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Abstract
We develop and analyze a variant of Nesterov’s
accelerated gradient descent (AGD) for mini-
mization of smooth non-convex functions. We
prove that one of two cases occurs: either
our AGD variant converges quickly, as if the
function was convex, or we produce a cer-
tificate that the function is “guilty” of being
non-convex. This non-convexity certificate al-
lows us to exploit negative curvature and ob-
tain deterministic, dimension-free acceleration
of convergence for non-convex functions. For
a function f with Lipschitz continuous gradi-
ent and Hessian, we compute a point x with
krf(x)k  ✏ in O(✏�7/4

log(1/✏)) gradient and
function evaluations. Assuming additionally that
the third derivative is Lipschitz, we require only
O(✏�5/3

log(1/✏)) evaluations.

1. Introduction
Nesterov’s seminal 1983 accelerated gradient method has
inspired substantial development of first-order methods
for large-scale convex optimization. In recent years, ma-
chine learning and statistics have seen a shift toward large
scale non-convex problems, including methods for matrix
completion (Koren et al., 2009), phase retrieval (Candès
et al., 2015; Wang et al., 2016), dictionary learning (Mairal
et al., 2008), and neural network training (LeCun et al.,
2015). In practice, techniques from accelerated gradient
methods—namely, momentum—can have substantial ben-
efits for stochastic gradient methods, for example, in train-
ing neural networks (Rumelhart et al., 1986; Kingma and
Ba, 2015). Yet little of the rich theory of acceleration for
convex optimization is known to transfer into non-convex
optimization.
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Optimization becomes more difficult without convexity, as
gradients no longer provide global information about the
function. Even determining if a stationary point is a lo-
cal minimum is (generally) NP-hard (Murty and Kabadi,
1987; Nesterov, 2000). It is, however, possible to lever-
age non-convexity to improve objectives in smooth opti-
mization: moving in directions of negative curvature can
guarantee function value reduction. We explore the inter-
play between negative curvature, smoothness, and accel-
eration techniques, showing how an understanding of the
three simultaneously yields a method that provably accel-
erates convergence of gradient descent for a broad class of
non-convex functions.

1.1. Problem setting

We consider the unconstrained minimization problem

minimize

x

f(x), (1)

where f : Rd

! R is smooth but potentially non-convex.
We assume throughout the paper that f is bounded from
below, two-times differentiable, and has Lipschitz continu-
ous gradient and Hessian. In Section 4 we strengthen our
results under the additional assumption that f has Lips-
chitz continuous third derivatives. Following the standard
first-order oracle model (Nemirovski and Yudin, 1983), we
consider optimization methods that access only values and
gradients of f (and not higher order derivatives), and we
measure their complexity by the total number of gradient
and function evaluations.

Approximating the global minimum of f to ✏-accuracy is
generally intractable, requiring time exponential in d log 1

✏

(Nemirovski and Yudin, 1983, §1.6). Instead, we seek a
point x that is ✏-approximately stationary, that is,

krf(x)k  ✏. (2)

Finding stationary points is a canonical problem in non-
linear optimization (Nocedal and Wright, 2006), and while
saddle points and local maxima are stationary, excepting
pathological cases, descent methods that converge to a sta-
tionary point converge to a local minimum (Lee et al.,
2016; Nemirovski, 1999, §3.2.2).
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If we assume f is convex, gradient descent satisfies the
bound (2) after O(✏�1

) gradient evaluations, and AGD im-
proves this rate to O(✏�1/2

log

1
✏

) (Nesterov, 2012). With-
out convexity, gradient descent is significantly worse, hav-
ing worst-case complexity ⇥(✏�2

) (Cartis et al., 2010).
More sophisticated gradient-based methods, including non-
linear conjugate gradient (Hager and Zhang, 2006) and L-
BFGS (Liu and Nocedal, 1989) provide excellent practical
performance, but their global convergence guarantees are
no better than O(✏�2

). Our work (Carmon et al., 2016) and,
independently, Agarwal et al. (2016), break this O(✏�2

)

barrier, obtaining the rate O(✏�7/4
log

d

✏

). Before we dis-
cuss this line of work in Section 1.3, we overview our con-
tributions.

1.2. Our contributions

“Convex until proven guilty” Underpinning our results
is the observation that when we run Nesterov’s accelerated
gradient descent (AGD) on any smooth function f , one of
two outcomes must follow:

(a) AGD behaves as though f was �-strongly convex, sat-
isfying inequality (2) in O(��1/2

log

1
✏

) iterations.

(b) There exist points u, v in the AGD trajectory that prove
f is “guilty” of not being �-strongly convex,

f(u) < f(v) +rf(v)T (u� v) +
�

2

ku� vk
2
. (3)

The intuition behind these observations is that if inequal-
ity (3) never holds during the iterations of AGD, then f
“looks” strongly convex, and the convergence (a) follows.
In Section 2 we make this observation precise, present-
ing an algorithm to monitor AGD and quickly find the
witness pair u, v satisfying (3) whenever AGD progresses
more slowly than it does on strongly convex functions.
We believe there is potential to apply this strategy be-
yond AGD, extending additional convex gradient methods
to non-convex settings.

