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Abstract

We investigate the performance of the standard
GREEDY algorithm for cardinality constrained
maximization of non-submodular nondecreasing
set functions. While there are strong theoretical
guarantees on the performance of GREEDY for
maximizing submodular functions, there are few
guarantees for non-submodular ones. However,
GREEDY enjoys strong empirical performance
for many important non-submodular functions,
e.g., the Bayesian A-optimality objective in ex-
perimental design. We prove theoretical guaran-
tees supporting the empirical performance. Our
guarantees are characterized by a combination
of the (generalized) curvature ↵ and the sub-
modularity ratio �. In particular, we prove that
GREEDY enjoys a tight approximation guarantee
of 1

↵

(1� e

��↵

) for cardinality constrained max-
imization. In addition, we bound the submod-
ularity ratio and curvature for several important
real-world objectives, including the Bayesian A-
optimality objective, the determinantal function
of a square submatrix and certain linear programs
with combinatorial constraints. We experimen-
tally validate our theoretical findings for both
synthetic and real-world applications.

1. Introduction
Many important problems, such as experimental design
and sparse modeling, are naturally formulated as a subset
selection problem, where a set function F (S) over a K-
cardinality constraint is maximized, i.e.,

max

S✓V,|S|K

F (S), (P)
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where V = {v1, . . . , vn} is the ground set. Specifically,
in experimental design, the goal is to select a set of experi-
ments to perform such that some statistical criterion is opti-
mized. This problem arises naturally in domains where per-
forming experiments is costly. In sparse modeling, the task
is to identify sparse representations of signals, enabling in-
terpretability and robustness in high-dimensional statistical
problems—properties that are crucial in modern data anal-
ysis.

Frequently, the standard GREEDY algorithm (Alg. 1) is
used to (approximately) solve (P). For the case that F (S)

Algorithm 1: The GREEDY Algorithm
Input: Ground set V , set function F : 2

V!R+, budget K
S

0  ;
for t = 1, . . . ,K do

v

⇤  argmax

v2V\St�1
F (S

t�1 [ {v})� F (S

t�1
)

S

t  S

t�1 [ {v⇤}
Output: SK

is a monotone nondecreasing submodular set function1,
the GREEDY algorithm enjoys the multiplicative approx-
imation guarantee of (1 � 1/e) (Nemhauser et al., 1978;
Vondrák, 2008; Krause & Golovin, 2014). This constant
factor can be improved by refining the characterization of
the objective using the curvature (Conforti & Cornuéjols,
1984; Vondrák, 2010; Iyer et al., 2013), which informally
quantifies how close a submodular function is to being
modular (i.e., F (S) and �F (S) are submodular).

However, for many applications, including experimental
design and sparse Gaussian processes (Lawrence et al.,
2003), F (S) is in general not submodular (Krause et al.,
2008) and the above guarantee does not hold. In practice,
however, the standard GREEDY algorithm often achieves
very good performance on these applications, e.g., in sub-
set selection with the R2 (squared multiple correlation) ob-

1
F (·) is monotone nondecreasing if 8A ✓ V, v 2 V , F (A [

{v}) � F (A). F (·) is submodular iff it satisfies the diminishing
returns property F (A [ {v}) � F (A) � F (B [ {v}) � F (B)
for all A ✓ B ✓ V \{v}. Assume wlog. that F (·) is normalized,
i.e., F (;) = 0.
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jective (Das & Kempe, 2011). To explain the good empir-
ical performance, Das & Kempe (2011) proposed the sub-
modularity ratio, a quantity characterizing how close a set
function is to being submodular.

Another important class of non-submodular set functions
comes as the auxiliary function when optimizing a con-
tinuous function f(x) s.t. combinatorial constraints, i.e.,
min

x2C,supp(x)2I f(x), where supp(x) := {i | x
i

6= 0}
is the support set of x, C is a convex set, and I is the
independent sets of the combinatorial structure. One of
the most popular ways to solve this problem is to use
the GREEDY algorithm to maximize the auxiliary function
F (S)

:

= max

x2C,supp(x)✓S

�f(x). This setting covers
various important applications, to name a few, feature se-
lection (Guyon & Elisseeff, 2003), sparse approximation
(Das & Kempe, 2008; Krause & Cevher, 2010), sparse
recovery (Candes et al., 2006), sparse M-estimation (Jain
et al., 2014), linear programming (LP) with combinato-
rial constraints, and column subset selection (Altschuler
et al., 2016). Recently, Elenberg et al. (2016) proved that if
f(x) has L-restricted smoothness and m-restricted strong
convexity, then the submodularity ratio of F (S) is lower
bounded by m/L. This result significantly enlarges the do-
main where the GREEDY algorithm can be applied.

