
Minimax Regret Bounds for Reinforcement Learning

Appendices
We begin by introducing some notation in Sect. B and Sect. A. We then provide the full analysis of UCBVI in Sect. C.

A. Table of Notation

Symbol Explanation
S The state space
A The action space
πk The policy at episode k
P The transition distribution
R The reward function
S Size of state space
A Size of action space
H The horizon length
T and Tk The total number of steps and number of steps up to episode k
K The total number of episodes
Nk(x, a) Number of visits to state-action pair (x, a) up to episode k
V ∗h Optimal value function V ∗

T Bellman operator
Vk,h The estimate of value function at step h of episode k
Qk,h The estimate of action value function at step h of episode k
b The exploration bonus
L ln(5SAT/δ)
Nk(x, a, y) Number of transitions from x to y upon taking action a up to episode k
N ′k,h(x, a) Number of visits to state-action pair (x, a) at step h up to episode k
N ′k,h(x) Number of visits to state x at step h up to episode k
P̂k(y|x, a) The empirical transition distribution from x to y upon taking action a up to episode k
V̂k,h(x, a) The empirical next-state variance of Vk,h for every (x, a)
V∗h(x, a) The next-state variance of V ∗ for every state-action pair (x, a)

V̂∗k,h(x, a) The empirical next-state variance of V ∗h for every state-action pair (x, a) at episode k
Vπh(x, a) The next-state variance of V πh for every state-action pair (x, a)

b′i,j(x) min
(

1002S2H2AL2

N ′i,j(x) , H2
)

[(x, a)]k Set of typical state-action pairs
[k]typ Set of typical episodes
[y]k,x,a Set of typical next states at every episode k for every (x, a)

Regret(k) The regret after k episodes
R̃egret(k) The upper-bound regret after k episodes
Regret(k, x, h) The regret upon encountering state x at step h after k episodes
R̃egret(k, x, h) The regret upon encountering state x at step h after k episodes
∆k,h One step regret at step h of episode k
∆̃k,h One step upper-bound regret at step h of episode k
∆̃typ,k,h One step upper-bound regret at step h of episode k for typical episodes
Mt The martingale operator
εk,h and ε̄k,h Martingale difference terms
c1(v, n), c2(p, n) and c3(n) The confidence intervals for the value function and transition distribution
Ck,h Sum of confidence intervals c1 up to step h of episode k
Bk,h Sum of exploration bonuses b up to step h of episode k
E The high probability event under which the concentration inequality holds
Ω The high probability event under which the estimates Vk,h are ucbs
Ht The history of all random events up to time step t
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B. Notation
Let denote the total number of times that we visit state x while taking action a at step h of all episodes up to episode k by
N ′k,h(x, a). We also use the notation N ′k,h(x) =

∑
a∈AN

′
k,h(x, a) for the total number of visits to state x at time step h

up to episode k. Also define the empirical next-state variance V̂k,h(x, a), the next-state variance of optimal value function
V∗h(x, a) the next-state empirical variance of optimal value function V̂∗k,h(x, a) and the next-state variance of V πh as

V̂k,h(x, a)
def
= Vary∼P̂k(·|x,a)(Vk,h+1(y)),

V∗h(x, a)
def
= Vary∼P (·|x,a)(V

∗
h (y)),

V̂∗k,h(x, a)
def
= Vary∼P̂k(·|x,a)(V

∗
h (y)),

Vπh(x, a)
def
= Vary∼P (·|x,a)(V

π
h (y)).

for every (x, a) ∈ S ×A and k ∈ [K] and h ∈ [H]. We further introduce some short-hand notation: we use the lower case
to denote the functions evaluated at the current state-action pair, e.g., we write nk,h for Nk(xk,h, πk(xk,h, h)) and vk,h for
Vk,h(xk,h). Let also denote V∗k,h = V∗k,h(xk,h, πk(xk,h, h)) and Vπkk,h = Vπkk,h(xk,h, πk(xk,h, h)) for every k ∈ [K] and

h ∈ [H]. Also define b′i,j(x) = min
(

1002S2H2AL2

N ′i,j+1(x) , H2
)

for every x ∈ S.

B.1. “Typical” state-actions and steps

In our analysis we split the episodes into 2 sets: the set of “typical” episodes in which the number of visits to the encoun-
tered state-actions are large and the rest of the episodes. We then prove a tight regret bound for the typical episodes. As the
total count of other episodes is bounded this technique provides us with the desired result. The set of typical state-actions
pairs for every episode k is defined as follows

[(x, a)]k
def
= {(x, a) : (x, a) ∈ S ×A, Nh(x, a) ≥ H,N ′k,h(x) ≥ H}.

Based on the definition of [(x, a)]typ we define the set of typical episodes and the set of typical state-dependent episodes as
follow

[k]typ
def
= {i : i ∈ [k],∀h ∈ [H], (xi,h, πi(xi,h, h)) ∈ [(x, a)]k, i ≥ 250HS2AL},

[k]typ,x
def
= {i : i ∈ [k],∀h ∈ [H], (xi,h, πi(xi,h, h)) ∈ [(x, a)]k, N

′
k,h(x) ≥ 250HS2AL}.

Also for every (x, a) ∈ S ×A the set of typical next states at every episode k is defined as follows

[y]k,x,a
def
= {y : y ∈ S, Nk(x, a)P (y|x, a) ≥ 2H2L}.

Finally let denote [y]k,h = [y]k,xk,h,πk(xxk,h ) for every k ∈ [K] and h ∈ [H].

B.2. Surrogate regrets

Our ultimate goal is to prove bound on the regret Regret(k). However in our analysis we mostly focus on bounding the
surrogate regrets. Let ∆̃k,h(x)

def
= Vk,h(x)− V πkh (x) for every x ∈ S, h ∈ [H] and k ∈ [K]. Then the upper-bound regret

R̃egret defined as follows

R̃egret(k)
def
=

k∑
i=1

δ̃i,1.
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R̃egret(k) is useful in our analysis since it provides an upperbound on the true regret Regret(k). So one can bound
R̃egret(k) as a surrogate for Regret(k).