An accelerated non-convex gradient method In Sec-
tion 3 we propose a method that iteratively applies our
monitored AGD algorithm to f augmented by a proximal
regularizer. We show that both outcomes (a) and (b) above
imply progress minimizing f , where in case (b) we make
explicit use of the negative curvature that AGD exposes.
These progress guarantees translate to an overall first-order
oracle complexity of O(✏�7/4

log

1
✏

), a strict improvement
over the O(✏�2

) rate of gradient descent. In Section 5
we report preliminary experimental results, showing a ba-
sic implementation of our method outperforms gradient de-
scent but not nonlinear conjugate gradient.

Improved guarantees with third-order smoothness As
we show in Section 4, assuming Lipschitz continuous third
derivatives instead of Lipschitz continuous Hessian al-
lows us to increase the step size we take when exploit-
ing negative curvature, making more function progress.
Consequently, the complexity of our method improves to
O(✏�5/3

log

1
✏

). While the analysis of the third-order set-
ting is more complex, the method remains essentially un-
changed. In particular, we still use only first-order infor-
mation, never computing higher-order derivatives.

1.3. Related work

Nesterov and Polyak (2006) show that cubic regulariza-
tion of Newton’s method finds a point that satisfies the sta-
tionarity condition (2) in O(✏�3/2

) evaluations of the Hes-
sian. Given sufficiently accurate arithmetic operations, a
Lipschitz continuous Hessian is approximable to arbitrary
precision using finite gradient differences, and obtaining
a full Hessian requires O(d) gradient evaluations. A di-
rect implementation of the Nesterov-Polyak method with
a first-order oracle therefore has gradient evaluation com-
plexity O(✏�3/2d), improving on gradient descent only if
d⌧ ✏�1/2, which may fail in high-dimensions.

In two recent papers, we (Carmon et al., 2016) and (inde-
pendently) Agarwal et al. obtain better rates for first-order
methods. Agarwal et al. (2016) propose a careful imple-
mentation of the Nesterov-Polyak method, using acceler-
ated methods for fast approximate matrix inversion. In our
earlier work, we employ a combination of (regularized) ac-
celerated gradient descent and the Lanczos method. Both
find a point that satisfies the bound (2) with probability at
least 1 � � using O

�

✏�7/4
log

d

�✏

�

gradient and Hessian-
vector product evaluations.

The primary conceptual difference between our approach
and those of Carmon et al. and Agarwal et al. is that
we perform no eigenvector search: we automatically find
directions of negative curvature whenever AGD proves f
“guilty” of non-convexity. Qualitatively, this shows that
explicit second orders information is unnecessary to im-
prove upon gradient descent for stationary point computa-
tion. Quantitatively, this leads to the following improve-
ments:

(i) Our result is dimension-free and deterministic, with
complexity independent of the ratio d/�, compared to
the log

d

�

dependence of previous works. This is sig-
nificant, as log d

�

may be comparable to ✏�1/4/ log 1
✏

.

(ii) Our method uses only gradient evaluations, and does
not require Hessian-vector products. In practice,
Hessian-vector products may be difficult to imple-
ment and more expensive to compute than gradients.
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(iii) Under third-order smoothness assumptions we im-
prove our method to achieve O(✏�5/3

log

1
✏

) rate. It is
unclear how to extend previous approaches to obtain
similar guarantees.

In distinction from the methods of Carmon et al. (2016) and
Agarwal et al. (2016), our method provides no guarantees
on positive definiteness ofr2f(x); if initialized at a saddle
point it will terminate immediately. However, as we further
explain in Section D, we may combine our method with a
fast eigenvector search to recover the approximate positive
definiteness guarantee r2f(x) ⌫ �

p

✏I , even improving
it to r2f(x) ⌫ �✏2/3I using third-order smoothness, but
at the cost of reintroducing randomization, Hessian-vector
products and a log

d

�

complexity term.

1.4. Preliminaries and notation

Here we introduce notation and briefly overview definitions
and results we use throughout. We index sequences by sub-
scripts, and use xj

i

as shorthand for x
i

, x
i+1, ..., xj

. We use
x, y, v, u, w, p, c, q and z to denote points in Rd. Addition-
ally, ⌘ denotes step sizes, ✏, " denote desired accuracy, ✓
denotes a scalar and k·k denotes the Euclidean norm on
Rd. We denote the nth derivative of a function h : R ! R
by h(n). We let log+(t) = max{0, log t}.

A function f : Rd

! R has L
n

-Lipschitz nth derivative if
it is n times differentiable and for every x0 and unit vector
�, the one-dimensional function h(✓) = f(x0+✓�) satisfies

�

�

�

h(n)
(✓1)� h(n)

(✓2)
�

�

�

 L
n

|✓1 � ✓2|.