In this paper, we combine and generalize the ideas of cur-
vature and submodularity ratio to derive improved constant
factor approximation guarantees of the GREEDY algorithm.
Our guarantees allow us to better characterize the empiri-
cal success of applying GREEDY on a significantly larger
class of non-submodular functions. Furthermore, we bound
these characteristics for important applications, rendering
the usage of GREEDY a principled choice rather than a mere
heuristic. Our main contributions are:

- We prove the first tight constant-factor approxima-
tion guarantees for GREEDY on maximizing non-
submodular nondecreasing set functions s.t. a cardinal-
ity constraint, characterized by a novel combination of
the (generalized) notions of submodularity ratio � and
curvature ↵.

- By theoretically bounding parameters (�,↵) for several
important objectives, including Bayesian A-optimality
in experimental design, the determinantal function of a
square submatrix and maximization of LPs with com-
binatorial constraints, our theory implies the first guar-
antees for them.

- Lastly, we experimentally validate our theory on sev-
eral real-world applications. It is worth noting that
for the Bayesian A-optimality objective, GREEDY gen-
erates comparable solutions as the classically used
semidefinite programming (SDP) based method, but is
usually two orders of magnitude faster.

Notation. We use boldface letters, e.g., x, to represent vec-
tors, and capital boldface letters, e.g., A, to denote ma-
trices. x

i

is the i

th entry of the vector x. We refer to
V = {v1, ..., vn} as the ground set. We use f(·) to denote
a continuous function, and F (·) to represent a set function.
supp(x) :

= {i 2 V | x

i

6= 0} is the support set of the
vector x, and [n]

:

= {1, ..., n} for an integer n � 1. We
denote the marginal gain of a set ⌦ ✓ V in context of a set
S ✓ V as ⇢⌦(S) := F (⌦ [ S)� F (S). For v 2 V , we use
the shorthand ⇢

v

(S) for ⇢{v}(S).

2. Submodularity Ratio and Curvature
In this section we provide the submodularity ratio and
curvature for general, not necessarily submodular func-
tions2, they are natural extensions of the classical ones. Let
S

0
= ;, St

= {j1, ..., jt}, t = 1, ...,K be the successive
sets chosen by GREEDY. For brevity, let ⇢

t

:

= ⇢

jt(S
t�1

)

be the marginal gain of GREEDY in step t.

Definition 1 (Submodularity ratio (Das & Kempe, 2011)).
The submodularity ratio of a non-negative set function F (·)
is the largest scalar � s.t.

X
!2⌦\S

⇢

!

(S) � �⇢⌦(S), 8 ⌦, S ✓ V.

The greedy submodularity ratio is the largest scalar �G s.t.
X

!2⌦\St

⇢

!

(S

t

) � �

G

⇢⌦(S
t

), 8|⌦|=K, t = 0, . . . ,K � 1.

It is easy to see that �G � �. The submodularity ratio
measures to what extent F (·) has submodular properties.
We make the following observations:

Remark 1. For a nondecreasing function F (·), it holds a)
�, �

G 2 [0, 1]; b) F (·) is submodular iff � = 1.

Definition 2 (Generalized curvature). The curvature of a
non-negative function F (·) is the smallest scalar ↵ s.t.

⇢

i

(S \ {i} [ ⌦) � (1� ↵)⇢

i

(S \ {i}),
8 ⌦, S ✓ V, i 2 S\⌦.

The greedy curvature is the smallest scalar ↵G � 0 s.t.

⇢

ji(S
i�1 [ ⌦) � (1� ↵

G

)⇢

ji(S
i�1

),

8 ⌦ : |⌦| = K, i : j

i

2 S

K�1\⌦.
2Curvature is commonly defined for submodular functions.

Sviridenko et al. (2013) presented a notion of curvature for mono-
tone non-submodular functions. We show in Appendix C the
details of these notions and the relations to ours. Additionally,
we prove in Remark 3 of Appendix C.2 that our combination of
curvature and submodularity ratio is more expressive than that
of Sviridenko et al. (2013) in characterizing the maximization of
problem (P) using standard GREEDY.
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When K = n or 1, SK�1\⌦ = ;, it is natural to define
↵

G

= 0. It is easy to observe that ↵G  ↵. Note that the
classical total curvature is ↵total

:

= 1�min

i2V
⇢i(V\{i})

⇢i(;) .

Remark 2. For a nondecreasing function F (·), it holds:
a) ↵,↵G 2 [0, 1]; b) F (·) is supermodular iff ↵ = 0; c) If
F (·) is submodular, then ↵

G  ↵ = ↵

total.

So for a submodular function, our notion of curvature is
consistent with ↵

total. Notably, ↵G usually characterizes the
problem better than ↵

total, as will be validated in Section 5.

