methods for prediction exploit associations in ex-
isting data to predict some response variable. However, the
task at hand is often not to predict the response variable from
pre-existing data, but rather to determine how a change in
one or more of the explanatory variables will cause changes
in the response variable.
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In statistics, causality is often established by means of a con-
trolled, randomized experiment. Nevertheless, controlled,
randomized experiments are often infeasible, leaving re-
searchers with only access to observational data. This situ-
ation arises routinely when working with time series data.
Areas that must cope with this obstacle frequently include
genetics (Shojaie & Michailidis, 2010) and neuroscience
(Seth et al., 2015). The natural question that arises is: how
can one determine which factors cause changes in a cer-
tain response variable using only data in which all variables
change simultaneously? Causal inference seeks to address
this problem.

The classic method for causal inference among time se-
ries is a concept from econometrics known as Granger

causality, named after Nobel Prize winning econometrician
Clive Granger (Granger, 1969). Granger causality formal-
izes the intuitive notion that in a causal system, the cause
must precede the effect, and the cause must hold some
unique information that helps predict the effect. For ex-
ample, let X

1

, . . . , X
T

and Y
1

, . . . , Y
T

be two stationary
one-dimensional time series. We can model time series Y
using the following auto-regressive model (Stock & Watson,
2011):

Y
t

=

pX

i=1

a
i

Y
t�i

+ ✏
t

, (1.1)

where a
1

, . . . , a
p

are the coefficient parameters for the re-
gression, p < T is the maximal lag of the model, and ✏

t

is
the error term. To determine whether or not X is a Granger

cause of Y , we also form a second auto-regressive model:
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, (1.2)

with coefficient parameters b
1

, . . . , b
p

, c
1

, . . . , c
p

, and error
term !

t

. In this classical regime, where the number of
observations exceeds the number of variables (T � p > 2p),
one can fit both of these models with ordinary least squares
(OLS). We can conduct an F-test between models (1.1) and
(1.2) as well as hypothesis tests on coefficients c

i

, 1  i 
p, to determine if the extra information encompassed by
previous values of X significantly aides in the prediction of
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future values of Y . If this pair of models passes the F-test
and at least one of the coefficient hypothesis tests at some
significance level ↵, then we may reject the null hypothesis
that X is not a Granger cause of Y (Granger, 1969).

Although the concept of Granger causality has existed for
decades, Granger (1969) only rigorously treated the bivari-
ate case. However, as noted by Arnold et al. (2007), Eichler
(2006) provided one framework for multivariate analysis by
applying graphical models to Granger causal inference.

Multivariate Granger causal inference relies on hypothesis
testing of model coefficients in a fitted vector-autoregressive
(VAR) model (Lutkepohl, 2007). VAR models are fit with
OLS. In the high-dimensional regime, where the number of
parameters exceeds the number of observations (T�p < pd,
where d is the number of time series in the VAR model),
OLS estimation is impossible. Hence, one must employ
regularized regression methods. Perhaps the most well-
known such method is the Lasso (Tibshirani, 1996), which
encourages sparsity in the coefficient parameter vector via
an `

1

penalty. To conduct Granger causal inference in the
high-dimensional regime, Arnold et al. (2007) proposed the
“Lasso Granger” estimator, which we fully specify in (3.3).
Unfortunately, since the limiting distribution of the underly-
ing Lasso estimator is not normal (Knight & Fu, 2000) and
intractable in general (Javanmard & Montanari, 2014), one
cannot construct confidence intervals or compute test statis-
tics for hypothesis tests of Lasso Granger coefficient point
estimates. Thus, existing methods for high-dimensional
Granger causal inference do not allow for the assessment
of uncertainty. Uncertainty characterization proves an im-
portant, and often necessary, element of research in the
natural sciences. Therefore, uncertainty assessment tech-
niques would augment the versatility of high-dimensional
Granger causal inference methods, and drive their wider
adoption by the scientific community.

Another issue in high-dimensional causal inference is how
to limit the number of false positives generated when testing
a large number of explanatory variables without sacrificing
identification of the true causal effects. That is, the re-
searcher wants to attain high power while still maintaining a
low type I error rate. To this end, false discovery rate (FDR)
control (Benjamini & Hochberg, 1995) proves an important
part of any method for high-dimensional causal inference.
Unfortunately, existing FDR control methods cannot cope
with the two challenges posed by our setting: dependent test
statistics and dependent observations. These methods thus
prove unsuitable in many practical applications.