We refer to this property as nth-order smoothness, or sim-
ply smoothness for n = 1, where it coincides with the Lips-
chitz continuity ofrf . Throughout the paper, we make ex-
tensive use of the well-known consequence of Taylor’s the-
orem, that the Lipschitz constant of the nth-order derivative
controls the error in the nth order Taylor series expansion
of h, i.e. for ✓, ✓0 2 R we have
�

�

�

�

�

h(✓)�

n

X

i=0

1

i!
h(i)

(✓0)(✓ � ✓0)
i

�

�

�

�

�



L
n

(n+ 1)!

|✓ � ✓0|
n+1.

(4)
A function f is �-strongly convex if f(u) � f(v) +

rf(v)T (u� v) + �

2 ku� vk
2 for all v, u 2 Rd.

2. Algorithm components
We begin our development by presenting the two building
blocks of our result: a monitored variation of AGD (Sec-
tion 2.1) and a negative curvature descent step (Section 2.2)
that we use when the monitored version of AGD certifies
non-convexity. In Section 3, we combine these components
to obtain an accelerated method for non-convex functions.

Algorithm 1 AGD-UNTIL-GUILTY(f, y0, ", L, �)

1: Set  L/�, !  
p
�1p
+1

and x0  y0
2: for t = 1, 2, . . . do
3: y

t

 x
t�1 �

1
L

rf(x
t�1)

4: x
t

 y
t

+ ! (y
t

� y
t�1)

5: w
t

 CERTIFY-PROGRESS(f, y0, yt, L,�,)
6: if w

t

6= NULL then . convexity violation
7: (u, v) FIND-WITNESS-PAIR(f, xt

0, y
t

0, wt

,�)
8: return (xt

0, y
t

0, u, v)
9: if krf(y

t

)k  " then return (xt

0, y
t

0,NULL)

1: function CERTIFY-PROGRESS(f , y0, y
t

, L, �, )
2: if f(y

t

) > f(y0) then
3: return y0 . non-convex behavior
4: Set z

t

 y
t

�

1
L

rf(y
t

)

5: Set  (z
t

) f(y0)� f(z
t

) +

�

2 kzt � y0k
2

6: if krf(y
t

)k

2 > 2L (z
t

)e�t/

p
 then

7: return z
t

. AGD has stalled
8: else return NULL

1: function FIND-WITNESS-PAIR(f , xt

0, yt0, w
t

, �)
2: for j = 0, 1, . . . , t� 1 do
3: for u = y

j

, w
t

do
4: if eq. (8) holds with v = x

j

then
5: return (u, x

j

)

6: (by Corollary 1 this line is never reached)

2.1. AGD as a convexity monitor

The main component in our approach is Alg. 1, AGD-
UNTIL-GUILTY. We take as input an L-smooth function
f , conjectured to be �-strongly convex, and optimize it
with Nesterov’s accelerated gradient descent method for
strongly convex functions (lines 3 and 4). At every it-
eration, the method invokes CERTIFY-PROGRESS to test
whether the optimization is progressing as it should for
strongly convex functions, and in particular that the gradi-
ent norm is decreasing exponentially quickly (line 6). If the
test fails, FIND-WITNESS-PAIR produces points u, v prov-
ing that f violates �-strong convexity. Otherwise, we pro-
ceed until we find a point y such that krf(y)k  ".

The efficacy of our method is based on the following guar-
antee on the performance of AGD.

Proposition 1. Let f be L-smooth, and let yt0 and xt

0 be the
sequence of iterates generated by AGD-UNTIL-GUILTY(f ,
y0, L, ", �) for some " > 0 and 0 < �  L. Fix w 2 Rd.
If for s = 0, 1, . . . , t� 1 we have

f(u) � f(x
s

) +rf(x
s

)

T

(u� x
s

) +

�

2

ku� x
s

k

2 (5)
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for both u = w and u = y
s

, then

f(y
t

)� f(w) 

✓

1�

1

p



◆

t

 (w), (6)

where  =

L

�

and  (w) = f(y0)� f(w) + �

2 kw � y0k
2.

Proposition 1 is essentially a restatement of established re-
sults (Nesterov, 2004; Bubeck, 2014), where we take care
to phrase the requirements on f in terms of local inequali-
ties, rather than a global strong convexity assumption. For
completeness, we provide a proof of Proposition 1 in Sec-
tion A.1 in the supplementary material.