We also define the corresponding per state-step regret and upper-bound regret for every state x ∈ X and step h ∈ [H],
respectively, as follows

Regret(k, x, h)
def
=

k∑
i=1

I(xi,h = x)δi,h,

R̃egret(k, x, h)
def
=

k∑
i=1

I(xi,h = x)δ̃i,h.

B.3. Martingale difference sequences

In our analysis we rely heavily on the theory of martingale sequences to prove bound on the regret incurred due to encoun-
tering a random sequence of states. We now provide some definitions and notation in that regard.

We define the following martingale operator for every k ∈ [K], h ∈ [H] and F : S → <. Also let t = (k − 1)H + h
denote the time stamp at step h of episode k then

MtF
def
= Pπkh F − F (xk,h+1).

Let Ht be the history of all random events up to (and including) step h of episode k then we have that E(MtF |Ht) = 0.
Thus MtF is a martingale difference w.r.t. Ht. Also let G be a real-value function depends on Ht+s for some integer
s > 0. Then we generalize our definition of operatorMt as

MtG
def
= E (G(Ht+s)|Ht)−G(Ht+s),

where E is over the randomization of the sequence of states generated by the sequence of policies πk, πk+1, . . . . Here also
MtG is a martingale difference w.r.t. Ht.

Let define ∆typ,k,h : S → < as follows for every k ∈ [K] and h ∈ [H] and y ∈ S

∆̃typ,k,h+1(y)
def
=

√
Ik,h(y)

nk,hpk,h(y)
∆̃k,h+1(y),

where the function pk,h : S → [0, 1] is defined as pk,h(y) = Pπkh (y|xk,h) and Ik,h(y) writes for Ik,h(y) = I(y ∈ [y]k,h)
for every y ∈ X . We also define the following martingale differences which we use frequently

εk,h
def
= Mt∆̃k,h+1,

ε̄k,h
def
= Mt∆̃typ,k,h+1.

B.4. High probability events

We now introduce the high probability events E and Ωk,h under which the regret is small.

Let use the shorthand notation L def
= ln

(
5SAT
δ

)
. Also for every v > 0, p ∈ [0, 1] and n > 0 let define the confidence

intervals c1, c2 and c3, respectively, as follow
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c1(v, n)
def
= 2

√
vL

n
+

14HL

3n
,

c2(p, n)
def
= 2

√
p(1− p)L

n
+

2L

3n
,

c3(n)
def
= 2

√
SL

n
.

Let P be the set of all probability distributions on S. Define the following confidence set for every k = 1, . . . ,K, n > 0
and (x, a) ∈ S ×A

P(k, h, n, x, a, y)
def
=

{
P̃ (·|x, a) ∈ P : |(P̃ − P )V ∗h (x, a)| ≤ min

(
c1 (V∗h(x, a), n) , c1

(
V̂∗k,h(x, a), n

))
|P̃ (y|x, a)− P (y|x, a)| ≤ c2 (P (y|x, a), n) ,

‖P̃ (·|x, a)− P (·|x, a)‖1 ≤ c3(n)
}
.

We now define the random event EP̂ as follows

EP̂
def
=

{
P̂k(y|x, a) ∈ P(k, h,Nk(x, a), x, a, y),∀k ∈ [K],∀h ∈ [H],∀(y, x, a) ∈ S × S ×A

}
.

Let t be a positive integer. Let F = {fs}s∈[t] be a set of real-value functions on Ht+s, for some integer s > 0. We now
define the following random events for every w̄ > 0 and ū > 0 and c̄ > 0:

Eaz(F , ū, c̄)
def
=

{
t∑

s=1

Msfs ≤ 2
√
tū2c̄

}
,

Efr(F , w̄, ū, c̄)
def
=

{
t∑

s=1

Msfs ≤ 4
√
w̄c+

14ūc̄

3

}
.

We also use the short-hand notation Eaz(F , ū) and Efr(F , w̄, ū) for Eaz(F , ū, L) and Efr(F , w̄, ū, L), respectively.

Now let define the following sets of random variables for every k ∈ [K] and h ∈ [H]:

F∆̃,k,h

def
=

{
∆̃i,j : i ∈ [k], h < j ∈ [H − 1]

}
,

F ′
∆̃,k,h

def
=

{
∆̃typ,i,j : i ∈ [k], h < j ∈ [H]

}
,

F∆̃,k,h,x

def
=

{
∆̃i,jI(xi,h = x) : i ∈ [k], h < j ∈ [H]

}
,

F ′
∆̃,k,h,x

def
=

{
∆̃typ,i,jI(xi,h = x) : i ∈ [k], h < j ∈ [H]

}
,

GV,k,h
def
=


H∑

j=h+1

Vπij : i ∈ [k], h < j ∈ [H]

 ,

GV,k,h,x
def
=


H∑

j=h+1

Vπij I(xi,h = x) : i ∈ [k], h < j ∈ [H]

 ,

Fb′,k,h
def
=

{
b′i,j : i ∈ [k], h < j ∈ [H − 1]

}
,

Fb′,k,h,x
def
=

{
b′i,jI(xi,h = x) : i ∈ [k], h < j ∈ [H]

}
.
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We now define the high probability event E as follows

E def
= EP̂

⋂ ⋂
k∈[K]
h∈[H]
x∈S

[
Eaz(F∆̃,k,h, H)

⋂
Eaz(F ′∆̃,k,h, 1/

√
L)
⋂
Eaz(F∆̃,k,h,x, H)

⋂
Eaz(F ′∆̃,k,x,h, 1/

√
L)

⋂
Efr(GV,k,h, H4T,H3)

⋂
Eaz(GV,k,h,x, H5N ′k,h(x), H3)

⋂
Eaz(Fb′,k,h, H2)

⋂
Eaz(Fb′,k,h,x, H2)

]
.

The following lemma shows that the event E holds with high probability:

Lemma 1. Let δ > 0 be a real scalar. Then the event E holds w.p. at least 1− δ.