3. Approximation Guarantee
We present approximation guarantee of GREEDY in Theo-
rem 1. Note that both versions of the submodularity ratio
and curvature apply in the proof. For brevity, we use �

and ↵ to refer to any of these versions in the sequel. In
Section 3.3 we prove tightness of the approximation guar-
antees. All omitted proofs are given in Appendix B.
Theorem 1. Let F (·) be a non-negative nondecreasing set
function with submodularity ratio � 2 [0, 1] and curvature
↵ 2 [0, 1]. The GREEDY algorithm enjoys the following
approximation guarantee for solving problem (P):

F (S

K

) � 1

↵

"
1�

✓
K � ↵�

K

◆
K

#
F (⌦

⇤
)

� 1

↵

(1� e

�↵�

)F (⌦

⇤
), (1)

where ⌦

⇤ is the optimal solution of (P) and S

K the output
of the GREEDY algorithm.3

3.1. Interpreting Theorem 1

Before proving the theorem, we want to give the reader an
intuition of the results and show how our results recover
and extend several classical guarantees for the GREEDY al-
gorithm. For the case ↵ = 0 (i.e., F (·) is supermodular),
the approximation guarantee is lim

↵!0

1
↵

(1 � e

�↵�

) = �,
which gives the first guarantee of greedily maximizing
a nondecreasing supermodular function with bounded �.
When � = 1, (i.e., F (·) is submodular), we recover the
guarantee of ↵�1

(1�e

�↵

) (Conforti & Cornuéjols, 1984).
For the case ↵ = 1, we have a guarantee of (1 � e

��

)

(Das & Kempe, 2011). For the case ↵ = 1, � = 1, we
recover the classical guarantee of (1 � 1/e) (Nemhauser
et al., 1978). We plot the constant-factor approximation
guarantees for different values of � and ↵ in Fig. 1. One
interesting phenomenon is that � and ↵ play different roles:
Looking at � = 0, the approximation factor is always 0, in-
dependent of the value ↵ takes. In contrast, for ↵ = 0, the

3For the setting that GREEDY is allowed to pick more than K

elements, e.g., pick K

0
> K elements, our theory can be easily

extended to show that F (SK0
) � ↵

�1(1� e

�↵�K0/K)F (⌦⇤).

0
1

0.5

1

ap
pr

ox
. g

ua
ra

nt
ee

0.5

1

0.5
0

modular

Figure 1: Approximation guarantee 1
↵

(1�e�↵�

). The blue
cross marks the classical (1� 1/e)-guarantee of GREEDY.
The red line illustrates the influence of the curvature on the
guarantees for submodular functions, and the black line il-
lustrates the influence of � on the guarantees for the worst-
case curvature ↵ = 1. The green line is the guarantees for
K-cardinality constrained supermodular maximization.

approximation guarantee is (1 � e

��

). This can be inter-
preted as the curvature boosting the guarantees.

3.2. Proof of Theorem 1

The high-level proof framework is based on Conforti &
Cornuéjols (1984) (where they derive the approximation
guarantee for maximizing a nondecreasing submodular
function with bounded curvature). However, adapting
the proof to non-submodular functions requires several
changes detailed in Section 6.

Proof overview. Let us denote all problem instances
of maximizing a non-negative nondecreasing function
F (·) s.t. K-cardinality constraint (max|S|K

F (S)) to be
P
K,↵,�

, where F (·) is parametrized by submodularity ra-
tio � and curvature ↵. Let P⌦⇤

,S

K 2 P
K,↵,�

denote those
problem instances with optimal solution ⌦

⇤ and greedy so-
lution S

K . We group all problem instances P
K,↵,�

accord-
ing to the set ⌦⇤ \ S

K

:

= {l1 = j

m1 , l2 = j

m2 , . . . , ls =

j

ms}, where j

m1 , . . . , jms are consistent with the order of
greedy selection. Let us denote the problem instances with
⌦

⇤\SK

= {l1, . . . , ls} as the group P
K,↵,�

({l1, . . . , ls}).

The main idea of the proof is to investigate the worst-case
approximation ratio of each group of the problem instances
P
K,↵,�

({l1, . . . , ls}), 8{l1, . . . , ls} ✓ S

K . We do this by
constructing LPs based on the properties of the problem in-
stances. By studying the structures of these LPs, we will
prove that the worst-case approximation ratio of all prob-
lem instances occurs when ⌦

⇤ \SK

= ;. Thus the desired
approximation guarantee corresponds to the worst-case ap-
proximation ratio of P

K,↵,�

(;).

The proof. When � = 0 or F (⌦

⇤
) = 0, (1) holds naturally.