With Proposition 1 in hand, we summarize the guarantees
of Alg. 1 as follows.
Corollary 1. Let f : Rd

! R be L-smooth, let y0 2 Rd,
" > 0 and 0 < �  L. Let (xt

0, y
t

0, u, v) = AGD-UNTIL-
GUILTY(f , y0, ", L, �). Then the number of iterations t
satisfies

t  1 + max

(

0,

r

L

�
log

✓

2L (z
t�1)

"2

◆

)

, (7)

where  (z) = f(y0)�f(z)+
�

2 kz � y0k
2 is as in line 5 of

CERTIFY-PROGRESS. If u, v 6= NULL (non-convexity was
detected), then

f(u) < f(v) +rf(v)T (u� v) +
�

2

ku� vk2 (8)

where v = x
j

for some 0  j < t and u = y
j

or u = w
t

(defined on line 5 of AGD-UNTIL-GUILTY). Moreover,

max{f(y1), . . . , f(yt�1), f(u)}  f(y0). (9)

Proof. The bound (7) is clear for t = 1. For t > 1, the
algorithm has not terminated at iteration t � 1, and so we
know that neither the condition in line 9 of AGD-UNTIL-
GUILTY nor the condition in line 6 of CERTIFY-PROGRESS
held at iteration t� 1. Thus

"2 < krf(y
t�1)k

2
 2L (z

t�1)e
�(t�1)/

p
,

which gives the bound (7) when rearranged.

Now we consider the returned vectors xt

0, yt0, u, and v from
AGD-UNTIL-GUILTY. Note that u, v 6= NULL only if
w

t

6= NULL. Suppose that w
t

= y0, then by line 2 of
CERTIFY-PROGRESS we have,

f(y
t

)� f(w
t

) > 0 =

✓

1�

1

p



◆

t

 (w
t

),

since  (w
t

) =  (y0) = 0. Since this contradicts the
progress bound (6), we obtain the certificate (8) by the con-
trapositive of Proposition 1: condition (5) must not hold for

some 0  s < t, implying FIND-WITNESS-PAIR will re-
turn for some j  s.

Similarly, if w
t

= z
t

= y
t

�

1
L

rf(y
t

) then by line 6 of
CERTIFY-PROGRESS we must have

1

2L
krf(y

t

)k

2
>  (z

t

)e�t/

p


�

✓

1�

1

p



◆

t

 (z
t

).

Since f is L-smooth we have the standard progress guar-
antee (c.f. Nesterov (2004) §1.2.3) f(y

t

) � f(z
t

) �

1
2L krf(yt)k

2, again contradicting inequality (6).

To see that the bound (9) holds, note that f(y
s

)  f(y0) for
s = 0, . . . , t� 1 since condition 2 of CERTIFY-PROGRESS
did not hold. If u = y

j

for some 0  j < t then
f(u)  f(y0) holds trivially. Alternatively, if u

t

=

w
t

= z
t

then condition 2 did not hold at time t as well,
so we have f(y

t

)  f(y0) and also f(u) = f(z
t

) 

f(y
t

) �

1
2L krf(yt)k

2 as noted above; therefore f(z
t

) 

f(y0).

Before continuing, we make two remarks about implemen-
tation of Alg. 1.

(1) As stated, the algorithm requires evaluation of two
function gradients per iteration (at x

t

and y
t

). Corol-
lary 1 holds essentially unchanged if we execute line 9
of AGD-UNTIL-GUILTY and lines 4-6 of CERTIFY-
PROGRESS only once every ⌧ iterations, where ⌧ is
some fixed number (say 10). This reduces the number
of gradient evaluations to 1 +

1
⌧

per iteration.

(2) Direct implementation would require O(d · t) mem-
ory to store the sequences yt0, xt

0 and rf(xt

0) for later
use by FIND-WITNESS-PAIR. Alternatively, FIND-
WITNESS-PAIR can regenerate these sequences from
their recursive definition while iterating over j, reduc-
ing the memory requirement to O(d) and increasing
the number of gradient and function evaluations by at
most a factor of 2.

In addition, while our emphasis is on applying AGD-
UNTIL-GUILTY to non-convex problems, the algorithm
has implications for convex optimization. For example,
we rarely know the strong convexity parameter � of a
given function f ; to remedy this, O’Donoghue and Candès
(2015) propose adaptive restart schemes. Instead, one may
repeatedly apply AGD-UNTIL-GUILTY and use the wit-
nesses to update �.

2.2. Using negative curvature

The second component of our approach is exploitation of
negative curvature to decrease function values; in Section 3
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Algorithm 2 EXPLOIT-NC-PAIR(f , u, v, ⌘)
1: �  (u� v)/ku� vk
2: u+  u+ ⌘�
3: u�  u� ⌘�
4: return argmin

z2{u�,u+} f(z)

we use AGD-UNTIL-GUILTY to generate u, v such that

f(u) < f(v) +rf(v)T (u� v)�
↵

2

ku� vk
2
, (10)

a nontrivial violation of convexity (where ↵ > 0 is a pa-
rameter we control using a proximal term). By taking an
appropriately sized step from u in the direction ±(u � v),
Alg. 2 can substantially lower the function value near u
whenever the convexity violation (10) holds. The follow-
ing basic lemma shows this essential progress guarantee.