Proof. To prove this result we need to show that a set of concentration inequalities with regard to the empirical model P̂k
holds simultaneously. For every h ∈ [H] the Bernstein inequality combined with a union bound argument, to take into
account that Nk(x, a) ∈ [T ] is a random number, leads to the following inequality w.p. 1 − δ (see, e.g., Cesa-Bianchi &
Lugosi, 2006; Bubeck & Cesa-Bianchi, 2012, for the statement of the Bernstein inequality and the application of the union
bound in similar cases, respectively.)

∣∣∣[(P − P̂k)V ∗h

]
(x, a)

∣∣∣ ≤
√

2V∗h(x, a) ln
(

2T
δ

)
Nk(x, a)

+
2H ln

(
2T
δ

)
3Nk(x, a)

, (9)

where we rely on the fact that V ∗h is uniformly bounded by H . Using the same argument but this time with the Empirical
Bernstein inequality (see, e.g., Maurer & Pontil, 2009), for Nk(x, a) > 1, leads to

∣∣∣[(P − P̂k)V ∗h

]
(x, a)

∣∣∣ ≤
√

2V̂∗k,h(x, a) ln
(

2T
δ

)
Nk(x, a)

+
7H ln

(
2T
δ

)
3Nk(x, a)

. (10)

The Bernstein inequality combined with a union bound argument on Nk(x, a) also implies the following bound w.p. 1− δ

|Nk(y, x, a)−Nk(x, a)P (y|x, a)| ≤

√
2Nk(x, a)Varz∼P (·|x,a)(1(z = y)) ln

(
2T

δ

)
+

2 ln
(

2T
δ

)
3

,

which implies the following bound w.p. 1− δ:

∣∣∣P̂k(y|x, a)− P (y|x, a)
∣∣∣ ≤

√
P (y|x, a)(1− P (y|x, a)) ln

(
2T
δ

)
Nk(x, a)

+
2 ln

(
2T
δ

)
3Nk(x, a)

. (11)

A similar result holds on `1-normed estimation error of the transition distribution. The result of (Weissman et al., 2003)
combined with a union bound on Nk(x, a) ∈ [T ] implies w.p. 1− δ

∥∥∥P̂k(·|x, a)− P (·|x, a)
∥∥∥

1
≤

√
2S ln

(
2T
δ

)
Nk(x, a)

. (12)

We now focus on bounding the sequence of martingales. Let n > 0 be an integer and u, δ > 0 be some real scalars. Let the
sequence of random variables {X1, X2, . . . , Xn} be a sequence of martingale differences w.r.t. to some filtration Fn. Let
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this sequence be uniformly bounded from above and below by u. Then the Azuma’s inequality (see, e.g., Cesa-Bianchi &
Lugosi, 2006) implies that w.p. 1− δ

n∑
i=1

Xi ≤

√
2nu ln

(
1

δ

)
. (13)

When the sum of the variances
∑n
i=1 Var(Xi|Fi) ≤ w for some w > 0 then the following sharper bound due to Freedman

(1975) holds w.p. 1− δ

n∑
i=1

Xi ≤

√
2w ln

(
1

δ

)
+

2u ln
(

1
δ

)
3

. (14)

Let k ∈ [K], h ∈ [H] and x ∈ X . Then the inequality of Eq. 13 immediately implies that the following events holds w.p.
1− δ:

Eaz

(
F∆̃,k,h, H, ln (1/δ)

)
, (15)

Eaz

(
F ′

∆̃,k,h
, 1/
√
L, ln (1/δ)

)
, (16)

Eaz
(
Fb′,k,h, H2, ln (1/δ)

)
. (17)

Also Eq. 13 combined with a union bound argument over all N ′k,h(x) ∈ [T ] (see, e.g., Bubeck et al., 2011, for the full
description of the application of union bound argument in the case of martigale process with random stopping time) implies
that the following events hold w.p. 1− δ

Eaz

(
F∆̃,k,h,x, H, ln (T/δ)

)
, (18)

Eaz

(
F ′

∆̃,k,h,x
, 1/
√
L, ln (T/δ)

)
, (19)

Eaz
(
Fb′,k,h,x, H2, ln (T/δ)

)
. (20)

Similarly the inequality of Eq. 14 leads to the following events hold w.p. 1− δ

Efr
(
GV,k,h, w̄k,h, ,H3, ln (T/δ)

)
, (21)

Efr
(
GV,k,h,x, w̄k,h,x, ,H3, ln (1/δ)

)
, (22)

where w̄k,h and w̄k,h,x are upper bounds on Wk,h and Wk,h,x, respectively, defined as

Wk,h
def
=

k∑
i=1

Var

H−1∑
j=h

Vπi,j+1

∣∣∣∣∣∣Hi,1
 , (23)

Wk,h,x
def
=

k∑
i=1

I(xi,h = x)E

H−1∑
j=h

Vπi,j+1

∣∣∣∣∣∣Hi,1
 . (24)

So to establish a value for w̄k,h and w̄k,h,x we need to prove bound on Wk,h and Wk,h,x. Here we only prove this bound
for Wk,h as the proof techniques to bound Wk,h,x is identical to the way we bound Wk,h.
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Wk,h ≤
k∑
i=1

E

H−1∑
j=h

Vπki,j+1

∣∣∣∣∣∣Hk
2

≤ H3
k∑
i=1

E

H−1∑
j=h

Vπki,j+1

∣∣∣∣∣∣Hk
 . (25)

Now let the sequence {x1, x2, . . . , xH} be the sequence of states encountered by following some policy π throughout an
episode k. Then the recursive application of LTV leads to (see e.g., Munos & Moore, 1999; Lattimore & Hutter, 2012, for
the proof.)

E

H−1∑
j=h

Vπ(xj , π(xj , j))

 = Var

H−1∑
j=h

rπ(xj)

 . (26)

By combining Eq. 26 into Eq. 25 we deduce

Wk,h ≤ H3
k∑
i=1

Var

H−1∑
j=h

rk,h

∣∣∣∣∣∣Hk
 ≤ H5k = H4Tk. (27)

Similarly the following bound holds on Wk,h,x

Wk,h,x ≤ H5Nk,h(x). (28)

Plugging the bounds of Eq. 27 and Eq. 28 in to the bounds of Eq. 21 and Eq. 22 and a union bound over all Nk,h(x) ∈ [T ]
leads to the following events hold w.p. 1− δ:

Efr
(
GV,k,h, H4T,H3, ln (1/δ)

)
, (29)

Efr
(
GV,k,h,x, H5Nk,h(x), H3, ln (T/δ)

)
. (30)

Combining the results of Eq. 9, Eq. 10, Eq. 11, Eq. 12, Eq. 15, Eq. 16 Eq. 17, Eq. 18, Eq. 19, Eq. 20, Eq. 29 and Eq. 30
and taking a union bound over these random events as well as all possible k ∈ [K], h ∈ [H] and (s, a) ∈ S ×A proves the
result.