In the following, let � 2 (0, 1] and F (⌦

⇤
) > 0. First, we

present Lemma 1, which will be used to construct the LPs.
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Lemma 1. For any ⌦ ✓ V with |⌦| = K and any t 2
{0, . . . ,K � 1}, let wt

:

= |St \ ⌦|. It holds that

↵

X

i:ji2S

t\⌦

⇢

i

+

X

i:ji2S

t\⌦

⇢

i

+ �

�1
(K � w

t

)⇢

t+1 � F (⌦).

We now specify the constructing of the LPs: For any prob-
lem instance P⌦⇤

,S

K 2 P
K,↵,�

({l1, . . . , ls}), we know
that F (S

K

) =

P
K

i=1 ⇢i (telescoping sum). Hence, the ap-
proximation ratio is F (SK)

F (⌦⇤) =

P
i

⇢i

F (⌦⇤) , which we denote
as R({l1, . . . , ls}) =

P
i

⇢i

F (⌦⇤) . Define x

i

:

=

⇢i

F (⌦⇤) , i 2
[K]. Since F is nondecreasing, x

i

� 0. Plugging ⌦ = ⌦

⇤

into Lemma 1, and considering t = 0, . . . ,K � 1, we have
in total K constraints over the variables x

i

, which consti-
tute the constraints of the LP. So the worst-case approxima-
tion ratio of the group P

K,↵,�

({l1, . . . , ls}) is:

R({l1, . . . , ls}) = min

X
K

i=1
x

i

, s.t. x
i

� 0 and,

row (0)
row (1)

...
row (l1 � 1)
row (l2 � 1)
row (q = lr)

...
row (ls � 1)

...
row (K � 1)

2

66666666666666666664

K
�

↵

K
�

...
...

. . .
↵ ↵ · · · K

� 0
↵ ↵ · · · 1 K�1

�

↵ ↵ · · · 1 1 K�r
�

...
...

...
...

...
. . .

↵ ↵ · · · 1 1 ↵ · · · K�s+1
�

...
...

...
...

...
...

. . .
↵ ↵ · · · 1 1 ↵ · · · 1 · · · K�s

�

3

77777777777777777775

·

2

66666666666666664

x1

x2

...
xl1
xl2
xq+1

...
xls

...
xK

3

77777777777777775

�

2

66666666666666664

1
1
...
1
1
1
...
1
...
1

3

77777777777777775

(2)

The following Lemma presents the key structure of the con-
structed LPs, which will be used to deduce the relation be-
tween the LPs of different problem instance groups.
Lemma 2. Assume that the optimal solution of the con-
structed LP is x⇤ 2 RK

+ and that s = |⌦⇤ \ S

K | � 1. For
all 1  r  s it holds that x⇤

q

 x

⇤
q+1, where q = l

r

.

Proof sketch of Lemma 2. Assume by virture of creating a
contradiction that x⇤

q

> x

⇤
q+1. We can always create a

new feasible solution y

⇤ 2 RK

+ by decreasing x

⇤
q

by some
✏ > 0, while increasing all the x

⇤
q+1 to x

⇤
K

by some proper
values, s.t. y

⇤ has smaller LP objective value. Specifi-
cally, we define y

⇤ as: for k = 1, . . . , q � 1, y

⇤
k

:= x

⇤
k

;
y

⇤
q

:= x

⇤
q

� ✏; for k = q + 1, . . . ,K, y

⇤
k

:= x

⇤
k

+ ✏

k

where
✏

k

s are defined recursively as: ✏
q+1 = ✏

�

K�r

, and

✏

q+1+u

= ✏

q+u

K � r � u+ 1� �

K � r � u

, 1  u  K � q � 1.

Claim 1. a) The new solution y

⇤ � 0; b) All of the con-
straints in (2) are still feasible for y⇤.

After that the change of the LP objective is,

�

LP

= �✏+ ✏

q+1 + ✏

q+2 + . . .+ ✏

K

.

One can prove that the LP objective decreases:

Claim 2. For all K � 1, 1  r  q < K, it holds that
�

LP

 0, 8� 2 (0, 1]. Equality is achieved when r = q

and � = 1.
Therefore we reach the contradiction that x⇤ is an optimal
solution of the constructed LP.

Given Lemma 2, we prove in the following Lemma, which
states that the worst-case approximation ratio of all prob-
lem instances occurs when ⌦

⇤ \ S

K

= ;.
Lemma 3. For all {l1, . . . , ls} ✓ S

K , it holds that

R({l1, . . . , ls}) � R(;) = 1
↵


1�

⇣
K�↵�

K

⌘
K

�
.

So the greedy solution has objective F (S

K

) �
1
↵


1�

⇣
K�↵�

K

⌘
K

�
F (⌦

⇤
) � 1

↵

(1 � e

�↵�

)F (⌦

⇤
).

3.3. Tightness Result

We demonstrate that the
approximation guarantee in
Theorem 1 is tight, i.e., for
every submodularity ratio
� and every curvature ↵,
there exist set functions that
achieve the bound exactly.