In this paper, we make two contributions. First, we pro-
pose a novel asymptotically unbiased estimator for high-
dimensional Granger causal inference inspired by Javan-
mard & Montanari (2014). We leverage this estimator’s
unbiasedness to construct confidence intervals and p-values

for coefficient point estimates. In this way, we allow, for the
first time, uncertainty characterization in high-dimensional
Granger causal inference. Second, we propose a novel FDR
control technique that can cope with dependent test-statistics
and dependent observations. In addition to surmounting
these theoretical obstacles to existing methods, our FDR
control technique also achieves higher power in multiple
testing than existing methods. Additionally, the proof tech-
niques we use to extend high-dimensional results from the
independent and identically distributed (i.i.d.) setting to our
time series setting are of independent interest. Specifically,
to establish the asymptotic unbiasedness and normality of
our estimator, we appeal to Talagrand’s generic chaining
(Talagrand, 2006) and martingale theory. We further employ
martingale theory, along with empirical process theory, to
prove the asymptotic validity of our FDR control procedure.

The rest of this paper is organized as follows. Section 2
contextualizes our contributions in the existing literature.
Section 3 sets up the problem of high-dimensional Granger
causal inference. Section 4 presents our novel de-biased esti-
mator and FDR control procedure. Section 5 establishes our
main theoretical results, which we corroborate empirically
in Section 6. Section 7 concludes the paper.

2 Related Work

As mentioned above, Clive Granger examined bivariate
Granger causality in 1969 (Granger, 1969). Advances in
the area of graphical models provided a strong framework
for multivariate causal inference in general (Pearl, 2009).
Graphical models were first applied specifically to Granger
causal inference by Eichler (2001) and Eichler (2006), and
have provided a foundation for more complex models.

However, these methods rely on OLS estimation, which is
impossible in the high-dimensional regime. Meinshausen &
Bühlmann (2006) applied Lasso to the estimation of high-
dimensional graphical models. Arnold et al. (2007) then
applied the method proposed by Meinshausen & Bühlmann
(2006) to multivariate Granger causal inference, and intro-
duced the estimator of primary interest for this work: the
Lasso Granger estimator. The Lasso Granger estimator
yields a coefficient vector in which non-zero coefficients
indicate conditional Granger causes of the response variable.

Classical methods for uncertainty analysis prove impossible
for the Lasso Granger estimator. Recent work (Lee et al.,
2013; Lockhart et al., 2014; Taylor et al., 2014) in the area
of high-dimensional inference has made great strides toward
addressing this issue. Early work focussed on constructing p-
values and confidence intervals for Lasso coefficients via the
bootstrap (Chatterjee et al., 2013; Liu et al., 2013a). How-
ever, later work found that these methods perform poorly
compared to more recent methods (Dezeure et al., 2015),
especially in non-i.i.d. settings (Karoui & Purdom, 2016).
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Perhaps the most promising work in high-dimensional in-
ference has emerged from the perspective of bias correction
(Bühlmann et al., 2013; Zhang & Zhang, 2014). Subse-
quent work by Van de Geer et al. (2014) and Javanmard
& Montanari (2014) introduced a method to de-bias the
Lasso solution to yield asymptotically valid confidence in-
tervals and hypothesis tests for coefficient point estimates.
Nevertheless, these existing methods assume that the ob-
servations forming the design matrix are independent, and
so cannot tackle causal inference among time series. Our
method applies the Lasso de-biasing technique to the orig-
inal Lasso Granger estimator. We overcome the inability
of existing methods to cope with non-i.i.d. data by using
Talagrand’s generic chaining (Talagrand, 2006) and the mar-
tingale technique to derive the asymptotic distribution of
our novel de-biased Lasso Granger estimator.

Hypothesis testing in the high-dimensional setting raises the
need for procedures to address the multiple testing problem.
FDR control is one such way to control type I error in mul-
tiple testing. Our setting poses two challenges to existing
FDR control procedures. First, the most-widely used meth-
ods, such as the Benjamini-Hochberg procedure (Benjamini
& Hochberg, 1995), assume the test statistics under consider-
ation are independent. While Benjamini & Yekutieli (2001)
proposed a slight variation on the Benjamini-Hochberg pro-
cedure that could control FDR under “positive regression
dependency” (e.g., when the covariance matrix of the ex-
planatory variables is strictly positive), in our setting where
the explanatory variables interact in complex ways, the test
statistics will not satisfy this property. This version of the
Benjamini-Hochberg procedure achieves only low power
in the presence of a general dependence structure (Romano
et al., 2008), and is thus unsuitable for our setting. Recent
methods from the area of graphical models, which explic-
itly model the dependency of explanatory variables, have
made progress in addressing the case of dependent test statis-
tics (Xie et al., 2011; Liu et al., 2013b). However, these
methods still encounter the second challenge of our setting:
dependent observations arising from time series data. To
control FDR for dependent observations, one must resort to
assumption-free methods, such as the Bonferroni technique,
that achieve low power in practice. We propose a FDR con-
trol procedure that can cope with dependent test statistics
and observations, and that achieves high power.