B.4.1. UCB EVENTS

Let k ∈ [K] and h ∈ [H]. Denote the set of steps for which the value functions are obtained before Vk,h as

[k, h]hist = {(i, j) : i ∈ [K], j ∈ [H], i < k ∨ (i = k ∧ j > h)}.

Let Ωk,h = {Vi,j ≥ V ∗h ,∀(i, j) ∈ [k, h]hist} be the event under which Vi,j prior to Vk,h computation are upper bounds on
the optimal value functions. Using backward induction on h (and standard concentration inequalities) we will prove that
Ωk,h holds under the event E (see Lem. 19).
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B.5. Other useful notation

Here we define some other notation that we use throughout the proof. We denote the total count of steps up to episode
k ∈ [K] by Tk

def
= H(k − 1). We first define c4,k,h, for every h ∈ [H] and k ∈ [K], as follow

c4,k,h =
4H2SAL

nk,h
.

for every k ∈ [K] , h ∈ [H] and x ∈ [x] we also introduce the following notation which we use later when we sum up the
regret:

Ck,h
def
=

k∑
i=1

I(i ∈ [k]typ)

H−1∑
j=h

c1,i,j ,

Bk,h
def
=

k∑
i=1

I(i ∈ [k]typ)

H−1∑
j=h

bi,j ,

Ck,h,x
def
=

k∑
i=1

I(i ∈ [k]typ,x, xk,h = x)

H−1∑
j=h

c1,i,j ,

Bk,h,x
def
=

k∑
i=1

I(i ∈ [k]typ,x, xk,h = x)

H−1∑
j=h

bi,j ,

where c1,k,h is the shorthand-notation for c1(v∗k,h, nk,h). We also define the upper boundUk,h andUk,h,x for every k ∈ [K]
, h ∈ [H] and x ∈ S as follows, respectively

Uk,h
def
= e

k∑
i=1

H−1∑
j=h

[bi,j + c1,i,j + c4,i,j ] + (H + 1)
√
TkL,

Uk,h,x
def
= e

k∑
i=1

H−1∑
j=h

[bi,j + c1,i,j + c4,i,j ] + (H + 1)3/2
√
N ′k,h(x)L,

C. Proof of the Regret Bounds
Before we start the main analysis we state the following useful lemma that will be used frequently in the analysis:

Lemma 2. let X ∈ R and Y ∈ R be two random variables. Then following bound holds for their variances

Var(X) ≤ 2 [Var(Y ) + Var(X − Y )] .

Proof. The following sequence of inequalities hold

Var(X) = E(X − Y − E(X − Y ) + Y − E(Y ))2 ≤ 2E(X − Y − E(X − Y ))2 + 2E(Y − E(Y ))2.

The result follows from the definition of variance.

We proceed by proving the following key lemma which shows that proves bound on ∆k,h under the assumption that Vk,h
is UCB w.r.t. V ∗h .
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Lemma 3. Let k ∈ [K] and h ∈ [H]. Let the events E and Ωk,h hold. Then the following bound holds on δk,h and δ̃k,h:

δk,h ≤ δ̃k,h ≤ e
H−1∑
i=h

[
εk,i + 2

√
Lε̄k,i + c1,k,i + bk,i + c4,k,i

]
. (31)

Proof. For the ease of exposition we abuse the notation and drop the dependencies on k, e.g., we write x1, π and V1 for
xk,1, πk and Vk,1, respectively. We proceed by bounding δ̃h under the event E at every step 0 < h < H:

δ̃h = ThVh+1(xh)− T πh V πh+1(xh)

= [P̂πh Vh+1](xh) + bh − [Pπh V
π
h+1](xh)

= bh + [(P̂πh − Pπh )V ∗h+1](xh) + [(P̂πh − Pπh )(Vh+1 − V ∗h+1)](xh) + [Pπh (Vh+1 − V πh+1)](xh)

≤ δ̃h+1 + εh + bh + c1,h + [(P̂πh − Pπh )(Vh+1 − V ∗h+1)](xh)︸ ︷︷ ︸
(a)

, (32)

where the last inequality follows from the fact that under the event E we have that [(P̂πh −Pπh )V ∗h+1](xh) ≤ c1,h. We now
bound (a):

(a) =
∑
y∈S

(P̂πh (y|xh)− Pπh (y|xh))(Vh+1(y)− V ∗h+1(y))

(I)

≤
∑
y∈S

2

√
ph(y)(1− ph(y))L

nh
+

4L

3nh

∆h+1(y)

≤ 2
√
L
∑
y∈S

√
ph(y)

nh
∆̃h+1(y)︸ ︷︷ ︸

(b)

+
4SHL

3nh
,

where (I) holds under the event E . We proceed by bounding (b):

(b) =
∑
y∈[y]h

√
ph(y)

nh
∆̃h+1(y)

︸ ︷︷ ︸
(c)

+
∑
y/∈[y]h

√
ph(y)

nh
∆̃h+1(y)

︸ ︷︷ ︸
(d)

. (33)

The term (c) can be bounded as follows

(c) =
∑
y∈[y]h

Pπh (y|xh)

√
1

nhph(y)
∆̃h+1(y) = ε̄h +

√
1

nhph(xh+1)
I(xh+1 ∈ [y]h)δ̃h+1

≤ ε̄h +

√
1

4LH2
δ̃h+1, (34)

where in the last line we rely on the definition of [y]h. We now bound (d):

(d) =
∑
y/∈[y]h

√
ph(y)nh
n2
h

∆̃h+1(y) ≤ SH
√

4LH2

nh
. (35)
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By combining Eq. 34 and Eq. 35 into Eq. 33 we deduce

(b) ≤ SH
√

4LH2

nh
+

√
1

4LH2
δ̃h+1 + ε̄h. (36)

By combining Eq. 36 and Eq. 33 into Eq. C we deduce

δ̃h ≤ εh + 2
√
Lε̄h + bh + c1,h + c4,h +

(
1 +

1

H

)
δ̃h+1.

