Minimax Regret Bounds for Reinforcement Learning

Appendices

We begin by introducing some notation in Sect. B and Sect. A. We then provide the full analysis of UCBVI in Sect. C.

A. Table of Notation
Symbol Explanation
S The state space
A The action space
T The policy at episode k
P The transition distribution
R The reward function
S Size of state space
A Size of action space
H The horizon length
T and T}, The total number of steps and number of steps up to episode k
K The total number of episodes
Ni(x,a) Number of visits to state-action pair (z, a) up to episode k
Vi Optimal value function V*
T Bellman operator
Vie.n The estimate of value function at step h of episode k
Qk,h The estimate of action value function at step h of episode &
b The exploration bonus
L In(55AT/6)
Ni(z,a,y) Number of transitions from x to y upon taking action a up to episode k
N, (z,a) Number of visits to state-action pair (z, a) at step h up to episode k
N ,’c n(2) Number of visits to state x at step h up to episode k
Py (y|z,a) The empirical transition distribution from z to y upon taking action a up to episode k
Vin(z,a) The empirical next-state variance of V j, for every (z,a)
Vi(x,a) The next-state variance of V* for every state-action pair (z, a)
Vi n(z,a) The empirical next-state variance of V;* for every state-action pair (z, a) at episode k
V7 (z,a) The next-state variance of V;" for every state-action pair (x, a)
b; ;(x) min (%,Hﬂ
[(z,a)]k Set of typical state-action pairs
[kl iy Set of typical episodes
Ylhza Set of typical next states at every episode k for every (z, a)
Regret(k) The regret after k episodes
Regret (k) The upper-bound regret after k episodes
Regret(k,z, h) The regret upon encountering state x at step h after k episodes
Regret(k,z, h) The regret upon encountering state x at step h after k episodes
Agp One step regret at step h of episode k
A k.h One step upper-bound regret at step h of episode &
&yp, kR One step upper-bound regret at step h of episode k for typical episodes

t
Ek,h and €k,

c1(v,n), ca(p,n) and c3(n)
Ci.n

Bi.n

£

Q

Hy

The martingale operator

Martingale difference terms

The confidence intervals for the value function and transition distribution
Sum of confidence intervals c; up to step h of episode k

Sum of exploration bonuses b up to step h of episode k

The high probability event under which the concentration inequality holds
The high probability event under which the estimates V}, j, are ucbs

The history of all random events up to time step ¢
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B. Notation

Let denote the total number of times that we visit state = while taking action a at step h of all episodes up to episode k by
Ny, ,(x,a). We also use the notation N}, , (z) = > .. 4+ N ;,(x, a) for the total number of visits to state x at time step h

~

up to episode k. Also define the empirical next-state variance Vy, 1, (z, a), the next-state variance of optimal value function
V} (z, a) the next-state empirical variance of optimal value function V; , (x, a) and the next-state variance of V;" as

Vin(@,a) = Var, g 1,0 Vent1(y),
Vi(z,a) E Var,p(ioa (Vi (),
Vinle,a) € Va5 o0 (Vi(w),
Vi(z,a) = Var,op(iea (Vi (1)

forevery (z,a) € S x Aand k € [K] and h € [H]. We further introduce some short-hand notation: we use the lower case
to denote the functions evaluated at the current state-action pair, e.g., we write ny, p, for Ny («g n, 7% (Zk,n, 1)) and vy, j, for
Vi,n(zk,n). Let also denote Vi, = Vi, (zk.n, Tk(2k,n, h)) and Vi5 = VI (2, T (2,0, b)) for every k € [K] and

h € [H]. Also define b; ;(x) = min (W,IF) for every x € S.
’ @5+

B.1. “Typical” state-actions and steps

In our analysis we split the episodes into 2 sets: the set of “typical” episodes in which the number of visits to the encoun-
tered state-actions are large and the rest of the episodes. We then prove a tight regret bound for the typical episodes. As the
total count of other episodes is bounded this technique provides us with the desired result. The set of typical state-actions
pairs for every episode k is defined as follows

(@) < {(,a): (z,0) € S x A, Ny(w,a) > H, N}, ,(z) > H}.

Based on the definition of [(z, a)]
follow

wyp We define the set of typical episodes and the set of typical state-dependent episodes as

Kl % {i:ie[k],Yhe [H], (winmi(zinh) € [(z,a)],,i > 250HS>AL},
[k] def {i:i e [k],Yh € [H], (xsn, 7i(xin, h)) € [(z,a)],, N p(z) > 250HS?AL}.

Also for every (z,a) € S x A the set of typical next states at every episode k is defined as follows

def
Wiea = {y:y€S, Ni(x,a)P(ylz,a)>2HL}.

Finally let denote [y]k,n = [Y]k,zs 7k (s, ,) TOr €very k € [K] and h € [H].

B.2. Surrogate regrets
Our ultimate goal is to prove bound on the regret Regret(k). However in our analysis we mostly focus on bounding the
surrogate regrets. Let Ay, j, () of Vien(z) — V)75 () forevery € S, h € [H] and k € [K]. Then the upper-bound regret

R/eg\l_*gt defined as follows

—~—

k
Regret (k) def Z &71.
i=1
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nggt(k) is useful in our analysis since it provides an upperbound on the true regret Regret(k). So one can bound

Regret(k) as a surrogate for Regret (k).