Notation We denote matrix A = [A
i,j

] 2 Rm⇥n and col-
umn vector v = [v

i

] 2 RT . We write the `
p

norm of vector
v as kvk

p

= ⌃

i=T

i=1

|v
i

|p. Furthermore, kvk1 denotes the
max-norm of vector v: kvk1 = max

1iT

|v
i

|. Addi-
tionally, kvk

0

= supp(v) designates the cardinality of the
support (the set of all non-zero entries) of v. We represent
the the max-norm of matrix A as kAk1 = max

i,j

|A
i,j

|.
The minimum and maximum singular values of A are de-
noted by �

min

(A) and �
max

(A), respectively. �(x) ⌘

(1/
p
2⇡)

R
x

�1 e�t

2

/2dt refers to the cumulative distribu-
tion function of the standard normal distribution. For a
random variable X and a sequence of random variables
X

n

, we write X
n

P�! X if X
n

converges in probability
to X , and X

n

D�! X if X
n

converges in distribution to
X . For sequences of random variables X

n

and Y
n

, we say
X

n

⇣ Y
n

if X
n

has the “same asymptotic order” as Y
n

, that
is, if both sequences bound each other up to some universal
multiplicative constant.

3 Granger Causality and its Estimator
In this section, we set up the problem of high dimensional
Granger causal inference. Denote the design matrix X, the
number of parameters d, the number of observations T ,
and the maximal lag p. For a given design matrix X =

[X
t,j

] 2 RT⇥d define the sample covariance matrix b⌃ =

X>X/T 2 Rd⇥d. The j-th column of X represents time
series X

j

, 1  j  d. We can further denote lagged
versions of each column in the design matrix with f

X

t,j

=

(X
t�p,j

, X
t�p+1,j

, . . . , X
t�1,j

)

> 2 Rp. Note that X
t�1,j

represents the observation immediately before X
t,j

in time
series X

j

. In Granger causal analysis, the response variable
is one of the explanatory variables. Hence, we can model an
arbitrary variable X

t,j

, with 1  j  d and p+ 1  t  T ,
by using the lagged values of all explanatory variables as
predictors:

X
t,j

=

dX

i=1

✓

j⇤>
i

f
X

t,i

+ ✏
t,j

. (3.1)

Here ✓

j⇤
i

2 Rp and ✏
t,j

⇠ N(0,�2

j

). Time series X

i

is a conditional Granger cause of time series X

j

(con-
ditioned on the other d - 2 time series) if ✓

j⇤
i

contains
any non-zero elements (i.e., k✓j⇤

i

k
0

> 0). We can vec-
torize the sets of all ✓j⇤

i

and all f
X

t,i

, for 1  i  d,
as ✓

j⇤
= (✓

j⇤>
1

,✓j⇤>
2

, . . . ,✓j⇤>
d

)

> 2 Rpd and f
X

t

=

(

f
X

>
t,1

, fX>
t,2

, . . . , fX>
t,d

)

> 2 Rpd, respectively. Based on
(3.1), the Lasso Granger estimator (Arnold et al., 2007) is
given by

b
✓

j

= argmin

✓j

1

2(T � p)

TX

t=p+1

(X
t,j

� ✓

j>f
X

t

)

2

+ �k✓jk
1

,

where � > 0 is the regularization parameter.

Equivalently, letting eX = (

f
X

p+1

, fX
p+2

, . . . , fX
T

)

> 2
R(T�p)⇥pd and Y

j

= X
p+1:T,j

represent the lower T � p
elements of the j-th column of X , we can re-express our
model in more standard notation as:

Y

j

=

eX✓

j⇤
+ ✏, (3.2)

where ✏ ⇠ N(0,�2I
(T�p)⇥(T�p)

). We can now re-express
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the Lasso Granger estimator as:

b
✓

j

= argmin

✓j

1

2(T � p)
kY

j

� eX✓

jk2
2

+ �k✓jk
1

. (3.3)

For ease of presentation, we will henceforth omit the identi-
fying variable j from ✓

j⇤, b✓j , and Y

j

, and assume we are
referring to some arbitrary response variable. Using the
above notation, we can now denote the sample covariance
matrix of eX as e⌃

n

=

eX> eX/(T � p) 2 Rpd⇥pd and the
true covariance matrix as e⌃ = E[e⌃

n

].