Let denote γh = (1 + 1/H)h. The previous bound combined with an induction argument implies that

δ̃h ≤
∑H−1
i=h γi−h

[
εi + 2

√
Lε̄i + c1,i + c4,i + bi

]
.

The inequality ln(1 + x) ≤ x for every x > −1 leads to γh ≤ γH ≤ e for every h ∈ [H]. This combined with the
assumption that vh ≥ v∗h under the event Ωh completes the proof.

Lemma 4. Let k ∈ [k] and h ∈ [H]. Let the events E and Ωk,h hold. Then

k−1∑
i=1

δi,h ≤
k−1∑
i=1

δ̃i,h ≤ e
k−1∑
i=1

H−1∑
j=h

[
εi,j + 2

√
Lε̄i,j + bi,j + c1,i,j + c4,i,j

]
.

Proof. The proof follows by summing up the bounds of Lem. 3 and taking into acoount the fact if Ωk,h holds then Ωi,j for
all (i, j) ∈ [k, h]hist hold.

To simplify the bound of Lem. 4 we prove bound on sum of the martingales εk,h and ε̄k,h
Lemma 5. Let k ∈ [k] and h ∈ [H]. Let the events E and Ωk,h hold. Then the following bound holds

k∑
i=1

H−1∑
j=h

εi,j ≤ H
√

(H − h)kL ≤ H
√
TkL, (37)

k∑
i=1

H−1∑
j=h

ε̄i,j ≤
√

(H − h)k ≤
√
Tk. (38)

Also the following bounds holds for every x ∈ X and h ∈ H:

k∑
i=1

I(xi,h = x)

H−1∑
j=h

εi,j ≤ H
√

(H − h)N ′k,h(x)L, (39)

k∑
i=1

I(xi,h = x)

H−1∑
j=h

ε̄i,j ≤
√

(H − h)N ′k,h(x). (40)

Proof. The fact that the event E holds implies that the events Eaz(F∆̃,k,h, H), Eaz(F ′∆̃,k,h,
1√
L

) , Eaz(F∆̃,k,h,x, H) and

Eaz(F ′∆̃,x,k,h,
1√
L

) hold. Under these events the inequalities of the statement hold. This combined with the fact that
(H − h)k ≤ Tk completes the proof.
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We now bound the sum of δs in terms of the upper-bound U :

Lemma 6. Let k ∈ [K] and h ∈ [H]. Let the events E and Ωk,h holds. Then the following bounds hold for every h ∈ [H]
x ∈ S

k∑
i=1

δi,h ≤
k∑
i=1

δ̃i,h ≤ Uk,h ≤ Uk,1,

k∑
i=1

I(xi,h = x)δi,h ≤
k∑
i=1

I(xi,h = x)δ̃i,h ≤ Uk,h,x. ≤ Uk,1,x.

Proof. The proof follows by incorporating the result of Lem. 5 into Lem. 4 and taking into account that for every h ∈ [H]
the term Uk,h (Uk,h,x) is a summation of non-negative terms which are also contained in Uk,1 (U1,h,x).

Lemma 7. Let k ∈ [K] and h ∈ [H]. Let the events E and Ωk,h holds. Then the following bounds hold for every x ∈ S

k∑
i=1

H∑
j=h

δi,j ≤
k∑
i=1

H∑
j=h

δ̃i,j ≤ HUk,1,

k∑
i=1

I(xi,h = x)

H∑
j=h

δi,j ≤
k∑
i=1

I(xi,h = x)

H∑
j=h

δ̃i,j ≤ HUk,1,x.

Proof. The proof follows by summing up the bounds of Lem. 6.

We now focus on bounding the terms Ck,h (Ck,h,x) and Bk,h (Bk,h,x) in Lem. 11 and Lem. 12, respectively. Before we
proceed with the proof of Lem. 11 and Lem. 12. we prove the following key result which bounds sum of the variances of
V πk,h using an LTV argument:

Lemma 8. Let k ∈ [K] and h ∈ [H]. Then under the events E and Ωk,h the following hold for every x ∈ S

k∑
i=1

H−1∑
j=h

Vπi,j+1 ≤ TkH + 2
√
H4TkL+

4H3L

3
,

k∑
i=1

I(xi,h = x)

H−1∑
j=h

Vπi,j+1 ≤ N ′k,h(x)H2 + 2
√
H5N ′k,h(x)L+

4H3L

3
.

Proof. Under E the events Efr(GV,k,h, H4Tk, H
3) and Efr(GV,k,h,x, H5Nk,h(x), H3) hold which then imply:

k∑
i=1

H−1∑
j=h

Vπi,j+1 ≤
k∑
i=1

E

H−1∑
j=h

Vπi,j+1

∣∣∣∣∣∣Hk,h
+ 2

√
H4TkL+

4H3L

3
, (41)

k∑
i=1

I(xi,h = x)

H−1∑
j=h

Vπi,j+1 ≤
k∑
i=1

I(xi,h = x)E

H−1∑
j=h

Vπi,j+1

∣∣∣∣∣∣Hk,h
+ 2

√
H5N ′k,hL+

4H3L

3
. (42)

The LTV argument of Eq. 26 then leads to
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k∑
i=1

E

H−1∑
j=h

Vπi,j+1

∣∣∣∣∣∣Hi,h
 =

k∑
i=1

Var

 H∑
j=h+1

rπi,j

 ≤ KH2 = TH, (43)

k∑
i=1

I(xi,h = x)E

H−1∑
j=h

Vπi,j+1

∣∣∣∣∣∣Hi,h
 =

k∑
i=1

I(xi,h = x)Var

 H∑
j=h+1

rπi,j

 ≤ N ′k,h(x)H2. (44)

Eq. 41 and Eq. 42 combined with Eq. 43 and Eq. 44, respectively, complete the proof.