We also define the corresponding per state-step regret and upper-bound regret for every state x € X and step h € [H],
respectively, as follows

k
Regret(k, z, h) Lf Zﬂ(xi,h:x)ai,hv
i—1
— k ~
Regret(k, z, h) def ZM%,hZ@@,h-
i—1

B.3. Martingale difference sequences

In our analysis we rely heavily on the theory of martingale sequences to prove bound on the regret incurred due to encoun-
tering a random sequence of states. We now provide some definitions and notation in that regard.

We define the following martingale operator for every k € [K|, h € [H]and F : S — R. Alsolett = (k— 1)H + h
denote the time stamp at step h of episode k then

def P
MtF = PhkF - F(.’)Sk’thl).

Let #; be the history of all random events up to (and including) step h of episode k then we have that E(M,F|H;) = 0.
Thus M, F' is a martingale difference w.r.t. #;. Also let G be a real-value function depends on H;, s for some integer
s > 0. Then we generalize our definition of operator M; as

MG def E(G(Ht+s)|Ht)_G(Ht+8)’

where [E is over the randomization of the sequence of states generated by the sequence of policies 7y, 711, . - . . Here also
MG is a martingale difference w.r.t. H;.

Let define Ayp 1, : S — R as follows forevery k € [K]and h € [H] andy € S

~ def Ien(y) =
Ayprnsi(y) = nkmc(h)(y)Ak’hH(y)’

where the function py , : S — [0,1] is defined as py 1 (y) = Py * (y|x,n) and Iy, (y) writes for I, ,(y) = I(y € [y]k,n)
for every y € X. We also define the following martingale differences which we use frequently

Ek,h = MtAk,thla

Ekn = Mt£typ,k,h+l'
B.4. High probability events

‘We now introduce the high probability events £ and €2, ;, under which the regret is small.

Let use the shorthand notation L ' In (%). Also for every v > 0, p € [0,1] and n > 0 let define the confidence
intervals c1, co and cs, respectively, as follow
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L 14HL
alvn) =2/

def p(l—p)L 2L
ca(p,m) = 2 %—l—%,

cs(n) = 24/ —.

Let P be the set of all probability distributions on S. Define the following confidence set forevery k = 1,..., K, n > 0
and (z,a) € S x A

Pk, h,n,z,a,y) def {ﬁ(-\x,a) eP:|(P- P)V¥(x,a)| < min (cl (Vi(z,a),n),c1 (@;h(as,a),n))
|P(ylz,a) — Pylz,a)| < cs (P(y|z, a),n),
|P(lz.a) = P(lz,a)lli < ea(n) }-

‘We now define the random event £ 5 as follows

£x def {ﬁk(y‘x,a) € P(k,h, Np(z,a),x,a,y),Vk € [K],Vh € [H],¥V(y,x,a) € S X S X A}.

Let ¢ be a positive integer. Let 7 = {fs}c[ be a set of real-value functions on #; ;, for some integer s > 0. We now
define the following random events for every w > 0 and & > 0 and ¢ > 0:

t
Eu(F,ue) {ZMSfS < 2\/%} ,
s=1

t
e - 14uc
gfr(f,lf),ﬂ,é) d:f {E Msfs§4vw6+ SUC}.
s=1

We also use the short-hand notation &,,(F, @) and & (F, w, @) for £, (F,u, L) and & (F, w, u, L), respectively.

Now let define the following sets of random variables for every k € [K] and h € [H]:

def X . .
Fapn & {BijricMh<jelH-1]},

def X . .
on 2 {AWW ielk,h<je [H]} ,
Fapne = {Bislwin=w)icklh<jeH]},
def x . .
Iﬁ,k,h,x = {A[yp’i’jﬂ(fﬂi’h =zx):i€lkl,h<je [H]} )
def <
Gv kb = Z V}”:ie[k],h<je[H] ,
j=h+1
def <
Gvhhe = Z Vil(zip =2) i€ [kl,h<je[H]p,
j=h+1

Forn ¥, :ielkl,h<je[H-1]},
Fomne L (V) Maip =) i€ k), h < je[H]}.
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We now define the high probability event £ as follows

def

&= &N N {&Z(]—'&k’h,H)ﬂz‘faz(]-"&hh,1/\/Z)ﬂé’az(}'&k,hmH)ﬂgaz(]-"57k7z7h,1/\/f)
ke[K]

he[H]
z€S

ﬂ Ex(Gv jn, H*T, H?) ﬂ Ear (G ke h s HSN}Q,}L(@, H?) ﬂ Ear(For gony H?) m Ear(For toonwy H?) |

The following lemma shows that the event £ holds with high probability:
Lemma 1. Let § > 0 be a real scalar. Then the event € holds w.p. at least 1 — 4.

Proof. To prove this result we need to show that a set of concentration inequalities with regard to the empirical model 13;C
holds simultaneously. For every h € [H] the Bernstein inequality combined with a union bound argument, to take into
account that Ny (z,a) € [T] is a random number, leads to the following inequality w.p. 1 — § (see, e.g., Cesa-Bianchi &
Lugosi, 2006; Bubeck & Cesa-Bianchi, 2012, for the statement of the Bernstein inequality and the application of the union
bound in similar cases, respectively.)