4 Asymptotic Inference for Lasso Granger
In this section, we introduce our de-biased Lasso Granger
estimator, and construct confidence intervals and p-values
for its elements. We will then present our method for false
discovery rate control in multiple testing.

4.1 Confidence Intervals and Hypothesis Tests

In deriving a de-biased version of the Lasso Granger estima-
tor, we employ a variation of the Lasso de-biasing procedure
proposed by Javanmard & Montanari (2014). In particu-
lar, we define the de-biased Lasso Granger estimator b

✓

u as
follows:

b
✓

u

=

b
✓ +

1

T � p
MeX>

(Y � eXb
✓), (4.1)

where b
✓ 2 Rpd is the parameter vector yielded when com-

puting the Lasso Granger estimator (3.3) for an arbitrary
response variable Y = Y

j

. M = (m
1

,m
2

, . . . ,m
pd

)

> 2
Rpd⇥pd is an estimate of e⌃�1

n

, the inverse sample covari-
ance matrix of eX, where each m

i

is the solution to the
following optimization algorithm:

minimize m> e⌃
n

m subject to ke⌃
n

m� e
i

k1  µ,
(4.2)

where e
i

2 Rpd is the i-th column of I
pd⇥pd

, and the choice
of µ will be clear after we deliver theory. Our unbiased es-
timator b

✓

u, though inspired by Javanmard & Montanari
(2014), diverges sharply from their work in several respects.
While Javanmard and Montanari use the observed design
matrix X in their estimator, we use the transformed design
matrix eX. Although in our time series setting the rows
of design matrix X are already dependent, transforming
X to eX exacerbates this dependency and renders the i.i.d.
results underpinning Javanmard and Montanari’s work un-
usable. Hence, we appeal to Talagrand’s generic chaining
(Talagrand, 2006) and martingale theory to establish our
theoretical results about b✓u.

Theorem 5.5 in Section 5 below proves that for any i 2
{1, 2, . . . , pd}, the standardized estimate of the i-th element

of b✓u converges in distribution to the standard normal distri-
bution:

p
T � p

b✓u
i

� ✓⇤
i

�[Me⌃
n

M>
]

1/2

i,i

D�! N(0, 1). (4.3)

Unfortunately, the true noise level, denoted here by �, is
unknown in most real-world applications. Hence, we re-
place � with a consistent estimator, denoted b�, yielded by
the Scaled Lasso (Sun & Zhang, 2012):

{b✓(�), b�(�)} =

argmin

✓2Rpd
,�>0

⇢
1

2�(T � P )

kY � eX✓k2
2

+

�

2

+ �k✓k
1

�
,

(4.4)

where � is the regularization parameter. Sun & Zhang (2012)
prove b� is a consistent estimator of � when the penalized
loss function is convex. Sun & Zhang (2012) use the i.i.d
assumption to establish convexity. In our non-i.i.d. setting,
we establish convexity via a restricted eigenvalue condition
for martingale difference sequences. Thus, b� is consistent in
our setting as well. Then by the Slutsky Theorem (Van der
Vaart, 2000), we can replace � in (4.3) with b�.

One can easily apply (4.3) to construct confidence intervals
for ✓⇤

i

, for 1  i  pd. If the significance level is ↵ > 0,
the 1� ↵ confidence interval for ✓⇤

i

is:

I
i

= [

b✓u
i

� �(↵, T � p), b✓u
i

+ �(↵, T � p)], (4.5)

where

�(↵, T � p) = ��1

(1� ↵/2)(b�/
p

T � p)[Me⌃
n

M>
]

1/2

i,i

.

We prove the asymptotic validity of this confidence interval
in Corollary 5.6.