Lemma 1. Let f : Rd

! R have L2-Lipschitz Hessian.
Let ↵ > 0 and let u and v satisfy (10). If ku� vk  ↵

2L2
,

then for every ⌘  ↵

L2
, EXPLOIT-NC-PAIR(f, u, v, ⌘) finds

a point z such that

f(z)  f(u)�
↵⌘2

12

. (11)

We give the proof of Lemma 1 in Section A.2, and we out-
line it here. The proof is split into two parts, both using
the Lipschitz continuity of r2f . In the first part, we show
using (10) that f has negative curvature of at least ↵/2 in
the direction of � at the point u. In the second part, we con-
sider the Taylor series expansion of f . The first order term
predicts, due to its anti-symmetry, that either a step size of
�⌘ or ⌘ in the direction � reduces the objective. Adding
our knowledge of the negative curvature from the first part
yields the required progress.

3. Accelerating non-convex optimization
We now combine the accelerated convergence guarantee
of Corollary 1 and the non-convex progress guarantee of
Lemma 1 to form GUARDED-NON-CONVEX-AGD. The
idea for the algorithm is as follows. Consider iterate
k � 1, denoted p

k�1. We create a proximal function ˆf by
adding the proximal term ↵ kx� p

k�1k
2 to f . Applying

AGD-UNTIL-GUILTY to ˆf yields the sequences x0, . . . , xt

,
y0, . . . , yt and possibly a non-convexity witnessing pair
u, v (line 3). If u, v are not available, we set p

k

= y
t

and
continue to the next iteration. Otherwise, by Corollary 1,
u and v certify that ˆf is not ↵ strongly convex, and there-
fore that f has negative curvature. EXPLOIT-NC-PAIR then
leverages this negative curvature, obtaining a point b(2).
The next iterate p

k

is the best out of y0, . . . , yt, u and b(2)

in terms of function value.

Algorithm 3
GUARDED-NON-CONVEX-AGD(f , p0, L1, ✏, ↵, ⌘)

1: for k = 1, 2, . . . do
2: Set ˆf(x) := f(x) + ↵ kx� p

k�1k
2

3: (xt

0, y
t

0, u, v) 

AGD-UNTIL-GUILTY( ˆf , p
k�1, ✏

10 , L1 + 2↵, ↵)
4: if u, v = NULL then
5: p

k

 y
t

. ˆf effectively str. convex
6: else . non-convexity proof available
7: b(1)  FIND-BEST-ITERATE(f, yt0, u, v)
8: b(2)  EXPLOIT-NC-PAIR(f, u, v, ⌘)
9: p

k

 argmin

z2{b(1),b(2)} f(z)

10: if krf(p
k

)k  ✏ then
11: return p

k

1: function FIND-BEST-ITERATE(f , yt0, u, v)
2: return argmin

z2{u,y0,...,yt} f(z)

The following central lemma provides a progress guarantee
for each of the iterations of Alg. 3.
Lemma 2. Let f : Rd

! R be L1-smooth and have L2-
Lipschitz continuous Hessian, let ✏,↵ > 0 and p0 2 Rd.
Let p1, . . . , pK be the iterates GUARDED-NON-CONVEX-
AGD(f , p0, L1, ✏, ↵, ↵

L2
) generates. Then for each k 2

{1, . . . ,K � 1},

f(p
k

)  f(p
k�1)�min

⇢

✏2

5↵
,
↵3

64L2
2

�

. (12)

We defer a detailed proof of Lemma 2 to Section B.1, and
instead sketch the main arguments. Fix an iteration k of
GUARDED-NON-CONVEX-AGD that is not the final one
(i.e. k < K). Then, if ˆf was effectively strongly convex we
must have kr ˆf(y

t

)k  ✏/10 and standard proximal point
arguments show that we reduce the objective by ✏2/(5↵).
Otherwise, a witness pair u, v is available for which (10)
holds by Corollary 1, and f(u)  ˆf(u)  ˆf(y0) = f(p

k

).
To apply Lemma 1 it remains to show that ku� vk 

↵/(2L2). We note that, since f(y
i

) + ↵ ky
i

� y0k
2

=

ˆf(y
i

)  f(y0) for every i < t, if any iterate y
i

is far from
y0, f(y

i

) must be substantially lower than f(y0), and there-
fore b(1) makes good progress. Formalizing the converse of
this claim gives Lemma 3, which we prove Section B.2.
Lemma 3. Let f be L1-smooth, and ⌧ � 0. At any itera-
tion of GUARDED-NON-CONVEX-AGD, if u, v 6= NULL

and the best iterate b(1) satisfies f(b(1)) � f(y0) � ↵⌧2

then for 1  i < t,

ky
i

� y0k  ⌧, and kx
i

� y0k  3⌧.

Consequently, ku� vk  4⌧ .

Lemma 3 explains the role of b(1) produced by FIND-BEST-
ITERATE: it is an “insurance policy” against ku� vk being
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too large. To complete the proof of Lemma 2 we take ⌧ =

↵

8L2
, so that either

f(b(1))  f(y0)� ↵⌧
2
= f(y0)�

↵3

64L2
2

,

or we have ku� vk  4⌧ =

↵

2L2
by Lemma 3, and

therefore f(b(2))  f(y0) �
↵

3

12L2
2

by Lemma 1 (with
⌘ = ↵/L2).