*JZCLHE IIE
’W<mem!£¢mR$J”gﬁw$’ "

where we rely on the fact that V}* is uniformly bounded by H. Using the same argument but this time with the Empirical
Bernstein inequality (see, e.g., Maurer & Pontil, 2009), for Ny (z,a) > 1, leads to

~ 2V x,a)In (2L n (2L
[P =P @) < \/ k’hz(vk(x),a)( ?) *75\11(95,2))' (10

The Bernstein inequality combined with a union bound argument on Ni(x, a) also implies the following bound w.p. 1 — ¢

2T) N 21n (%)

|Nk(y,x7a) - Nk(x,a)P(y|x,a)| < \/2Nk(x7a)varsz(~m,a)(l(z = y)) In < 5 3 )

which implies the following bound w.p. 1 — §:

P(ylz,a)(1 = P(ylz,a))n (3F) = 2In (%)
Ni(z,a) 3Ni(z,a)’

Pelyle,a) - Plyle,0)| < ¢ (11)

A similar result holds on ¢{-normed estimation error of the transition distribution. The result of (Weissman et al., 2003)
combined with a union bound on N (z,a) € [T] implies w.p. 1 —

2S5 In (%)

S NV Mea (12

Hﬁk(.|x,a) - P(~|x,a)H1

We now focus on bounding the sequence of martingales. Let n > 0 be an integer and u, & > 0 be some real scalars. Let the
sequence of random variables { X1, X, ..., X, } be a sequence of martingale differences w.r.t. to some filtration F,,. Let
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this sequence be uniformly bounded from above and below by u. Then the Azuma’s inequality (see, e.g., Cesa-Bianchi &
Lugosi, 2006) implies that w.p. 1 — §

- 1
ZXZ- < ([2nuln <5> (13)
i=1
When the sum of the variances .- ; Var(X;|F;) < w for some w > 0 then the following sharper bound due to Freedman

(1975) holds w.p. 1 — §

0 3

n 1
ZX,- < 4[2wln (1> + M. (14)
=1

Let k € [K], h € [H] and z € X. Then the inequality of Eq. 13 immediately implies that the following events holds w.p.
1-6:

Eur (s I (1/9))) (15)
Eu (F o VLI (1/9)) (16)
Ear (Fov n H?,In (1/6)) . (17)

Also Eq. 13 combined with a union bound argument over all N ,Q n(z) € [T] (see, e.g., Bubeck et al., 2011, for the full
description of the application of union bound argument in the case of martigale process with random stopping time) implies
that the following events hold w.p. 1 — §

Eu (Fa o 0 (T/5)) (18)
Eu ( K onae I/VLIn (T/(S)) 7 (19)
Eu (-Fb’ khxaH In (T/(S)) (20)

Similarly the inequality of Eq. 14 leads to the following events hold w.p. 1 — ¢

& (G oy Wiy, H? In (T'/5)) 1)
& (GV Joyhzs Wh s » H, I (1/8)) (22)

where 1wy, , and 1wy, p, .. are upper bounds on Wy, ;, and Wy, j, ., respectively, defined as

k

ZVar ZVHH il | (23)
def k
Wine = D Iwip=2)E| Y VI |Hii]. (24)
=1 j=

So to establish a value for wy, ;, and Wy, 5, , We need to prove bound on Wy, j, and Wy, j, ... Here we only prove this bound
for Wy, 1, as the proof techniques to bound W7, j, .. is identical to the way we bound Wy, j,.
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k H—-1 2 k H—-1
Win S3_E| 3 Vi | He | SH?Y E| D V| He . 25)
i=1 j=h i=1 j=h
Now let the sequence {x1,x2, ...,z y} be the sequence of states encountered by following some policy 7 throughout an

episode k. Then the recursive application of LTV leads to (see e.g., Munos & Moore, 1999; Lattimore & Hutter, 2012, for
the proof.)

H-1 H-1
E ZV”(xj,ﬂ'(xj,j)) = Var Z ™ (z;) | - (26)
j=h j=h
By combining Eq. 26 into Eq. 25 we deduce
k H-1
Win < H®Y Var | > rpn|Hi | < Hk = H'T}. (27)
i=1 j=h
Similarly the following bound holds on W 5, ..
Wine < H°Npp(x). (28)

Plugging the bounds of Eq. 27 and Eq. 28 in to the bounds of Eq. 21 and Eq. 22 and a union bound over all Ny, 5 (z) € [T]]
leads to the following events hold w.p. 1 — §:

& (Gv ko, HT, H In (1/9)) (29)
& (Gv ko hws H* Nigp (), H?  In (T/6)) . (30)

Combining the results of Eq. 9, Eq. 10, Eq. 11, Eq. 12, Eq. 15, Eq. 16 Eq. 17, Eq. 18, Eq. 19, Eq. 20, Eq. 29 and Eq. 30
and taking a union bound over these random events as well as all possible k € [K], h € [H] and (s,a) € S x A proves the
result.