Similarly, we can also conduct hypothesis tests on the in-
dividual regression coefficients ✓⇤

i

, for 1  i  pd. In the
context of Granger causality, the relevant null and alternative
hypotheses are Hi

0

: ✓⇤
i

= 0 and Hi

a

: ✓⇤
i

6= 0, respectively.
Having zero-coefficients for all variables p(x�1) < i  px
implies that time series 1  x  d is not a conditional
Granger cause of the response time series. Conversely, re-
jecting Hi

0

for any variable p(x � 1) < i  px amounts
to rejecting the null hypothesis that time series x is not a
Granger cause of the response time series. We thus consider
the following test statistic for Hi

0

: ✓⇤
i

= 0:

cZ
i

=

b✓u
i

p
T � p

b�[Me⌃
n

M>
]

1/2

i,i

. (4.6)

Note that under the null hypothesis cZ
i

D�! N(0, 1) by (4.3).
The hypothesis test at significance level ↵ is thus given by

 

Z

(↵) = 1(�|cZ
i

| < z
↵/2

), (4.7)
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where z
↵/2

is the quantile of the standard normal distribu-
tion such that�(z

↵/2

) = ↵/2. We reject the null hypothesis
if and only if  

Z

(↵) = 1. The p-value for this hypothesis
test is

P
i

= 2(1� �(|cZ
i

|)). (4.8)

As usual, one would reject Hi

0

at a pre-specified significance
level ↵ if P

i

< ↵. We establish that the type I error of the hy-
pothesis test  

Z

(↵) converges to the specified significance
level, and that the p-value P

i

is asymptotically uniformly
distributed in Corollary 5.7.

4.2 False Discovery Rate Control

Having established test statistics for individual coefficients
of the de-biased Lasso Granger estimator, we now address
the issue of FDR control. First, denote the set of coefficient
indices i such that ✓⇤

i

= 0 as H
0

= {i|✓⇤
i

= 0, 1  i  pd}.
Define the complement of this set as H

1

= {i|✓⇤
i

6= 0, 1 
i  pd}. We define FDR and false discovery proportion
(FDP) as follows:

FDP(⌫) =
P

i2H
0

1(|cZ
i

| � ⌫)

max{P
1jpd

1(|cZ
i

| � ⌫), 1}
,

FDR(⌫) = E[FDP(⌫)].

When conducting hypothesis tests at significance 0 < ↵ <
1, we seek the smallest ⌫ such that FDR(⌫)  ↵. In this
way, we will be able to reject the null hypothesis as often as
possible (i.e., we maximize power) while still guaranteeing
that our type I error rate does not exceed ↵. Thus, the ideal
choice of ⌫ is

b⌫ = inf

⇢
⌫ > 0 :

P
i2H

0

1{|cZ
i

| � ⌫}
max{P

1jpd

1{|cZ
j

| � ⌫}, 1}
 ↵

�
.

(4.9)

Note that the left hand side of the inequality in (4.9) is
FDP, whose expectation is FDR. Unfortunately, b⌫ cannot be
computed under the unknown H

0

(Liu et al., 2013b). How-
ever, following Liu & Luo (2014), we use the asymptotic
normality of cZ

i

under the null hypothesis to approximateP
i2H

0

1{|cZ
i

| � ⌫} by 2(1��(⌫))pd. In multiple hypoth-
esis testing, we use �b⌫ as the threshold for rejecting the null
hypothesis, instead of z

↵/2

, in hypothesis test  
Z

(↵) (4.7).
Theorem 5.9 below demonstrates the asymptotic validity of
this FDR control method.

5 Main Theory
In this section we present our main theoretical results: the
test statistic cZ

i

from (4.6) converges in distribution to the
standard normal under the null hypothesis, and the FDR
control procedure presented in (4.9) asymptotically controls
both FDR and FDP. To begin, we present several definitions.

Definition 5.1. (Vershynin, 2012) A random variable X is
sub-Gaussian if there exists a constant C > 0 such that

P(|X| > t)  2 exp[�t2/C2

],

for all t > 0.

A random vector X 2 Rn is sub-Gaussian if the one-
dimensional marginals < X,v > are sub-Gaussian random
variables for all v 2 Rn.
Definition 5.2. (Javanmard & Montanari, 2014) The sub-

Gaussian norm of a random scalar variable X is:

kXk
 

2

= sup

q�1

q�1/2

(E[|X|q])1/q.

The sub-Gaussian norm of a random vector X 2 Rn is:

kXk
 

2

= sup

u2S

n�1

khX,uik
 

2

,

where Sn�1 is the unit sphere in Rn space.

Having established these definitions, we impose two as-
sumptions on the design matrix and the true covariance
matrix of the design matrix.
Assumption 5.3. There exist universal constants
C

min

, C
max

such that 0 < C
min

 �
min

(

e⌃) 
�
max

(

e⌃)  C
max

.