Lemma 9. Let k ∈ [K] and h ∈ [H]. Then under the events E and Ωk,h the following hold for every x ∈ S

k∑
i=1

H−1∑
j=h

(
V∗i,j+1 − Vπi,j+1

)
≤ 2H2Uk,h + 4H2

√
TkL, (45)

k∑
i=1

I(xi,h = x)

H−1∑
j=h

(
V∗i,j+1 − Vπi,j+1

)
≤ 2H2Uk,h,x + 4H2

√
HN ′k,h(x, a)L. (46)

Proof. We begin by the following sequence of inequalities:

k∑
i=1

H−1∑
j=h

V∗i,j+1 − Vπi,j+1

(I)

≤
k∑
i=1

H−1∑
j=h

Ey∼pi,j
[(
V ∗i,j+1(y)

)2 − (V πii,j+1(y)
)2]

=

k∑
i=1

H−1∑
j=h

Ey∼pi,j
[
(V ∗j+1(y)− V πij+1(y)(V ∗j+1(y) + V πij+1(y))

]
≤ 2H

k∑
i=1

H−1∑
j=h

Ey∼pi,j
(
V ∗j+1(y)− V πij+1(y)

)
︸ ︷︷ ︸

(a)

, (47)

where (I) is obtained from the definition of the variance as well as the fact that V ∗i,j ≥ V πk,h. The last line also follows from
the fact that V πk ≤ V ∗h ≤ H .

Using an identical argument we can also prove the following bound for state-dependent difference:

k∑
i=1

I(xi,h = x)

H−1∑
j=h

V∗i,j+1 − Vπi,j+1 ≤ 2H

k∑
i=1

I(xi,h = x)

H−1∑
j=h

Ey∼pi,j
(
V ∗j+1(y)− V πij+1(y)

)
︸ ︷︷ ︸

(b)

, (48)

To bound (a) we use the fact that under the event E the event Eaz(F∆̃,k,h, H) also holds. This combined with the fact that

under the event Ωk,h the inequality δk,h ≤ δ̃k,h holds implies that

(a) ≤
k∑
i=1

H−1∑
j=h

δ̃i,j+1 + 2H
√
TkL

≤ HU1,h + 2H
√
TkL, (49)
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where in the last line we rely on the result of Lem. 7. Similarly we can prove the following bound for (b) under the events
Ωk,h and Eaz(F∆̃,k,h,x, H):

(b) ≤
k∑
i=1

I(xi,h = x)

H−1∑
j=h

∆̃i,j+1 + 2H1.5
√
N ′k,h(x)L

≤ HUk,h,x + 2H1.5
√
N ′k,h(x)L. (50)

The result then follows by incorporating the results of Eq. 49 and Eq. 50 into Eq. 47 and Eq. 48, respectively.

Lemma 10. Let k ∈ [K] and h ∈ [H]. Then under the events E and Ωk,h the following hold for every x ∈ S

k∑
i=1

H−1∑
j=h

V̂i,j+1 − Vπi,j+1 ≤ 2H2Uk,1 + 15H2S
√
ATkL, (51)

k∑
i=1

I(xi,h = x)

H−1∑
j=h

V̂i,j+1 − Vπi,j+1 ≤ 2H2Uk,h,x + 15H2S
√
HAN ′k,h(x)L. (52)

Proof. Here we only prove the bound on Eq. 51. The proof for the bound of Eq. 52 can be done in a very similar manner,
as it is shown in the previous lemmas (the only difference is that HN ′k,h(x) and Uk,h,x replace Tk and Uk,1, respectively).
The following sequence of inequalities hold:

k∑
i=1

H−1∑
j=h

V̂i,j+1 − Vπi,j+1

(I)

≤
k∑
i=1

H−1∑
j=h

Ey∼p̂i,j (Vi,j+1(y))
2 − Ey∼pi,j

(
V πij+1(y)

)2
+

k∑
i=1

H−1∑
j=h

(
Ey∼pi,jV ∗j+1(y)

)2 − (Ey∼p̂i,jV ∗j+1(y)
)2

(II)

≤
k∑
i=1

H−1∑
j=h

Ey∼p̂i,j (Vi,j+1(y))
2 −

H−1∑
j=1

Ey∼pi,j (Vi,j+1(y))
2

︸ ︷︷ ︸
(a)

+

k∑
i=1

H−1∑
j=h

Ey∼pi,j
[
(Vi,j+1(y))

2 −
(
V πij+1(y)

)2]
︸ ︷︷ ︸

(b)

+

k∑
i=1

H−1∑
j=h

4H2

√
L

nk,h︸ ︷︷ ︸
(c)

, (53)

where (I) holds due to the fact that under Ωk,h, Vi,j ≥ V ∗j ≥ V
πi
j and (II) holds under the event E .

We now bound (a):
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(a)
(I)

≤
k∑
i=1

H−1∑
j=h

2H2

√
SL

nk,h

(II)

≤ 3H2S
√
ATkL,

where (I) holds under the event E and (II) holds due to the pigeon-hole argument (see, e.g., Jaksch et al., 2010, for the
proof).

Using an identical analysis to the one in Lem. 10 and taking into account that Vi,j ≥ V ∗j under the event Ωk,h and E we
can bound (b)

(b)
(I)

≤ 2H

 k∑
i=1

H−1∑
j=h

δ̃i,j+1 + 2H
√
TkL)

 ≤ 2H2
(
Uk,1 + 2

√
TkL

)
,

where (I) holds since under the event E the event Eaz(F∆̃,k,h, H) holds. Another application of pigeon-hole principle
leads to a bound of 6H2

√
SATkL on (c). We then combine this with the bounds on (a) and (b) to bound Eq. 53, which

proves the result.