O

B.4.1. UCB EVENTS

Let k € [K] and h € [H]. Denote the set of steps for which the value functions are obtained before V}, 5, as

[k’h]hist = {(Z’]) S [K]’] € [HLZ < ]41\/(7, = k/\.] > h)}

Let Qi n = {Vi; > Vi¥,V(4,5) € [k, hlnisc} be the event under which V; ; prior to V3, ;, computation are upper bounds on
the optimal value functions. Using backward induction on h (and standard concentration inequalities) we will prove that
Q. 1, holds under the event £ (see Lem. 19).
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B.5. Other useful notation

Here we define some other notation that we use throughout the proof. We denote the total count of steps up to episode

k € [K] by T, of H(k — 1). We first define ¢4 i 5, for every h € [H] and k € [K], as follow

4H?SAL

C4k,h = o
k,h

forevery k € [K|, h € [H] and = € [z] we also introduce the following notation which we use later when we sum up the
regret:

k H-
def
Ck,h = Z ) 6 typ Z Cl,i,55
k H-1
def .
Bin = ZH(Z € [kliyp) bij,
i=1 j=h
k H-
def .
Crne = Y 16 € [Kypwr Trp = Z Clijs
i=1 j=h
k H-1
def .
Bine = Y 100 € Muyparzen=1) Y by,

-
I
—
<.
Il
>

where ¢y 1, 1, is the shorthand-notation for ¢; (vz s Tk, 1). We also define the upper bound Ug,pand Uy p, , forevery k € [K]
,h €[H]and x € S as follows, respectively

H—-1
[bij +c1ij+ caijl + (H + 1)/ TiL,

=
IE:
3
®
Mw

&
Il

—
>

‘mm

[bij + 1+ caigl + (H+ 12 /N]  (2)L,

5
0
8
&
&
o)
M=

@,
Il
—

.
Il
>

C. Proof of the Regret Bounds

Before we start the main analysis we state the following useful lemma that will be used frequently in the analysis:
Lemma 2. /et X € RandY € R be two random variables. Then following bound holds for their variances
Var(X) < 2[Var(Y) + Var(X = Y)].

Proof. The following sequence of inequalities hold

Var(X) =E(X - Y —E(X - Y)+Y —E(Y))? <2E(X - Y —E(X —Y))? + 2E(Y — E(Y))%
The result follows from the definition of variance. O

We proceed by proving the following key lemma which shows that proves bound on Ay, ;, under the assumption that V;, 5,
is UCB w.rt. V.
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Lemma 3. Let k € [K] and h € [H|. Let the events £ and Qy, , hold. Then the following bound holds on 6y, j, and gk,h:

H-1
Op,n < Oppn <e Z [Ek,i + 2V L& + c1pi + bri + C4,k,i] . 31
i=h

Proof. For the ease of exposition we abuse the notation and drop the dependencies on k, e.g., we write 1, m and V) for
2,1, T and Vi 1, respectively. We proceed by bounding d, under the event £ at every step 0 < h < H:

on = TaVati(zn) = Ty Viga(zn)

[P} Vi) (@n) + b — [P Vil (2n)

b+ [(PF = POV (@n) + [(PF = PT) (Vi = Virg))@n) + [PF (Vi — Vi) (zn)

Shs1 +en + b+ cip + [(PF = PF)(Vir — Viren) (zn), (32)
(a)

IN

where the last inequality follows from the fact that under the event £ we have that [(]3,1T - PI)Vy 1 (zn) < c1,p. We now
bound (a):

(@ = Y (Prlylen) — PFlen) (Visr () — Viia (1))
yeS
05, \/ph(yxl—ph(y))L+ 2 DN
yeS "h h
Ph(y)~ ASHL
< 2\@% - Apti(y) + Sy

(b)
where (I) holds under the event £. We proceed by bounding (b):

MR, () (33)

b = > Ah+1 NEEY

yE[Yln yéln

(c) (d)

The term (c) can be bounded as follows

1 ~
c) = Pr( ht | ———(x € 1)
(c) Z h (Ylzn 1/ h+1 ”nhph(l'h-&-l) (Zh+1 € [Y]n)On+1
yE([yln
< €h+\/4LH Sht1, (34)

where in the last line we rely on the definition of [y],. We now bound (d):

y L SH+vA4LH?
=y [l g, ) < SEVALHE (35)

o i, Tt
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By combining Eq. 34 and Eq. 35 into Eq. 33 we deduce

SHALH? 1 ~
(b) < + \/4LH2 Ont1 + En- (36)

np

By combining Eq. 36 and Eq. 33 into Eq. C we deduce

~ 1\ ~
op <ep+ 2\@5—;1 +bp +cintean+ <1 + H> Oht1-

Let denote v, = (1 + 1/H)". The previous bound combined with an induction argument implies that
gh < Zi;l Yi—h |Ei T 2\/5@ +ci14+Ca+ bi] .
The inequality In(1 + z) < x for every x > —1 leads to -y, < vy < e for every h € [H]. This combined with the

assumption that v, > v} under the event {2, completes the proof. O

Lemma 4. Let k € [k] and h € [H]. Let the events € and Qy, 1, hold. Then

k-1 k-1 k—1H-1
DGin<Y Gin<ey Y {Sm‘ +2VLEj +bij + e + 04,@]} -
=1 =1 i=1 j=h

Proof. The proof follows by summing up the bounds of Lem. 3 and taking into acoount the fact if {2, 5, holds then €; ; for
all (¢,7) € [k, h]pise hold. O

