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mean ‖Σ̂− Σ‖22 mean ‖Σ̂− Σ‖∞
Empirical 0.0267 0.543

Graph Lasso 0.0223 0.680
DeepGraph 0.0232 0.673

Table 5: Covariance prediction of ABIDE data. Averaged over 50
trials of 35 samples from the ABIDE Control data

A Supplementary Experiments and
Analysis

A.1 Predicting Covariance Matrices

Using our framework it is possible to attempt to directly predict an
accurate covariance matrix given a noisy one constructed from few
observations. This is a more challenging task than predicting the
edges. In this section we show preliminay experiments which given
an empirical covariance matrix from few observations attempts to
predict a more accurate covariance matrix that takes into account
underlying sparse data dependency structure.

One challenge is that outputs of our covariance predictor must
be on the positive semidefinite cone, thus we choose to instead
predict on the cholesky decompositions, which allows us to always
produce positive definite covariances. We train a similar structure
to DeepGraph-39 structure modifying the last layer to be fully
connected linear layer that predicts on the cholesky decomposition
of the true covariance matrices generated by our model with a
squared loss.

We evaluate this network using the ABIDE dataset described in
Section 3. The ABIDE data has a large number of samples al-
lowing us to obtain a large sample estimate of the covariance and
compare it to our estimator as well as graphical lasso and empirical
covariance estimators. Using the large sample ABIDE empiri-
cal covariance matrix. We find that we can obtain competitive
`2 and `∞ norm using few samples. We use 403 subjects from
the ABIDE Control group each with a recording of 150 − 200
samples to construct covariance matrix, totaling 77 330 samples
(some correlated). This acts as our very approximate estimate of
the population Σ. We then evaluate covariance estimation on 35
samples using the empirical covariance estimator, graphical lasso,
and DeepGraph trained to output covariance matrices. We repeat
the experiment for 50 different subsamples of the data. We see in
?? that the prediction approach can obtain competitive results. In
terms of `2 graphical lasso performs better, however our estimate
is better than empirical covariance estimation and much faster then
graphical lasso. In some applications such as robust estimation a
fast estimate of the covariance matrix (automatically embedding
sparsity assumptions) can be of great use. For `∞ error we see the
empirical covariance estimation outperforms graphical lasso and
DeepGraph for this dataset, while DeepGraph performs better in
terms of this metric.

We note these results are preliminary, as the covariance predicting
networks were not heavily optimized, moreover the ABIDE dataset
is very noisy even when pre-processed and thus even the large
sample covariance estimate may not be accurate. We believe this
is an interesting alternate application of our paper.

A.2 Additional Synthetic Results on Sparsity

We investigate the affect of sparsity on DeepGraph-39 which has
been trained with input that has sparsity 96%− 92% sparse. We
find that DeepGraph performs well at the 2% sparsity level despite
not seeing this at training time. At the same time performance
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Figure 6: Average test likelihood over 50 trials of applying a
network trained for 500 nodes, used on a 175 node problem
begins to degrade for 15% but is still competitive in several cate-
gories. The results are shown in Table ??. Future investigation can
consider how alternate variation of sparsity at training time will
affect these results.

A.3 Application of Larger Network on Smaller Input

We perform preliminary investigation of application of a network
trained for a larger number of nodes to a smaller set of nodes.
Specifically, we consider the breast invasive carcinoma groups
gene data. We now take all 175 valid genes from Appendix C.2
of (Honorio et al., 2012). We take the network trained on 500
nodes in the synthetic experiments section. We use the same
experimental setup as in the gene experiments. The 175 × 175
covariance matrix from 40 samples and padded to the appropriate
size. We observe that DeepGraph has similar performance to graph
lasso while permuting the input and ensembling the result gives
substantial improvement.

A.4 Permutation as Ensemble Method

As discussed in Section 2.3, permuting the input and averaging
several permutations can produce an improved result empirically.
We interpret this as a typical ensembling method. This can be an
advantage of the proposed architecture as we are able to easily
use standard ensemble techniques. We perform an experiment
to further verify that indeed the permutation of the input (and
subsequent inverse permutation) allows us to produce separate
classifiers that have uncorrelated errors.

We use the setup from the synthetic experiments with DeepGraph-
39 in Section 3 with n = 35 and p = 39. We construct 20
permutation matrices as in the experimental section. Treating each
as a separate classifier we compute the correlation coefficient of the
errors on 50 synthetic input examples. We find that the average cor-
relation coefficient of the errors of two classifiers is 0.028±0.002,
suggesting they are uncorrelated. Finally we note the individual
errors are relatively small, as can already be inferred from our ex-
tensive experimental results in Section 3. We however compute the
average absolute error of all the outputs across each permutation
for this set of inputs as 0.03, notably the range of outputs is 0 to
1. Thus since prediction error differ at each permutation but are
accurate we can average and yield a lower total prediction error.

Finally we note that our method is extremely efficient computation-
ally thus averaging the results of several permutations is practical
even as the graph becomes large.
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Experimental Setup Method Prec@5% AUC CE
Glasso 0.464 ± 0.038 0.726 ± 0.021 0.02

Glasso (optimal) 0.519 ± 0.035 0.754 ± 0.019 0.02
Gaussian Random Graphs BDGraph 0.587 ± 0.033 0.811 ± 0.017 0.15
(n=35,p=39,sparsity=2%) DeepGraph-39 0.590 ± 0.026 0.810 ± 0.019 0.03

DeepGraph-39+Perm 0.598 ± 0.026 0.831 ± 0.017 0.03
Glasso 0.732 ± 0.046 0.562 ± 0.013 0.32

Glasso (optimal) 0.847 ± 0.029 0.595 ± 0.011 0.33
Gaussian Random Graphs BDGraph 0.861 ± 0.015 0.654 ± 0.013 0.33
(n=35,p=39,sparsity=15%) DeepGraph-39 0.678 ± 0.032 0.643 ± 0.012 0.33

DeepGraph-39+Perm 0.792 ± 0.023 0.660 ± 0.011 0.33

Table 6: For each scenario we generate 100 graphs with 39 nodes, and corresponding data matrix sampled from distributions with those
underlying graphs. The number of samples is indicated by n.