Lemma 2 shows we can accelerate gradient descent in
a non-convex setting. Indeed, ignoring all problem-
dependent constants, setting ↵ =

p

✏ in the bound (12)
shows that we make ⌦(✏3/2) progress at every iteration
of GUARDED-NON-CONVEX-AGD, and consequently the
number of iterations is bounded by O(✏�3/2

). Arguing that
calls to AGD-UNTIL-GUILTY each require O(✏�1/4

log

1
✏

)

gradient computations yields the following complexity
guarantee, which we prove in Section B.3.

Theorem 1. Let f : Rd

! R be L1-smooth and have L2-
Lipschitz continuous Hessian. Let p0 2 Rd, �

f

= f(p0)�

inf

z2Rd f(z) and 0 < ✏  min{�

2/3
f

L
1/3
2 , L2

1/(64L2)}.
Set

↵ = 2

p

L2✏ (13)

then GUARDED-NON-CONVEX-AGD(f , p0, L1, ✏, ↵, ↵

L2
)

finds a point p
K

such that krf(p
K

)k  ✏ with at most

20 ·

�

f

L
1/2
1 L

1/4
2

✏7/4
log

500L1�f

✏2
(14)

gradient evaluations.

The conditions on ✏ simply guarantee that the clean
bound (14) is non-trivial, as gradient descent yields better
convergence guarantees for larger values of ✏.

While we state Theorem 1 in terms of gradient evaluation
count, a similar bound holds for function evaluations as
well. Indeed, inspection of our method reveals that each it-
eration of Alg. 3 evaluates the function and not the gradient
at at most the three points u, u+ and u�; both complexity
measures are therefore of the same order.

4. Incorporating third-order smoothness
In this section, we show that when third-order derivatives
are Lipschitz continuous, we can improve the convergence
rate of Alg. 3 by modifying two of its subroutines. In Sec-
tion 4.1 we introduce a modified version of EXPLOIT-NC-
PAIR that can decrease function values further using third-
order smoothness. In Section 4.2 we change FIND-BEST-
ITERATE to provide a guarantee that f(v) is never too large.
We combine these two results in Section 4.3 and present
our improved complexity bounds.

Algorithm 4 EXPLOIT-NC-PAIR3(f , u, v, ⌘)
1: �  (u� v)/ ku� vk
2: ⌘0  

p

⌘(⌘ + ku� vk)� ku� vk
3: u+  u+ ⌘0�
4: v�  v � ⌘�
5: return argmin

z2{v�,u+} f(z)

4.1. Making better use of negative curvature

Our first observation is that third-order smoothness allows
us to take larger steps and make greater progress when ex-
ploiting negative curvature, as the next lemma formalizes.
Lemma 4. Let f : Rd

! R have L3-Lipschitz third-order
derivatives, u 2 Rd, and � 2 Rd be a unit vector. If
�Tr2f(u)� = �↵

2 < 0 then, for every 0  ⌘ 
p

3↵/L3,

min{f(u� ⌘�), f(u+ ⌘�)}  f(u)�
↵⌘2

8

. (15)

Proof. For ✓ 2 R, define h(✓) = f(u+✓�). By assumption
h000 is L3-Lipschitz continuous, and therefore

h(✓)  h(0) + h0
(0)✓ + h00

(0)

✓2

2

+ h000
(0)

✓3

6

+ L3
✓4

24

.

Set A
⌘

= h0
(0)⌘ + h000

(0)⌘3/6 and set ⌘̄ = �sign(A
⌘

)⌘.
As h0

(0)⌘̄ + h000
(0)⌘̄3/6 = �|A

⌘

|  0, we have

h(⌘̄)  h(0) + h00
(0)

⌘2

2

+ L3
⌘4

24

 f(u)�
↵⌘2

8

,

the last inequality using h(0) = f(u), h00
(0) = �

↵

2 and
⌘2  3↵

L3
. That f(u+ ⌘̄�) = h(⌘̄) gives the result.

Comparing Lemma 4 to the second part of the proof of
Lemma 1, we see that second-order smoothness with op-
timal ⌘ guarantees ↵3/(12L2

2) function decrease, while
third-order smoothness guarantees a 3↵2/(8L3) decrease.
Recalling Theorem 1, where ↵ scales as a power of ✏, this
is evidently a significant improvement. Additionally, this
benefit is essentially free: there is no increase in computa-
tional cost and no access to higher order derivatives. Ex-
amining the proof, we see that the result is rooted in the
anti-symmetry of the odd-order terms in the Taylor expan-
sion. This rules out extending this idea to higher orders of
smoothness, as they contain symmetric fourth order terms.