To simplify the bound of Lem. 4 we prove bound on sum of the martingales ¢y, ;, and &, 5,
Lemma 5. Let k € [k] and h € [H]. Let the events £ and Qy, , hold. Then the following bound holds

k H-1
Y>> ey < H(H—-hkL< H\T,L, (37)
i=1 j=h
k H-1
Z gy < VH-DE< VT, (38)
i=1 j=h

k H-1
Slan=2)Y ey < H\/(H — )N}, (2)L, (39)
i=1 j=h

k H-1
S Main=2)> &; < /(H—=h)N,, (). (40)
i=1 j=h

Proof. The fact that the event £ holds implies that the events &y, (7% j, . H), Eaz(]-"’&kﬁ7 ﬁ) » &aa(FR o H) and
Ear(F IE Y %) hold. Under these events the inequalities of the statement hold. This combined with the fact that

(H — h)k < T} completes the proof.
O
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We now bound the sum of Js in terms of the upper-bound U:

Lemma 6. Let k € [K] and h € [H]. Let the events £ and Yy, j, holds. Then the following bounds hold for every h € [H]
zes

0ih < Uppn <Uka,

M-

N
Il
—

k
E ik
k
E ]I.I’lh—l‘ ih
1=1

Wzin =2)0in <Ughz < Ukt

-

h
Il
—

Proof. The proof follows by incorporating the result of Lem. 5 into Lem. 4 and taking into account that for every h € [H]
the term Uy, 5, (Ug 1.,o) s @ summation of non-negative terms which are also contained in Uy, 1 (U1 p ). O

Lemma 7. Let k € [K] and h € [H). Let the events £ and Sy, j, holds. Then the following bounds hold for every x € S

M-
=

5

g

\

&= IM-
M= 1[M)=
RS
IA IA

- 1M
= M
E e
; IA

M= 3

I

IA

o

=

o

Proof. The proof follows by summing up the bounds of Lem. 6. O

We now focus on bounding the terms Cy , (Ck p,2) and By, p, (Bi p,2) in Lem. 11 and Lem. 12, respectively. Before we
proceed with the proof of Lem. 11 and Lem. 12. we prove the following key result which bounds sum of the variances of
Vi, using an LTV argument:

Lemma 8. Let k € [K] and h € [H|. Then under the events £ and )y, 1, the following hold for every x € S

k H-1
AHPL
DD Vi < TeH+2VHLL+ —
i=1 j=h
k H-1
AHPL
> Mwin=2)> Vi, < Niu(@)H?+2,/HN],(z)L+ 5
=1 j=h

Proof. Under & the events Ex(Gy . p, HTy, H?) and Ex(Gv k. h.zs H® Ni.p (), H?) hold which then imply:

g 4H3L
ZE ZV”H Hin | + 2V HT,L + (41)

M-
=
¥
IN

i=1 j=h =1 j=h
k H-1 k H-1 AH3I
S Maip=2)> Vi, <0 L =a > V| Men | +2\/HN] L+ s @)
i=1 j=h i=1 j=h

The LTV argument of Eq. 26 then leads to
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k H-1 k H
Y E Vi Hin | = D> Var| > »f; | <KH>=TH, (43)
i=1 j=h i j=h+1
k H-1 k H
Zﬂ(xiyh =x)E Vi Hin | = Z]I(mi,h = x)Var Z i | < Nip(x)H?. (44)
i=1 j=h i=1 j=h+1

Eq. 41 and Eq. 42 combined with Eq. 43 and Eq. 44, respectively, complete the proof.

O
Lemma9. Let k € [K] and h € [H]|. Then under the events & and Qy ), the following hold for every x € S
k H—1
Do (Vig = Vi) < 287Uk +4H* VL, (45)
1=1 j=h
k H-1
S Mwin=2)> (Vij = Vi) < 2HUgpa +4H?\/HN (2, a)L. (46)
i=1 j=h
Proof. We begin by the following sequence of inequalities:
k H—1 (K H-1 ,
S Y Vi Vi 2 DY By, [V ®) - (V)]
i=1 j=h i=1 j=h
k H-1
= DD By, (V) = Vi) (Vi () + Vi )]
i=1 j=h
k H—1
< 2M3 0% By, (Vi) - Vi), (47)

.
Il

1 j=h

(a)

where (1) is obtained from the definition of the variance as well as the fact that V;*; > VT, . The last line also follows from
the fact that V7™ < V;* < H.

