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1 Proof of Theorem 3

We will prove the theorem for the case where § = 1/3, the general case follows at the cost of
a multiplicative log(1/53) in the sample complexity from a standard amplification argument. To
be more precise, we can consider splitting our dataset into O(log(1/3)) sub-datasets and run the
B = 1/3 test on each one independently. We return the majority result — since each test is correct
with probability > 2/3, correctness of the overall test follows by Chernoff bound. It remains to argue
privacy — note that a neighboring dataset will only result in a single sub-dataset being changed.
Since we take the majority result, conditioning on the result of the other sub-tests, the result on
this sub-dataset will either be irrelvant to or equal to the overall output. In the former case, any
test is private, and in the latter case, we know that the individual test is e-differentially private.
Overall privacy follows by applying the law of total probability.

We require the following two claims, which give bounds on the random variables IN; and Y;. Note
that, due to the fact that we draw Poisson(m) samples, each N; ~ Poisson(mp;) independently.
Claim 1. |Y;| < % log (W) simultaneously for all i € A with probability exactly 1 — co.
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Proof. The survival function of the folded Laplace distribution with parameter 2/cae is exp (—caex/2),

and the probability that a sample from it exceeding the value % log (1_ is equal to

1
coE (1_02)1/\A\
1 — (1 — ¢2)MI. The probability that probability that it does not exceed this value is (1 — ¢p)'/ M,
and since the Y;’s are independent, the probability that none exceeds this value is 1 — co, as de-

sired. O

Claim 2. |N; — mp;| < max {4\/mpi log n, log n} simultaneously for all i € A with probability at
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Proof. We consider this in two cases. Let X be a Poisson(\) random variable. First, assume that
A > e 3logn. By Bennett’s inequality, we have the following tail bound [Poll5, [Can17]:

Pr[|X — Al > 2] < 2exp <—§i¢ (i)) :

where

o(t) = (1+t)1(;§>;+t) —t.

Consider x = 4/ Alogn. At this point, we have
Y(x/N) = p(4y/logn/X) > ¥(4e>?) > 0.23.



Thus,

Pr [|X — Al > 4y/Alog n} < 2exp(—0.23 - 8logn)

< op 184,

Now, we focus on the other case, where A < e 3logn. Here, we appeal to Proposition 1 of
[KIa00], which implies the following via Stirling’s approximation:

PrilX — Al > k)< ’ ﬁ 1 exp(—A + kX — kXlogk).

We set kA = logn, giving the upper bound

k
mnl_bgk S 1.1- TL_2.
We conclude by taking a union bound over [n], with the argument for each i € [n] depending on
whether A = mp; is large or small. O

We proceed with proving the two desiderata of this algorithm, correctness and privacy.

Correctness. We use the following two properties of the statistic Z (D), which rely on the con-
dition that m = Q(y/n/a?). The proofs of these properties are identical to the proofs of Lemma 2
and 3 in JADK15|, and are omitted.

Claim 3. Ifp=gq, then E[Z] =0. If drv(p,q) > «, then E[Z] > 1.
Claim 4. If p = q, then Var[Z] < 1/1000. If dtv(p,q) > «, then Var[Z] < 1/1000 - E[Z]?.

First, we note that, by Claim [I] the probability that we return in line 5 is exactly c2. We now
consider the case where p = q. We note that by Claim [2| the probability that we output “p # ¢” in
line 10 is o(1), and thus negligible. By Chebyshev’s inequality, we get that Z < 1/10 with probability
at least 9/10, and we output “p = ¢’ with probability at least c2/2 + (1 — ¢2) - (9/10 — ¢2)? > 2/3
(note that we subtract ¢z from 9/10 since we are conditioning on an event with probability 1 — ¢,
and by union bound). Similarly, when drv(p, q) > «, Chebyshev’s inequality gives that Z > 9/10
with probability at least 9/10, and therefore we output “p # ¢” with probability at least 2/3.

Privacy. We will prove (0, cae/2)-differential privacy. By Claim 1} the probability that we return
in line 5 is exactly co. Thus the minimum probability of any output of the algorithm is at least
c2/2, and therefore (0, cae/2)-differential privacy implies (e, 0)-differential privacy.

We first consider the possibility of rejecting in line 11. Consider two neighboring datasets D
and D', which differ by 1 in the frequency of symbol i. Coupling the randomness of the Y;’s on
these two datasets, the only case in which the output differs is when Y; is such that the value of
|N; +Y; — mg;| lies on opposite sides of the threshold for the two datasets. Since N; differs by 1
in the two datasets, and the probability mass assigned by the PDF of Y; to any interval of length
1 is at most coe/4, the probability that the outputs differ is at most cae/4. Therefore, this step is
(0, cae/4)-differentially private.

We next consider the value of Z for two neighboring datasets D and D’, where D’ has one fewer
occurrence of symbol 7. We only consider the case where we have not already returned in line 11,



as otherwise the value of Z is irrelevant for determining the output of the algorithm.
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Since we did not return in line 11,

4
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This implies that

2|N; —mg; — 1]
Z(D) - Z(D"| =
12(D) - 2(D')| =
2 6log(n/c2)
4+/mq; 1 .
S mQaqu < e + mq; logn

We will enforce that each of these terms are at most cae/8.

12log(n/c2) < ef 96 /nlog(n/ca)
2

= m >

m2a2q;coe — 8 = csen olde
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Since both terms are at most coe/8, this step is (0, coe/4)-differentially private. Combining
with the previous step gives the desired (0, coe/2)-differential privacy, and thus (as argued at the
beginning of the privacy section of this proof) e-pure differential privacy.
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