We now bound Ck,h and Ck,h,x:

Lemma 11. Let k ∈ [K] and h ∈ [H]. Then under the events E and Ωk,h the following hold for every x ∈ S

Ck,h ≤ 4
√
HSATk + 4

√
H2Uk,1SAL2, (54)

Ck,h,x ≤ 4
√
H2SANk,h(x) + 4

√
H2Uk,h,xSAL2. (55)

Proof. Here we only prove the bound on Eq. 54. The proof for the bound of Eq. 55 can be done in a very similar manner,
as it is shown in the previous lemmas (the only difference is that HN ′k,h(x) and Uk,h,x replace Tk and Uk,1, respectively).
The Cauchy–Schwarz inequality leads to the following sequence of inequalities:

Ck,h =

k∑
i=1

I(j ∈ [k]typ)

H−1∑
j=h

2

√
V∗i,j+1L

ni,j
+

4HL

3ni,j


≤ 2

√
L

√√√√√√√
k∑
i=1

H−1∑
j=h

V∗i,j+1︸ ︷︷ ︸
(a)

√√√√√√√
k∑
i=1

I(i ∈ [k]typ)

H−1∑
j=h

1

ni,j︸ ︷︷ ︸
(b)

+

k∑
i=1

I(i ∈ [k]typ)

H−1∑
h=j

4HL

3ni,j
(56)

We now prove bounds on (a) and (b) respectively

(a) =

k∑
i=1

H−1∑
j=h

Vπi,j+1︸ ︷︷ ︸
(c)

+

k∑
i=1

H−1∑
j=h

V∗i,j+1 − Vπi,j+1︸ ︷︷ ︸
(d)

. (57)

(c) and (d) can be bounded under the events E and Ωk,h using the results of Lem. 8 and Lem.9. We then deduce
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(a) ≤ HTk + 2H2Uk,1 + 6H2
√
TkL+

4H2L

3

≤ 2HTk + 2H2Uk,1,

where the last line follows by the fact that for the typical episodes Tk ≥ 250H2S2AL2. Thus if Tk ≤ H2L the term Ck,h
trivially equals to 0 otherwise the higher order terms are bounded by O(HTk).

We now bound (b) using a pigeon-hole argument

(b) ≤ 2
∑

(x,a)∈S×A

Nk(x,a)∑
n=1

1

n
≤ 2SA

T∑
n=1

1

n
≤ 2SA ln(3T ).

Plugging the bound on (a) and (b) into Eq. 56 and taking in to account that for the typical episodes [k]typ we have that
T ≥ H2L completes the proof.

We now bound Bk,h:

Lemma 12. Let k ∈ [K] and h ∈ [H]. Let the bonus is defined according to Algo. 4. Then under the events E and Ωk,h
the following hold for every x ∈ S,

Bk,h ≤ 11L
√
TkHSA+ 12

√
H2SAL2Uk,1 + 570H2S2AL2, (58)

Bk,h,x ≤ 11L
√
N ′k,h(x)HSA+ 12

√
H2SAL2Uk,h,x + 570H2S2AL2, (59)

Proof. Here we only prove the bound on Eq. 58. The proof for the bound of Eq. 59 can be done in a very similar manner,
as it is shown in the previous lemmas (the only difference is that HN ′k,h(x) and Uk,h,x replace Tk and Uk,1, respectively).
We first notice that the following holds:

Bk,h ≤
k∑
i=1

I(i ∈ [k]typ)

H−1∑
j=h

√
8V̂i,j+1L

ni,j︸ ︷︷ ︸
(a)

+L

k∑
i=1

I(i ∈ [k]typ)

H−1∑
j=h

√√√√ 8

ni,j

∑
y∈S

p̂i,j(y) min

(
1002S2H2AL2

N ′i,j+1(y)
, H2

)
︸ ︷︷ ︸

(b)

.

We first note that the bound on Bk,h is similar to the bound on Ck,h. The main difference (beside the difference in H.O.Ts)
is that here V∗h+1 is replaced by V̂i,j+1. So in our proof we first focus on dealing with this difference.

The Cauchy–Schwarz inequality leads to:

(a) ≤
√

8L

√√√√√√√
k∑
i=1

H−1∑
j=h

V̂i,j+1(x, a)︸ ︷︷ ︸
(c)

√√√√√√√
k∑
i=1

I(k ∈ [k]typ)

H−1∑
j=h

1

ni,j︸ ︷︷ ︸
(d)

,
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The bound on (d) is identical to the corresponding bound in Lem. 11. So we only focus on bounding (c):

(c) =

k∑
i=1

H−1∑
j=h

Vπi,j+1︸ ︷︷ ︸
(e)

+

k∑
i=1

H−1∑
j=h

V̂i,j+1 − Vπi,j+1︸ ︷︷ ︸
(f)

. (60)

(e) and (f) can be bounded in high probability using the results of Lem. 8 and Lem.10. This implies

(c) ≤ HTk + 3H2Uk,1 + 15H2S
√
ATkL+

4H2L

3

≤ 2HTk + 3H2Uk,1,

where the last line follows by the fact that for the typical episodes Tk ≥ 250H2S2AL. Thus if Tk ≤ 250H2S2L then
Bk,h trivially equals to 0 otherwise the higher order terms are bounded by O(HT ). Combining the bound on (b) and (c)
leads to the following bound on (a):

(a) ≤ 8L
√
HSATk + 12HL

√
SAUk,1.

To bound (b) we make use of Cauchy-Schwarz inequality again.

(b) ≤

√√√√√√√8

k∑
i=1

I(i ∈ [k]typ)

H−1∑
j=h

∑
y∈S

p̂i,j(y)b′i,j+1(y)︸ ︷︷ ︸
(g)

k∑
i=1

H−1∑
j=h

I(i ∈ [k]typ)

ni,j︸ ︷︷ ︸
(h)

.

The term (h) bounded by 2SAL using a pigeon-hole argument (see Lem. 11). We proceed by bounding (g):

(g) ≤
k∑
i=1

H−1∑
j=h

(p̂i,j − pi,j)b′i,j+1︸ ︷︷ ︸
(i)

+

k∑
i=1

H−1∑
j=h

(pi,jb
′
V − b′i,j+1(xi,j+1))︸ ︷︷ ︸

(j)

+

k∑
i=1

I(i ∈ [k]typ)

H−1∑
j=h

b′i,j+1(xi,j+1)︸ ︷︷ ︸
k

.