Using an identical argument we can also prove the following bound for state-dependent difference:

k k H-1
Zﬂ(xi,h =) Z Vzg‘ﬂ - V;r,j+1 < 2HZH($i,h = 1) Z Ey~p, j*+1( ) — V]TL( )) (48)
i=1 = i=1 j=h

(b)

To bound (a) we use the fact that under the event £ the event &, (F5 , ,,, H) also holds. This combined with the fact that
under the event 2, 5, the inequality 6y ;, < 6~k7h holds implies that

k H—1
(a) < Z Z i1+ 2HA/T,L
< HU1,h+2H\/TkL, (49)



Minimax Regret Bounds for Reinforcement Learning

where in the last line we rely on the result of Lem. 7. Similarly we can prove the following bound for (b) under the events
Qk h and gdZ( A k, h:z:’H)

k H-1
(0) < D Main=2) Y Aijpr+2H" /N, (0)L
i=1 j=h
< HUppa+2H" /N ()L (50)

The result then follows by incorporating the results of Eq. 49 and Eq. 50 into Eq. 47 and Eq. 48, respectively.

O
Lemma 10. Let k € [K] and h € [H|. Then under the events € and Qy, j, the following hold for every x € S
k H-1
S Vi - Vi < 2H Uy + 15H?SV/ATLL, (51)
i=1 j=h
k H-1
> Wain=2)> Vij =V < 2HUpp. +15H*S\/HAN] , (x)L. (52)
i=1 j=h

Proof. Here we only prove the bound on Eq. 51. The proof for the bound of Eq. 52 can be done in a very similar manner,
as it is shown in the previous lemmas (the only difference is that H NV, ,Q h(:c) and Uy, j, ., replace T}, and Uy, 1, respectively).
The following sequence of inequalities hold:

k H-— 1/\ (1) k H-1 ) )
Do Vi Vi < YD By, (Vi) = By (VL)
i=1 j=h i=1 j=h
k H*l ) 5
+Z Ey~p, J+1(y>) _<Ey"“f’\i,jv}11(y))
i=1 j=h
(II) k H-1 H-1 )
< Z Ey~p” H+1 EyNPz, ,J+1(y))
i=1 j=h j=1
(a)
k H-1 )
2 T
3D By, [(Vign ) = (V)]
i=1 j=h
(b)
k H-1 I,
+> 0> aH? [, (53)
i=1 j=h Tk,

where () holds due to the fact that under $2, ,, Vi ; > V;* > V™ and ({1 holds under the event £.
We now bound (a):
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(€2))

< 3H?S\/AT:L,
where (I) holds under the event £ and (/1) holds due to the pigeon-hole argument (see, e.g., Jaksch et al., 2010, for the
proof).

Using an identical analysis to the one in Lem. 10 and taking into account that V; ; > V]* under the event {2, j, and € we
can bound (b)

(I) H-1

k
< oH Z Z i+ 2HVTL) | < 2H? (Uk’l +2\/TkL),

where (I) holds since under the event £ the event £,.(F5 j j,, H) holds. Another application of pigeon-hole principle

leads to a bound of 6 H2\/SAT} L on (c). We then combine this with the bounds on (a) and (b) to bound Eq. 53, which
proves the result.

O

We now bound C}, , and Cy, p,
Lemma 11. Let k € [K] and h € [H|. Then under the events £ and Qy, j, the following hold for every x € S

Crn < AVHSAT, +4\/H?U, SAL?, (54)
Cipa < Ay/H2SANg(2) + 4y H2Up ) o SAL2. (55)

Proof. Here we only prove the bound on Eq. 54. The proof for the bound of Eq. 55 can be done in a very similar manner,
as it is shown in the previous lemmas (the only difference is that H IV, ,’C p(z) and Uy, 1, ,, replace Ty, and Uy, 1, respectively).
The Cauchy—Schwarz inequality leads to the following sequence of inequalities:

H-1
: Vijal AHL
Con = o€ty 32 Tuntl 48
i=1 j=h - i
. i e = 4HL
< 2VL Z Viin ZH(Z € [Kluyp) — +Zﬂ(i € [klyp) 3 (56)
i=1 j=h i=1 j=n I 3 h=j T
(a) (b)
We now prove bounds on (a) and (b) respectively
k H—1 k H—1
=2 > Vit 2 Vi Vi 7
i=1 j=h i=1 j=h

(e) (d)

(c) and (d) can be bounded under the events &€ and €y, 5, using the results of Lem. 8 and Lem.9. We then deduce
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4H?L

(@) < HTy+2H*Uy1 +6H?*\/TiL +
< 2HT} + 2HUy 1,

where the last line follows by the fact that for the typical episodes T}, > 250H2S? AL?. Thus if T}, < H2L the term Cy j,
trivially equals to O otherwise the higher order terms are bounded by O(HT},).

We now bound (b) using a pigeon-hole argument

Z < 2SAIn(3T).

SM—‘

Ni(z,a
(b) <2 >
n=1

(z,a)eSx.A

Plugging the bound on (a) and (b) into Eq. 56 and taking in to account that for the typical episodes [k]y, we have that
T > H?L completes the proof.