Assume the ground set V con-
tains the elements in S :=

{j1, . . . , jK} and the elements in ⌦ := {!1, . . . ,!K

}
(S \ ⌦ = ;) and n� 2K dummy elements. The objective
function we are going to construct will not depend on these
dummy elements, i.e., the objective value of a set does not
change if dummy elements are removed from or added to
that set. Consequently, the dummy elements will not affect
the submodularity ratio and the curvature. For the constants
↵ 2 [0, 1], � 2 (0, 1], we define the objective function as,

F (T ) :=
f(|⌦ \ T |)

K

�
1� ↵�

X

i:ji2S\T

⇠i

�
+

X

i:ji2S\T

⇠i, (3)

where ⇠
i

:

=

1
K

⇣
K��↵

K

⌘
i�1

, i 2 [K]; f(x) = �

�1�1
K�1 x

2
+

K��

�1

K�1 x. Note that f(x) is convex nondecreasing over
[0,K], and that f(0) = 0, f(1) = 1, f(K) = K/�. It
is clear that F (;) = 0 and F (·) is monotone nondecreas-
ing. The following lemma shows that it is generally non-
submodular and non-supermodular.

Lemma 4. For the objective in (3): a) When ↵ = 0, it is
supermodular; b) When � = 1, it is submodular; c) F (T )

has submodularity ratio � and curvature ↵.
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Considering the problem of max|T |K

F (T ), we claim
that the GREEDY algorithm may output S. This can be
proved by induction. One can see that ⇢

j1(;) = ⇠1 =

⇢

!1(;), so GREEDY can choose j1 in the first step. Assume
in step t � 1 GREEDY has chosen S

t�1
= {j1, . . . , jt�1},

one can verify that the marginal gains coincide, i.e.,
⇢

jt(S
t�1

) = ⇠

t

= ⇢

!t(S
t�1

). However, the optimal solu-
tion is actually ⌦ with function value as F (⌦) =

1
�

. So the

approximation ratio is F (S)
F (⌦) =

1
↵


1�

⇣
K�↵�

K

⌘
K

�
, which

matches our approximation guarantee in Theorem 1.

4. Applications
We consider several important real-world applications and
their corresponding objective functions. We show that the
submodularity ratio and the curvature of these functions
can be bounded and, hence, the approximation guarantees
from our theoretical results are applicable. All the omitted
proofs are provided in Appendix D.

4.1. Bayesian A-optimality in Experimental Design

In Bayesian experimental design (Chaloner & Verdinelli,
1995), the goal is to select a set of experiments to perform
s.t. some statistical criterion is optimized, e.g., the vari-
ance of certain parameter estimates is minimized. Krause
et al. (2008) investigated several criteria for this purpose,
amongst others the Bayesian A-optimality criterion. This
criterion is used to maximally reduce the variance in the
posterior distribution over the parameters. In general, the
criterion is not submodular as shown in Krause et al. (2008,
Section 8.4).

Formally, assume there are n experimental stimuli
{x1, . . . ,xn

}, each x

i

2 Rd, which constitute the data
matrix X 2 Rd⇥n. Let us arrange a set S ✓ V of stimuli as
a matrix X

S

:

= [x

v1 , . . . ,xvs ] 2 Rd⇥|S|. Let ✓ 2 Rd be
the parameter vector in the linear model y

S

= X>
S

✓ +w,
where w is the Gaussian noise with zero mean and variance
�

2, i.e., w ⇠ N (0,�

2I), and y

S

is the vector of dependent
variables. Suppose the prior takes the form of an isotropic
Gaussian, i.e., ✓ ⇠ N (0,⇤�1

),⇤ = �

2I. Then,

y

S

✓

�
⇠ N (0,⌃),⌃ =


�

2I+X>
S

⇤�1X
S

X>
S

⇤�1

⇤�1X
S

⇤�1

�
.

This implies that ⌃
✓|yS

= (⇤ + �

�2X
S

X>
S

)

�1. The A-
optimality objective is defined as,

F

A

(S)

:

= tr(⌃
✓

)� tr(⌃
✓|yS

) (4)

= tr(⇤�1
)� tr((⇤+ �

�2X
S

X>
S

)

�1
).

The following Proposition gives bounds on the submodu-
larity ratio and curvature of (4).

Proposition 1. Assume normalized stimuli, i.e., kx
i

k =

1, 8i 2 V . Let the spectral norm of X be kXk.4
Then, a) The objective in (4) is monotone nondecreas-
ing. b) Its submodularity ratio � can be lower bounded
by �

2

kXk2(�2+�

�2kXk2) , and its curvature ↵ can be upper

bounded by 1� �

2

kXk2(�2+�

�2kXk2) .