Assumption 5.4. The rows of eX are sub-Gaussian and the
sub-Gaussian norm of each row is bounded by some con-
stant  so that kfX

i

k
 

2

 , for i 2 {1, 2, . . . , T � p}.

We use Assumption 5.3 to demonstrate that the restricted
eigenvalue condition holds for e⌃

n

in order to prove the
asymptotic unbiasedness of b✓u. Assumption 5.4 plays a role
at multiple stages of the proof of Theorem 5.5, including
proving the restricted eigenvalue condition for e⌃

n

and es-
tablishing a high-probability bound for the regularization
parameter �. Both of these assumptions prove common in
the high-dimensional inference literature.

We leverage Assumptions 5.3 and 5.4 to present the follow-
ing theorem.
Theorem 5.5. Suppose Assumptions 5.3 and 5.4 are sat-
isfied. Let s

0

= supp(✓⇤
) ⇣ p

T � p/ log(pd) and
µ ⇣ p

log(pd)/(T � p). Then for any element b✓u
i

of the
de-biased Lasso Granger estimator b

✓

u defined in (4.1), we
have

p
T � p

b✓u
i

� ✓⇤
i

�[Me⌃
n

M>
]

1/2

i,i

D�! N(0, 1).

Theorem 5.5 immediately yields several useful results. We
first demonstrate the asymptotic validity of confidence inter-
val (4.5) for any element of b

✓

u in the following corollary.
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Corollary 5.6. Denote significance level ↵ > 0, and
for 1  i  pd, define interval I

i

= [

b✓u
i

� �(↵, T �
p), b✓u

i

+ �(↵, T � p)]. Here, �(↵, T � p) = �(1 �
↵/2)(�/

p
T � p)[Me⌃

n

M>
]

1/2

i,i

. Then

lim

T�p!1
P(✓⇤

i

2 I
i

) = 1� ↵.

By Corollary 5.6, the asymptotic coverage probability cor-
responds the the given confidence level. Note that we can
replace � with b� by the Slutsky Theorem. Similarly, we
confirm in the following corollary that the type I error for hy-
pothesis test  

Z

(↵), introduced in (4.7), matches the given
significance level ↵. Furthermore, we prove that the CDF
of the p-value P

i

for  
Z

(↵), which we introduced in (4.8),
converges in distribution to a uniform distribution.
Corollary 5.7. With  

Z

(↵) and P
i

defined as above, and
significance level ↵ > 0, we have:

P( 
Z

(↵) = 1|Hi

0

)

(T�p)!1�������! ↵ and P
i

D�! U [0, 1].

We now turn our attention to demonstrating the asymptotic
validity of the FDR control method we present in Section
4.2. To control FDR we desire the following property:

P
i2H

0

1(|cZ
i

| � b⌫)
2|H

0

|(1� �(b⌫))
P�! 1. (5.1)

Unfortunately, in this application, the test statistics cZ
i

are
correlated, rendering the convergence in (5.1) non-trivial.
In order to prove (5.1), we will leverage martingale theory,
empirical process theory, and the following assumption.
Assumption 5.8. For constant c > 2,

X

i2H
1

1

✓ |✓⇤
i

|
� e⌃�1/2

i,i

�
s

c log(pd)

(T � p)

◆
�! 1,

as (T � p, pd) �! 1.

Assumption 5.8 implies that the number of true alternative
hypotheses approaches infinity. This property proves im-
portant because, as demonstrated by Liu et al. (2014), FDR
control is impossible when the number of true alternative
hypotheses is fixed. This assumption allows us to present
the following theorem:
Theorem 5.9. Assume pd  (T � p)r and log(pd) =

o(
p
T � p) for some r > 0. Furthermore, suppose that

Assumption 5.8 and the assumptions of Theorem 5.5 hold.
Then at significance level ↵,

lim

(T�p,pd)

FDR(b⌫)
↵|H

0

|/(pd) = 1 and
FDP(b⌫)

↵|H
0

|/(pd)
P�! 1,

as (T � p, pd) �! 1.

Theorem 5.9 establishes that the FDR control procedure we
present in Section 4.2 asymptotically controls both FDR
and FDP. Note that the upper bound rate imposed on pd is
very mild and will pose no issues in the vast majority of
applications. The assumptions of Theorem 5.5 guarantee
the asymptotic normality of test statistic cZ

i

.

6 Numerical Experiments
In this section, we establish the effectiveness of our de-
biased Lasso Granger estimator and our FDR control proce-
dure via experimental results. We also demonstrate that our
methods outperform existing techniques.