O

We now bound By, p,:

Lemma 12. Let k € [K| and h € [H). Let the bonus is defined according to Algo. 4. Then under the events € and Qy p,
the following hold for every x € S,

AN

Bryn < 11L\/T HSA+12/H2SAL2U + 57T0H*S*AL?, (58)
Bina < 11Ly/Nj,(x)HSA+12\/H>SAL?Uy p, » + 5T0H>S*AL?, (59)

Proof. Here we only prove the bound on Eq. 58. The proof for the bound of Eq. 59 can be done in a very similar manner,
as it is shown in the previous lemmas (the only difference is that H N ]'C p(z) and Uy 1, » replace Ty, and Uy, 1, respectively).
We first notice that the following holds:

N

=
L

a = 8V, ;4L
Bin < Z]I(Z G typ Z 2lhgHl +LZ ) 6 typ)
1= j=h 1=1

N5

. 100252H2AL?
pr min <N’()’H2>

h ’J yES 7.]+1

J

(a) ©)

We first note that the bound on By, ;, is similar to the bound on CY, ;. The main difference (beside the difference in H.O.Ts)
is that here Vj | is replaced by V; ;1. So in our proof we first focus on dealing with this difference.

The Cauchy—Schwarz inequality leads to:

H-1

k k Ho1 o
(a) V8L Z Z ij+1(z,a) Z]I (k € [K]iyp) neg’
=1 %

i=1 j=h j=h

,_.

[

(e) (d)
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The bound on (d) is identical to the corresponding bound in Lem. 11. So we only focus on bounding (c¢):

H-1

i=1 j=h

k H-—
Vi +Z Z Vi — Vi (60)

(e ©))

(e) and (f) can be bounded in high probability using the results of Lem. 8 and Lem.10. This implies
4H?L
(¢) < HTy+3H*Uy, +15H*S\/ AT, L + —5
< 20T+ 3H?Uy 1,

where the last line follows by the fact that for the typical episodes Ty, > 250H2S2AL. Thus if T}, < 250H2S?L then
By, j, trivially equals to 0 otherwise the higher order terms are bounded by O(HT'). Combining the bound on (b) and (c)
leads to the following bound on (a):

(a) < 8L+/ HSAT]C+12HL\/SAU;€)1.

To bound (b) we make use of Cauchy-Schwarz inequality again.

k H— k H-1

CEI O ST o o STITS 35 ST

i=1 j=h yes i=1 j=h

(9) (R)

The term (k) bounded by 25 AL using a pigeon-hole argument (see Lem. 11). We proceed by bounding (g):

k H—1 k H—1 k H-1
< Z Z (Dij — pig)b u+1 "‘Z Z (pijby — z]+1($z i+1)) "‘Z]I(i € [Klyp) Z b;,j+1(xi~,j+1) .
i=1 j=h i=1 j=h i=1 j=h

(@) () k

Given that the event £ holds the term (i) bounded by 2v/2H?2S\/ALT}, by using the pigeon-hole argument. Under the
event & the event &, (Fy k.n, H?) holds. This implies that the term (j) is also bounded by 2H?2+/T L as it is sum of the
martingale differences. The term (k) is also bounded by 20000 H3 S5 A3 L3 using the pigeon-hole argument. Combining
all these bounds together leads to the following bound on (b)

(b) < \/ 32vV2H2S2\/T), AL® + 32H2S A\/ Ty L® + 32000054 H4 A2 3.

Combining this with the bound on (a) and taking into account the fact that we only bound the By, 5, for the typical episodes,
in which T}, > 250H?2S2 AL?, completes the proof.

O

Lemma 13. Let the bonus is defined according to Algo. 4. Then under the events £ and S 1 the following hold

Regret(K) < Regret(K) < U1 < 15LVHSAT + 16HL+\/SAU, 1 + 820H2S*A2L + 2HVTL.  (61)
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Proof. We first notice that Regret(K') and Regret(K) are bounded by Uy 1 due to Lem.6. To bound Uy ; we sum up the

regret due to By, p, and C j, from Lem. 11 and Lem. 12. We also bound the sum Zszl Zle ca,k,n by 2HSAL using
a pigeon hole argument. We also note that By, ;, and C}, j, only account for the regret of typical episodes in which 7" >
H?S52 A2L. The regret of those episodes which do not belong to the typical set [k]iy,, can be bounded by O(H?S?A?L?),
trivially. O

The following lemma establishes an explicit bound on the regret:
Lemma 14. Let the bonus is defined according to Algo. 4. Then under the events £ and Qi 1 the following hold

—_—~—

Regret(K) < Regret(K) < U < 30LVHSAT + 2500H*S?AL* + AHVTL. (62)

Proof. The proof follows by solving the bound of Lem. 13 in terms of Uy, ;. which only contributes to the additional regret
of O(H?L?SA). O

Lemma 15. Let the bonus is defined according to Algo. 3. Then under the events £ and Qi 1 the following holds

—_~

Regret(K) < Regret(K) < Ux1 < 20HLVSAT + 250H*S? AL (63)

Proof. The proof up to Lem. 11 is identical to the proof of Lem. 14. The main difference is to prove bound on C}, ;, and
B, 5, here we use a loose bound of O(H %) for both exploration bonus by, 5, and the confidence interval c; x5, and
then sum these terms using a pigeon-hole argument (The proof is provided in Jaksch et al., 2010) which leads to a bound
of O(HVSATL) on both By 1 and C 1. Plugging these results into the bound of Lem. 7 combined with the regret of

non-typical episodes complete the proof

O

Lemma 16. Let the bonus is defined according to Algo. 4. Let k € [K| and h € [H]. Then under the events £ and Q p,
the following hold for every x € S,

Regret(k,x, h)

IN

Regret(k,,h) < 30HL/SAN] ,,(z) + 2500H*S*AL? + 4H'? [N] , ()L

< 100H'"®SL\/AN} ,(s).