4.2. The Determinantal Function

The determinantal function of a square submatrix is widely
used in many areas, e.g., in determinantal point processes
(Kulesza & Taskar, 2012) and active set selection for sparse
Gaussian processes. Monotone nondecreasing determinan-
tal functions appear in the second problem. Assume ⌃ is
the covariance matrix parameterized by a positive definite
kernel. In the Informative Vector Machine (Lawrence et al.,
2003), the information gain of a subset of points S ✓ V is
1
2 logF (S), where

F (S)

:

= det(I+ �

�2⌃
S

), (5)

where � is the noise variance in the Gaussian process
model, ⌃

S

is the square submatrix with both its rows and
columns indexed by S. Although logF (S) is submodu-
lar, F (S) is in general not submodular. The approximation
guarantee of GREEDY for maximizing logF (S) does not
translate to a guarantee for maximizing F (S). The follow-
ing Proposition characterizes (5).

Proposition 2. a) F (S) in (5) is supermodular, its curva-
ture is 0; b) Let the eigenvalues of A := I + �

�2⌃ be
�1 � · · · � �

n

> 1. The greedy submodularity ratio of
F (S) can be lower bounded by K(�n�1)

(
QK

j=1 �j)�1
.

4.3. LPs with Combinatorial Constraints

LPs with combinatorial constraints appear frequently in
practice. Consider the following example: Suppose that
V is the set of all products a company can produce. Given
budget constraints on the raw materials needed, companies
consider the LP max

x2Phd,xi, where d is the vector of
profits for the individual products and where P is a poly-
tope representing the continuous constraints. The above
LP can be used to assess the profit maximizing production
plan. Usually the company needs to consider combinato-
rial constraints as well. For instance, the company has at
most K production lines, thus they have to select a subset
of K products to produce. Often this kind of problems can
be formalized as max

x2P,supp(x)2Ihd,xi, where I is the
independent set of the combinatorial structure. Hence, a
natural auxiliary set function is,

F (S) := maxsupp(x)✓S, x2Phd,xi, 8S ✓ V. (6)

4By Weyl’s inequality, a naive upper bound is kXk 
p
n.
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Let P = {x 2 Rn | 0  x  ¯

u,Ax  b,

¯

u 2
Rn

+,A 2 Rm⇥n

+ , b 2 Rm

+}. In general F (S) in (6)
is non-submodular as illustrated by two examples in Ap-
pendix D.3. Upper bounding the curvature is equivalent to
lower bounding F (S[⌦)�F (S\{i}[⌦)

F (S)�F (S\{i}) , which can be 0 in the
worst case. However, the submodularity ratio can be lower
bounded by a non-zero scalar.

Proposition 3. a) F (S) in (6) is a normalized nondecreas-
ing set function. b) With regular non-degenerancy assump-
tions (details in Appendix D.3.2), its submodularity ratio
can be lower bounded by �0 > 0.

4.4. More Applications

Many real-world applications can benefit from the theory in
this work, for instance: subset selection using the R

2 ob-
jective, sparse modeling and the budget allocation problem
with combinatorial constraints. Details on these applica-
tions are deferred to Appendix G.
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Figure 2: Results on the Boston Housing data.

5. Experimental Results
We empirically validated approximation guarantees char-
acterized by the submodularity ratio and the curvature for
several applications. Since it is too time consuming to cal-
culate the full versions of ↵ and � using exhaustive search,
we only calculated the greedy versions (↵G

, �

G). All av-
eraged results are from 20 repeated experiments. Source
code is available at https://github.com/bianan/
non-submodular-max.5 More results are put in Ap-
pendix H.

5.1. Bayesian Experimental Design

We considered the Bayesian A-optimality objective for
both synthetic and real-world data. In all experiments, we
normalized the data points to have unit `2-norm.

Real-world results: We used the Boston Housing Data.
5All experiments were implemented using Matlab. We used

the SDP solver provided by CVX (Version 2.1).
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Figure 3: Results for A-optimality on synthetic data.

The dataset6 has 14 features (e.g., crime rate, property tax
rates, etc.) and 516 samples. To be able to quickly calculate
the parameters and optimal solution by exhaustive search,
the first n = 14 samples were used. As a baseline, we used
an SDP-based algorithm (abbreviated as SDP, details are
available in Appendix E). Results are shown in Fig. 2 for
varying values of K. In Fig. 2a we can observe that both
GREEDY and SDP compute near-optimal solutions. From
Fig. 2b we can see that the greedy submodularity ratio �

G

is close to 1, and that the greedy curvature ↵

G is less than
1, while the classical curvature ↵total is always 1 (the worst-
case value). This implies that the classical total curvature
↵

total characterizes the considered maximization problems
less accurate than the greedy curvature.