Extending this insight to the setting of Lemma 1 is com-
plicated by the fact that, at relevant scales of ku� vk, it is
no longer possible to guarantee that there is negative cur-
vature at either u or v. Nevertheless, we are able to show
that a small modification of EXPLOIT-NC-PAIR achieves
the required progress.
Lemma 5. Let f : Rd

! R have L3-Lipschitz third-order
derivatives. Let ↵ > 0 and let u and v satisfy (10) and let



“Convex Until Proven Guilty”: Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions

Algorithm 5 FIND-BEST-ITERATE3(f , yt0, u, v)
1: Let 0  j < t be such that v = x

j

2: c
j

 (y
j

+ y
j�1)/2 if j > 0 else y0

3: q
j

 �2y
i

+ 3y
j�1 if j > 0 else y0

4: return argmin

z2{y0,...,yt,cj ,qj ,u} f(z)

⌘ 
p

2↵/L3. Then for every ku� vk  ⌘/2, EXPLOIT-
NC-PAIR3(f, u, v, ⌘) finds a point z such that

f(z)  max

n

f(v)�
↵

4

⌘2, f(u)�
↵

12

⌘2
o

. (16)

We prove Lemma 5 in Section C.1; it is essentially a more
technical version of the proof of Lemma 4, where we ad-
dress the asymmetry of condition (10) by taking steps of
different sizes from u and v.

4.2. Bounding the function values of the iterates using
cubic interpolation

An important difference between Lemmas 1 and 5 is that
the former guarantees lower objective value than f(u),
while the latter only improves max{f(v), f(u)}. We in-
voke these lemmas for v = x

j

for some x
j

produced
by AGD-UNTIL-GUILTY, but Corollary 1 only bounds the
function value at y

j

and w; f(x
j

) might be much larger
than f(y0), rendering the progress guaranteed by Lemma 5
useless. Fortunately, we are able show that whenever this
happens, there must be a point on the line that connects
x
j

, y
j

and y
j�1 for which the function value is much lower

than f(y0). We take advantage of this fact in Alg. 5,
where we modify FIND-BEST-ITERATE to consider addi-
tional points, so that whenever the iterate it finds is not
much better than y0, then f(x

j

) is guaranteed to be close
to f(y0). We formalize this claim in the following lemma,
which we prove in Section C.2.

Lemma 6. Let f be L1-smooth and have L3-Lipschitz con-
tinuous third-order derivatives, and let ⌧ 

p

↵/(16L3)

with ⌧,↵, L1, L3 > 0. Consider GUARDED-NON-
CONVEX-AGD with FIND-BEST-ITERATE replaced by
FIND-BEST-ITERATE3. At any iteration, if u, v 6= NULL

and the best iterate b(1) satisfies f(b(1)) � f(y0) � ↵⌧2

then,
f(v)  f(y0) + 14↵⌧2.

We now explain the idea behind the proof of Lemma 6. Let
0  j < t be such that v = x

j

(such j always exists by
Corollary 1). If j = 0 then x

j

= y0 and the result is trivial,
so we assume j � 1. Let f

r

: R ! R be the restriction
of f to the line containing y

j�1 and y
j

(and also q
j

, c
j

and
x
j

). Suppose now that f
r

is a cubic polynomial. Then, it
is completely determined by its values at any 4 points, and
f(x

j

) = �C1f(qj) + C2f(yj�1) � C3f(cj) + C4f(yj)

for C
j

� 0 independent of f . By substituting the bounds
f(y

j�1) _ f(y
j

)  f(y0) and f(q
j

) ^ f(c
j

) � f(b(1)) �
f(y0)� ↵⌧

2, we obtain an upper bound on f(x
j

) when f
r

is cubic. To generalize this upper bound to f
r

with Lips-
chitz third-order derivative, we can simply add to it the ap-
proximation error of an appropriate third-order Taylor se-
ries expansion, which is bounded by a term proportional to
L3⌧

4
 ↵⌧2/16.

4.3. An improved rate of convergence

With our algorithmic and analytic upgrades established,
we are ready to state the enhanced performance guaran-
tees for GUARDED-NON-CONVEX-AGD, where from here
on we assume that EXPLOIT-NC-PAIR3 and FIND-BEST-
ITERATE3 subsume EXPLOIT-NC-PAIR and FIND-BEST-
ITERATE, respectively.

Lemma 7. Let f : Rd

! R be L1-smooth and have L3-
Lipschitz continuous third-order derivatives, let ✏,↵ > 0

and p0 2 Rd. If pK0 is the sequence of iterates produced by
GUARDED-NON-CONVEX-AGD(f , p0, L1, ✏, ↵,

q

2↵
L3

),
then for every 1  k < K,

f(p
k

)  f(p
k�1)�min

⇢

✏2

5↵
,
↵2

32L3

�

. (17)

The proof of Lemma 7 is essentially identical to the proof
of Lemma 2, where we replace Lemma 1 with Lemmas 5
and 6 and set ⌧ =

p

↵/(32L3). For completeness, we give
a full proof in Section C.3. The gradient evaluation com-
plexity guarantee for third-order smoothness then follows
precisely as in our proof of Theorem 1; see Sec. C.4 for a
proof of the following