Proof. The proof is similar to the proof of total regret. Here also we use Lem. 12, Lem. 11 and a pigeon-hole argument to
bound the regrets due to By, 5, C , and ¢4 i, ,. We then incorporate these terms into Lem.6 to bound the regret in terms of
Uy.h,«- The result follows by solving the bound w.r.t. the upper bound Uy, 5, .. O

A

Lemma 17. Let the bonus b is defined according to Algo. 4. Let k € [K| and h € [H]. Then under the events £ and Q

the following hold for every x € S
[H3S2AL?
-V < 1 _ .
V]g7h($) Vh (a:) = 00 N,;,L(s)

Proof. From Lem. 16 we have that
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100H"°SLy/ AN} , (s)

k
e Zﬂ(wi,h = a)(Vin(z) =V, (2))
k
> (Vew(z) = Vi (@) Y Wain = 2) = Nj (@) (Vi (@) = Vi (2)),
i=1

where the last inequality holds due to the fact that V}, ;, by definition is monotonically non-increasing in k. The proof then
follows by collecting terms.

O

Lemma 18. Let the bonus b is defined according to Algo. 3. Then under the event £ the set of events {Qy, p } ke[K],heH
hold.

Proof. We prove this result by induction. First we notice that for h = H by definition V5, = V;’ thus the inequality
Vi,n = V) trivially holds. Thus to prove this result for A < H we only need to show that if the inequality V3 ;, > V}*
holds for A it also holds for h — 1 for every h < H:

Vin(z) = Vi (@) = TV (2) = TV (2) = be(a, w3, (2)) + BT Viwsa (@) = P Vignra ()
= be(2, T (@) + P (Vinsr = Vi) (@) + (B = PV (2)
> by(w, mh () + (P = BT )Viiya (@),
where the last line follows by the induction condition that Vi 41 > V}* "1~ The fact that the event £ hols implies that
(PF" — ]3,372)‘/};_1 () < 1 (Ng(z, w5 () < bi(z, 75 (x)), which completes the proof.
O

Lemma 19. Let the bonus b is defined according to Algo. 4. Then under the event & the set of events {Q n}re|K]|,heH
hold.

Proof. We prove this result by induction. We first notice that in the case of the first episode V; ,, = H > V}*.

To prove this result by induction in the case of 1 < k € [K] we need to show that in the case of h € [H — 1] if Qg p41
holds then €2y, 5, also holds.

If Q) -1 holds then V; ; > V* for every (i, j) € [k, h]nisi. We can then invoke the result of Lem. 17 which implies

100H5SLVA

Vinr1(z) — Vil (z) -
Nk.,hﬂ(l’)

Using this result which guarantees that Vj 11 is close to V;7, | we prove that Vi, , — V}* > 0, that is the event Q4.5 holds.
Vier = Vi =min(Vi—1p, Te n Vi j+1, H) = Vi

If Vi1 < TenVijgn the result Vi, — Vi = Vi_1 — Vi > 0 holds trivially. Also if Vi_1, > H the result trivially
holds. So we only need to consider the case that 7 1, V; j4+1 < Vi—1,, < H in that case we have w
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Vin() =Vi(e) = TenVige() = TViia(2)

B il

Do (@, 7 (2, 1)) + BF Vi jir () — PF*Vi (2)
= bpnle, 7 (2,h) + (PF = PF Vi (@) + PF* (Vi1 — Vi) (2)

> bpl(a, 7 (2, ) + (PF — PE Vi (@),

where in (I) we rely on the fact that 7, j, is the greedy policy w.r.t. V, p,. Thus

Do (@, 7% (2, h)) + BF Vijoa(z) < bpp(z,mp(a, b)) + PreVi i (a).

Also (I7) follows from the induction assumption. Under the event £ we have

Vien—=Vy > bpn—ca V5, Ni)
o [8Ykal ) ViL 14L
- Ny, Ny 3Ny,
(a)

-~ . 2717302 2272
D, [Smln (100 ]I\L]I, S2A%L ’HQM "

k,h+1

+ Ny, + 3N},
We now prove a lower bound on (a):
aVi, —8Vin .
@z Ve sV
0 otherwise.

We proceed by bounding %A’z ;, in terms of %Afk 5, from above:

SOOI _ _
Vin < 2Vig +2Var, g (Vieht1(y) = Via (v)) < 2Vi +2 Pe(Vighr — Vi)?,
(b)

where (I) is an application of Lem. 2. We now bound (b). Combining this result with the result of Eq. 64 leads to the
following bound on (a)

~ . 277302 472
8P [mln <71001\1;{ S"AL ,H2 R R
_ k,h+1 *
(a) > N, Vi < V¥,

0 otherwise,

where the last inequality holds under the event £. The proof is completed by plugging (a) and (b) into Eq. 64 which proves
that Vi, ,, > V;* thus the event €, j, holds.

O