Synthetic results: We generated random observations
from a multivariate Gaussian distribution with different
correlations. To be able to assess the ground truth, we used
n = 12 samples with d = 6 features. Fig. 3 shows the
results with correlation 0.2 (first column) and 0.6 (second
column), respectively: The first row shows the average ob-
jective values over the optimal value with error bars, and
the second row shows the parameters. One can observe that
GREEDY always obtains near-optimal solutions and that
these solutions are roughly comparable with those obtained
by the SDP. The classical curvature ↵total is always close to
1, while ↵

G take smaller values, and �

G takes values close
to 1, thus characterize the performance of GREEDY better.

Medium-scale synthetic experiments: To compare the
runtime of SDP and GREEDY, we considered medium-
scale datasets (we cannot report results on larger datasets
because of the huge computational demands of the SDP).

6https://archive.ics.uci.edu/ml/datasets/
Housing

https://github.com/bianan/non-submodular-max
https://github.com/bianan/non-submodular-max
https://archive.ics.uci.edu/ml/datasets/Housing
https://archive.ics.uci.edu/ml/datasets/Housing
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Figure 4: A-optimality on medium-scale problems

Fig. 4 shows the objective value achieved by GREEDY and
SDP for different numbers of features d and numbers of
samples n, as well as the correlations. We can observe
that GREEDY computes solutions that are on par or superior
to those of SDP. In Table 1 we summarize the runtime of
GREEDY and SDP for different values of d and n, for cor-
relation 0.5. Furthermore, we show the ratio of runtimes of
the two algorithms. We can observe that GREEDY is usu-
ally two orders of magnitude faster than SDP.

Table 1: Runtime in seconds of GREEDY and SDP. The
last row shows the ratio of runtimes of SDP and GREEDY.

d: 60 d: 40 d: 64 d: 100 d: 120
n: 80 n: 112 n: 128 n: 200 n: 250

GREEDY 0.278 0.360 0.765 4.666 10.56
SDP 95.2 115.2 205.4 1741.2 3883.5

SDP
GREEDY

341.7 319.9 268.7 373.2 367.7

5.2. LPs with Combinatorial Constraints

1 2 3 4 5 6
K

0.991

0.992

0.993

0.994

LP
 o

bj
ec

tiv
e

OPT
Greedy

2 4 6 8
K

0.52
0.54
0.56
0.58

0.6
0.62
0.64

LP
 o

bj
ec

tiv
e

OPT
Greedy

1 2 3 4 5 6
K

0

0.5

1

Pa
ra
m
et
er
s

� total �G �G

(a) n = 6,m = 20

2 4 6 8
K

0

0.5

1

Pa
ra
m
et
er
s

� total �G �G

(b) n = 8,m = 30

Figure 5: Results for LPs with K-cardinality constraints.

We generated synthetic LPs as follows: Firstly, we gen-
erated the matrix A 2 Rm⇥n

+ , A

ij

2 [0, 1] by drawing
all entries independently from a uniform distribution on

[0, 1]. We set b = d = 1, and set ¯

u as 1. The first
row of Fig. 5 plots the optimal LP objective (calculated
using exhaustive search) and the LP objective returned by
GREEDY. The second row shows the curvature and sub-
modularity ratio. The first column (Fig. 5a) presents the re-
sults for n = 6,m = 20, while the second column (Fig. 5b)
presents that for n = 8,m = 30. Note the greedy submod-
ularity ratio takes values between ⇠ 0.15 and 1, and that
the curvature is close to the worst-case value of 1. These
observations are consistent with the theory in Section 4.3.

5.3. Determinantal Functions Maximization

We experimented with synthetic and real-world data: For
synthetic data, we generated random covariance matrices
⌃ 2 Rn⇥n with uniformly distributed eigenvalues in [0, 1].
We set n = 10,� = 2. In Fig. 6 (left) we plot the opti-
mal determinantal objective value and the value achieved
by GREEDY. Fig. 6 (right) traces the greedy submodular-
ity ratio �

G. Since the determinantal objective is super-
modular, so the approximation guarantee equals to �

G. We
can see that �G can reasonably predict the performance of
GREEDY.

2 4 6 8 10
K

1.5

2

2.5

3

3.5

4

4.5

D
et

. o
bj

ec
tiv

e

OPT
Greedy

2 4 6 8 10
K

0

0.2

0.4

0.6

0.8

1

Pa
ra
m
et
er
s

�G

Figure 6: Synthetic result. Left: objective value, right: �G

For real-world data, we considered an active set selection
task on the CIFAR-107 dataset. The first n = 12 im-
ages in the test set were used to calculate the covariance
matrix with an squared exponential kernel (k(x

i

,x

j

) =

exp(�kx
i

� x

j

k2/h2
), h was set to be 1). The results in

Fig. 7 shows similar results as with the synthetic data.
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Figure 7: CIFAR-10 result. Left: objective value, right: �G

7https://www.cs.toronto.edu/˜kriz/cifar.
html

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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6. Related Work
In this section we briefly discuss related work on various
notions of non-submodularity and the optimization of non-
submodular functions (Further details in Appendix F).