6.1 Synthetic Data
Table 1: Empirical type I errors when testing H

0

: ✓⇤
i

= 0

over 500 simulations for ↵ = .05 for “random” and “cluster”
transition matrix patterns.

T d p Random Cluster

150 200 1 .046 .052
150 200 2 .054 .054
250 300 1 .050 .040
250 300 2 .046 .046

In this section, we corroborate our theoretical results and
compare our contributions to existing methods with numer-
ical experiments on synthetic data. The data for these ex-
periments are generated by model (3.1). In order to satisfy
the assumptions of Theorem 5.5, each ✓

j⇤ is a sparse vector
such that the probability of each element being non-zero
is

p
T � p/(2pd log(pd)) for 1  j  d. We use the R

package“flare” (Li et al., 2012) to generate sparse transition
matrices, and the “glmnet” package (Friedman et al., 2010)
to compute the biased Lasso Granger estimate. We examine
multiple different transition matrix patterns (“random” and
“cluster”, as generated by the “flare” package) and multiple
different configurations of (T, d, p).

In Table 1, we see that the empirical type 1 error of hypoth-
esis test  

Z

(↵) (4.7) corresponds to the given significance
level across multiple configurations of (T, d, p). Figure
1(a) corroborates Theorem 5.5 by demonstrating that the
empirical distribution of test statistic cZ

i

under the null hy-
pothesis is the standard normal distribution. Figure 1(a)
also illustrates that coefficient point estimates for the biased
Lasso Granger estimator do not follow the standard normal
distribution. Figure 1(b) validates Corollary 5.7 by demon-
strating that the empirical CDF of p-value (4.8) for a true
zero parameter is the uniform distribution. Furthermore,
Figures 1(c) and 1(d) exhibit that hypothesis test  

Z

(↵)
(4.7) attains higher power than the biased Lasso Granger es-
timator when testing a single true non-zero parameter. Table
2 demonstrates the accuracy of the de-biased Lasso Granger
estimator via computations of the `

1

and `
2

norms of the
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(b) P-value CDF
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Figure 1: 1(a) compares the Q-Q plots for test statistic cZ
i

and the biased Lasso Granger coefficient point estimate b✓
i

. 1(b)
exhibits an empirical CDF of p-values for cZ

i

. The Q-Q plots and CDF were computed over 500 realizations of configuration
(T = 250, d = 300, p = 2) for a true zero parameter. 1(c) and 1(d) compare the power curves for testing Hi

0

: ✓⇤
i

= 0 under
the biased Lasso Granger (LG) estimator and under hypothesis test  

Z

(.05) (4.7) for our de-biased Lasso Granger estimator
across 100 simulations for two configurations of (T, d, p). These simulations all use the “random” transition matrix pattern.

Table 2: Point estimation performance over 100 simulations for “random” and “cluster” transition matrix patterns. The
standard deviations are displayed in parentheses.

Random Cluster

T d p L
2

L
1

L
2

L
1

150 200 1 0.35(0.0263) 3.89(0.293) 0.34(0.0230) 3.77(0.261)
250 300 1 0.48(0.0234) 6.67(0.325) 0.49(0.0282) 6.76(0.380)

error vector between b
✓

u and ✓

⇤.

Table 3 exhibits that, as suggested by theory, our FDR con-
trol procedure outperforms the Bonferroni and Benjamini-
Hochberg (B-H) (Benjamini & Hochberg, 1995; Benjamini
& Yekutieli, 2001) methods in terms of power, while still
maintaining low FDP. While the Bonferroni method gen-
erally achieves only low power, the Benjamini-Hochberg
method performs poorly in this application because the test
statistics exhibit complex dependency, and thus violate a
theoretical assumption of the Benjamini-Hochberg method.

Lastly, Figure 2 demonstrates that our de-biased Lasso
Granger estimator paired with our FDR control proce-
dure outperform the original biased Lasso Granger es-
timator in terms of precision and recall. Define sets
TP = {i 2 H

1

|1(✓⇤
i

identified as non-zero)} and FP =

{i 2 H
0

|1(✓⇤
i

identified as non-zero)}, so precision is
|TP|/max{|TP| + |FP|, 1}, and recall is |TP|/|H

1

|. Note
that precision is equivalent to 1� FDP and recall is equiva-
lent to power. We calculate precision and recall at each point
along the Lasso-path of the regularization parameter to gen-
erate the curves in Figure 2. These curves demonstrate that
our de-biased Lasso Granger estimator and FDR control pro-
cedure achieve higher recall than the original Lasso Granger
estimator without sacrificing precision. Thus, not only does
our method provide the interpretability and flexibility of
uncertainty characterization, it also achieves higher power
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Figure 2: Precision-recall curves for our de-biased Lasso
Granger (LG) estimator with our FDR control procedure at
↵ = .05 versus the original biased Lasso Granger estimator
over 50 realizations of the noted configuration (T, d, p).

than the original Lasso Granger estimator while maintaining
low FDP. Therefore, our method proves more suitable for
high-dimensional Granger causal inference.