Theorem 2. Let f : Rd

! R be L1-smooth and have
L3-Lipschitz continuous third-order derivatives. Let p0 2
Rd, �

f

= f(p0) � inf

z2Rd f(z) and 0 < ✏2/3 

min{�

1/2
f

L
1/6
3 , L1/(8L

1/3
3 )}. If we set

↵ = 2L
1/3
3 ✏2/3, (18)

GUARDED-NON-CONVEX-AGD(f , p0, L1, ✏, ↵,
q

2↵
L3

)
finds a point p

K

such that krf(p
K

)k  ✏ and requires
at most

20 ·

�

f

L
1/2
1 L

1/6
3

✏5/3
log

✓

500L1�f

✏2

◆

(19)

gradient evaluations.

We remark that Lemma 2 and Theorem 1 remain valid after
the modifications described in this section. Thus, Alg. 3
transitions between smoothness regimes by simply varying
the scaling of ↵ and ⌘ with ✏.
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Figure 1. Performance on a non-convex regression problem. Left: cumulative distribution of num-
ber of steps required to achieve gradient norm < 10�4. Center: gradient norm trace for a represen-
tative instance. Right: function value trace for the same instance. For Alg. 3, the dots correspond
to negative curvature detection and the diamonds correspond to negative curvature exploitation
(i.e. when f(b(2)) < f(b(1))). For RAGD, the squares indicate restarts due to non-monotonicity.
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Figure 2. Performance on neural
network training.

5. Preliminary experiments
The primary purpose of this paper is to demonstrate the
feasibility of acceleration for non-convex problems using
only first-order information. Given the long history of de-
velopment of careful schemes for non-linear optimization,
it is unrealistic to expect a simple implementation of the
momentum-based Algorithm 3 to outperform state-of-the-
art methods such as non-linear conjugate gradients and L-
BFGS. It is important, however, to understand the degree of
non-convexity in problems we encounter in practice, and to
investigate the efficacy of the negative curvature detection-
and-exploitation scheme we propose.

Toward this end, we present two experiments: (1) fitting a
non-linear regression model and (2) training a small neural
network. In these experiments we compare a basic imple-
mentation of Alg. 3 with a number baseline optimization
methods: gradient descent (GD), non-linear conjugate gra-
dients (NCG) (Hager and Zhang, 2006), Accelerated Gra-
dient Descent (AGD) with adaptive restart (O’Donoghue
and Candès, 2015) (RAGD), and a crippled version of
Alg. 3 without negative curvature exploitation (C-Alg. 3).
We compare the algorithms on the number of gradient
steps, but note that the number of oracle queries per step
varies between methods. We provide implementation de-
tails in Section E.1.

For our first experiment, we study robust linear regression
with the smooth biweight loss (Beaton and Tukey, 1974),
f(x) = 1

m

P

m

i=1 �(a
T

i

x� b
i

) where �(✓) := ✓2/(1+ ✓2).
For 1,000 independent experiments, we randomly generate
problem data to create a highly non-convex problem (see
Section E.2). In Figure 1 we plot aggregate convergence
time statistics, as well as gradient norm and function value
trajectories for a single representative problem instance.
The figure shows that gradient descent and C-Alg. 3 (which
does not exploit curvature) converge more slowly than the

other methods. When C-Alg. 3 stalls it is detecting negative
curvature, which implies the stalling occurs around saddle
points. When negative curvature exploitation is enabled,
Alg. 3 is faster than RAGD, but slower than NCG. In this
highly non-convex problem, different methods often con-
verge to local minima with (sometimes significantly) dif-
ferent function values. However, each method found the
“best” local minimum in a similar fraction of the generated
instances, so there does not appear to be a significant dif-
ference in the ability of the methods to find “good” local
minima in this problem ensemble.

For the second experiment we fit a neural network model1
comprising three fully-connected hidden layers containing
20, 10 and 5 units, respectively, on the MNIST handwritten
digits dataset (LeCun et al., 1998) (see Section E.3). Fig-
ure 2 shows a substantial performance gap between gradi-
ent descent and the other methods, including Alg. 3. How-
ever, this is not due to negative curvature exploitation; in
fact, Alg. 3 never detects negative curvature in this prob-
lem, implying AGD never stalls. Moreover, RAGD never
restarts. This suggests that the loss function f is “effec-
tively convex” in large portions of the training trajectory,
consistent with the empirical observations of Goodfellow
et al. (2015); a phenomenon that may merit further investi-
gation.

We conclude that our approach can augment AGD in the
presence of negative curvature, but that more work is neces-
sary to make it competitive with established methods such
as non-linear conjugate gradients. For example, adaptive
schemes for setting ↵, ⌘ and L1 must be developed. How-
ever, the success of our method may depend on whether
AGD stalls at all in real applications of non-convex opti-
mization.

1Our approach in its current form is inapplicable to training
neural networks of modern scale, as it requires computation of
exact gradients.
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