Relation to Conforti & Cornuéjols (1984) in deriving
approximation guarantees. In proving Theorem 1 we
use the similar proof framework (i.e., utilizing LP for-
mulations to analyze the worst-case approximation ratios
of different groups of problem instances) as that in Con-
forti & Cornuéjols (1984), where they derive guarantees
for maximizing submodular functions. However, since we
are proving guarantees for non-submodular functions, the
specific techniques on how to manipulate these LPs are
different. Specifically, 1) The building block to construct
LPs (Lemma 1) is different; 2) The technique to prove the
structure of the LPs (which corresponds to Lemma 2) is
significantly different for a submodular function and a non-
submodular function, and Lemma 2 is the key to investigate
the worst-case approximation ratios of different groups of
problem instances. 3) The specific way to prove Lemma 3
is also different since the constraints of the LPs are differ-
ent for submodular and non-submodular functions.

Submodularity ratio and curvature. Curvature is typi-
cally defined for submodular functions. Sviridenko et al.
(2013) present a notion of curvature for monotone non-
submodular functions. Appendix C provides details of that
notion and relates it to our definition. Yoshida (2016) prove
an improved approximation ratio for knapsack-constrained
maximization of submodular functions with bounded cur-
vature. Submodularity ratio (Das & Kempe, 2011) is a
quantity characterizing how close a function is to being
submodular.

Approximate submodularity. Krause et al. (2008) de-
fine approximately submodular functions with parameter
✏ � 0 as those functions F that satisfy an approximate
diminishing returns property, i.e., 8A ✓ B ✓ V \ v it
holds that ⇢

v

(A) � ⇢

v

(B) � ✏. GREEDY yields a solu-
tion with objective F (S

K

) � (1 � e

�1
)F (⌦

⇤
) �K✏, for

maximizing a monotone F s.t. a K-cardinality constraint.
Du et al. (2008) study the greedy maximization of non-
submodular potential functions with restricted submodu-
larity and shifted submodularity. Restricted submodularity
refers to functions which are submodular only over some
collection of subsets of V , and shifted submodularity can
be viewed as a special case of the approximate diminishing
returns as defined above. Recently, Horel & Singer (2016)
study ✏-approximately submodular functions, which arised
from their research on “noisy” submodular functions. A
function F (·) is ✏-approximately submodular if there ex-
ists a submodular function G s.t. (1 � ✏)G(S)  F (S) 
(1 + ✏)G(S), 8S ✓ V .

Weak submodularity. Borodin et al. (2014) study weakly
submodular functions, i.e., montone, nomalized functions
F (·) s.t. for any S, T , it holds |T |F (S) + |S|F (T ) �
|S \T |F (S [T )+ |S [T |F (S \T ). For a function F (·),
we show in Remark 4 that the following two facts do not
imply each other: i) F (·) is weakly submodular; ii) The
submodularity ratio of F (·) is strictly larger than 0, and its
curvature is strictly smaller than 1.

Other notions of non-submodularity. Feige & Izsak
(2013) introduce the supermodular degree as a complexity
measure for set functions. They show that a greedy algo-
rithm for the welfare maximization problem enjoys an ap-
proximation guarantee increasing linearly with the super-
modular degree. Zhou & Spanos (2016) use the submod-
ularity index to characterize the performance of the RAN-
DOMGREEDY algorithm (Buchbinder et al., 2014) for max-
imizing a non-monotone function.

Optimization of non-submodular functions. The
submodular-supermodular procedure has been proposed
to minimize the difference of two submodular functions
(Narasimhan & Bilmes, 2005; Iyer & Bilmes, 2012).
Jegelka & Bilmes (2011) present the problem of mini-
mizing “cooperative cuts”, which are non-submodular in
general, and propose efficient algorithms for optimiza-
tion. Kawahara et al. (2015) analyze unconstrained min-
imization of the sum of a submodular function and a tree-
structured supermodular function. Bai et al. (2016) investi-
gate the minimization of the ratio of two submodular func-
tions, which can be solved with bounded approximation
factor.

7. Conclusion
We analyzed the guarantees for greedy maximization of
non-submodular nondecreasing set functions. By combin-
ing the (generalized) curvature ↵ and submodularity ratio
� for generic set functions, we prove the first tight ap-
proximation bounds in terms of these definitions for greed-
ily maximizing nondecreasing set functions. These ap-
proximation bounds significantly enlarge the domain where
GREEDY has guarantees. Furthermore, we theoretically
bounded the parameters ↵ and � for several non-trivial ap-
plications, and validate our theory in various experiments.
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