6.2 Real Data

To demonstrate the applicability of our method to real-world
data, we consider the climatological data set made available
by Lozano et al. (2009). This data set contains monthly ob-
servations for seventeen climatological variables (e.g., tem-
perature, precipitation, CO2, CH4, etc.) for 128 grid points
spanning the continental United States (latitudes 32.975 to
45.475 and longitudes �84.75 to �117.25) from 1990 to
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Table 3: Empirical FDP and power values for the indicated methods for ↵ = .05 over 50 simulations for the “random” and
“cluster” transition matrix patterns.

FDR Control B-H Bonferroni

T d p Transition Matrix Pattern FDP Power FDP Power FDP Power

150 200 1 Random .002 .91 .005 .32 0 .31
250 300 1 Random .002 .92 .003 .49 0 .43
150 200 1 Cluster .007 .85 .008 .36 0 .33
250 300 1 Cluster .002 .99 0 .34 0 .33

2002. Following the setup from Lozano et al. (2009), we
enforce stationarity by deseasonlaizing the data using the
R package “deseasonalize” (McLeod & Gweon, 2013). We
model the monthly temperature change of each grid point as
a linear model of the first three lagged values of all explana-
tory variables in the surrounding 3⇥ 3 grid. Thus, for each
of the 81 interior grid points, we obtain design matricies
with dimensions T = 13⇥ 12 = 156 (13 years of monthly
data), d = 17 ⇥ 9 = 153 (17 climatological variables ob-
served at 9 grid points), and p = 3. For each of these design
matricies, we use the R package “glmnet”(Friedman et al.,
2010) to produce the biased Lasso Granger estimate from
(3.3), and then apply (4.1) to construct the de-biased Lasso
Granger estimate.

For each grid point, we test the significance of the three
lagged values of monthly changes in Carbon Dioxide (CO2)
emissions for that grid point to determine if local CO2 emis-
sions are a Granger cause of temperature changes when
conditioned on many other climatological variables. Re-
call that an explanatory variable is a Granger cause of the
response variable if and only if any of the coefficients for
any of the lags prove significant. We use the Bonferroni
method, the Benjamini-Hochberg (B-H) procedure, and our
FDR control method from Section 4.2 to control for multiple
testing. At significance level ↵ = .05, the Bonferroni and
Benjamini-Hochberg methods found that CO2 emissions
are a Granger cause of monthly temperature changes for
10 of the 81 grid points, whereas our FDR control method
discovered 13 such grid points. We thus corroborate the
findings of Lozano et al. (2009), who employed graphical
Granger modeling methods to establish Granger causality
between CO2 emissions and temperature changes, and those
of many climate researchers who have found increased CO2
emissions to “cause” higher temperatures. We also find
empirical evidence that our FDR control method achieves
higher power than the Bonferroni and Benjamini-Hochberg
methods. Figure 3 displays the results of this simulation.

7 Conclusion
In this paper, we propose a novel unbiased estimator for con-
ducting Granger causal inference in the high-dimensional

(a) Bonferroni, B-H (b) FDR Control

(c) P-Values

Figure 3: Maps of all interior grid points. Grid points where
local CO2 emissions register as a Granger cause of tempera-
ture changes appear in red in 3(a) and 3(b). Test statistic crit-
ical values are chosen via the method indicated in captions
of these two maps. 3(c) displays p-values for the coefficients
corresponding to CO2 emissions in the regression for each
grid point.

regime. We introduce test statistics and confidence inter-
vals for our estimator, thereby accomplishing the previ-
ously impossible task of uncertainty characterization in
high-dimensional Granger causal inference. Additionally,
we introduce a novel method for false discovery rate control
that achieves higher-power in multiple testing than existing
alternatives in our setting. Lastly, we validate our theoret-
ical results with experiments on both synthetic data and
real-world climatological data. Future extensions of our
work may include generalizations of our method to cope
with non-Gaussian noise and non-linear causality.
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