Given that the event E holds the term (i) bounded by 2
√

2H2S
√
ALTk by using the pigeon-hole argument. Under the

event E the event Eaz(Fb′,k,h, H2) holds. This implies that the term (j) is also bounded by 2H2
√
TkL as it is sum of the

martingale differences. The term (k) is also bounded by 20000H3S3A3L3 using the pigeon-hole argument. Combining
all these bounds together leads to the following bound on (b)

(b) ≤
√

32
√

2H2S2
√
TkAL3 + 32H2SA

√
TkL3 + 320000S4H4A2L3.

Combining this with the bound on (a) and taking into account the fact that we only bound theBk,h for the typical episodes,
in which Tk ≥ 250H2S2AL2, completes the proof.

Lemma 13. Let the bonus is defined according to Algo. 4. Then under the events E and ΩK,1 the following hold

Regret(K) ≤ R̃egret(K) ≤ UK,1 ≤ 15L
√
HSAT + 16HL

√
SAUk,1 + 820H2S2A2L+ 2H

√
TL. (61)
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Proof. We first notice that Regret(K) and Regret(K) are bounded by Uk,1 due to Lem.6. To bound Uk,1 we sum up the
regret due to Bk,h and Ck,h from Lem. 11 and Lem. 12. We also bound the sum

∑K
k=1

∑H
h=1 c4,k,h by 2HSAL using

a pigeon hole argument. We also note that Bk,h and Ck,h only account for the regret of typical episodes in which T ≥
H2S2A2L. The regret of those episodes which do not belong to the typical set [k]typ, can be bounded by O(H2S2A2L2),
trivially.

The following lemma establishes an explicit bound on the regret:

Lemma 14. Let the bonus is defined according to Algo. 4. Then under the events E and ΩK,1 the following hold

Regret(K) ≤ R̃egret(K) ≤ UK,1 ≤ 30L
√
HSAT + 2500H2S2AL2 + 4H

√
TL. (62)

Proof. The proof follows by solving the bound of Lem. 13 in terms of Uk,1. which only contributes to the additional regret
of O(H2L2SA).

Lemma 15. Let the bonus is defined according to Algo. 3. Then under the events E and ΩK,1 the following holds

Regret(K) ≤ R̃egret(K) ≤ UK,1 ≤ 20HL
√
SAT + 250H2S2AL2. (63)

Proof. The proof up to Lem. 11 is identical to the proof of Lem. 14. The main difference is to prove bound on Ck,h and

Bk,h here we use a loose bound of O(H
√

SAL
nk,h

) for both exploration bonus bk,h and the confidence interval c1,k,h and
then sum these terms using a pigeon-hole argument (The proof is provided in Jaksch et al., 2010) which leads to a bound
of O(H

√
SATL) on both BK,1 and CK,1. Plugging these results into the bound of Lem. 7 combined with the regret of

non-typical episodes complete the proof

Lemma 16. Let the bonus is defined according to Algo. 4. Let k ∈ [K] and h ∈ [H]. Then under the events E and Ωk,h
the following hold for every x ∈ S,

Regret(k, x, h) ≤ R̃egret(k, x, h) ≤ 30HL
√
SAN ′k,h(x) + 2500H2S2AL2 + 4H1.5

√
N ′k,h(x)L

≤ 100H1.5SL
√
AN ′k,h(s).

Proof. The proof is similar to the proof of total regret. Here also we use Lem. 12, Lem. 11 and a pigeon-hole argument to
bound the regrets due to Bk,h, Ck,h and c4,k,h. We then incorporate these terms into Lem.6 to bound the regret in terms of
Uk,h,x. The result follows by solving the bound w.r.t. the upper bound Uk,h,x.

Lemma 17. Let the bonus b is defined according to Algo. 4. Let k ∈ [K] and h ∈ [H]. Then under the events E and Ωk,h
the following hold for every x ∈ S

Vk,h(x)− V ∗h (x) ≤ 100

√
H3S2AL2

N ′k,h(s)
.

Proof. From Lem. 16 we have that
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100H1.5SL
√
AN ′k,h(s)

≥
k∑
i=1

I(xi,h = x)(Vi,h(x)− V πih (x))

≥ (Vk,h(x)− V ∗h (x))

k∑
i=1

I(xi,h = x) = N ′k,h(x)(Vk,h(x)− V ∗h (x)),

where the last inequality holds due to the fact that Vk,h by definition is monotonically non-increasing in k. The proof then
follows by collecting terms.

Lemma 18. Let the bonus b is defined according to Algo. 3. Then under the event E the set of events {Ωk,h}k∈[K],h∈H
hold.

Proof. We prove this result by induction. First we notice that for h = H by definition Vk,h = V ∗h thus the inequality
Vk,h ≥ V ∗h trivially holds. Thus to prove this result for h < H we only need to show that if the inequality Vk,h ≥ V ∗h
holds for h it also holds for h− 1 for every h < H:

Vk,h(x)− V ∗h (x) = TkVk,h−1(x)− T V ∗(x) ≥ bk(x, π∗h(x)) + P̂π
∗

k,hVk,h+1(x)− Pπ∗h Vk,h+1(x)

= bk(x, π∗h(x)) + P̂π
∗

k,h(Vk,h+1 − V ∗h+1)(x) + (P̂π
∗

k,h − Pπ
∗

h )V ∗h+1(x)

≥ bk(x, π∗h(x)) + (P̂π
∗

k,h − Pπ
∗

h )V ∗h+1(x),

where the last line follows by the induction condition that Vk,h+1 ≥ V ∗h+1. The fact that the event E hols implies that
(Pπ

∗

h − P̂π
∗

k,h)V ∗h+1(x) ≤ c1(Nk(x, π∗h(x))) ≤ bk(x, π∗h(x)), which completes the proof.

Lemma 19. Let the bonus b is defined according to Algo. 4. Then under the event E the set of events {Ωk,h}k∈[K],h∈H
hold.

Proof. We prove this result by induction. We first notice that in the case of the first episode V1,h = H ≥ V ∗h .

To prove this result by induction in the case of 1 < k ∈ [K] we need to show that in the case of h ∈ [H − 1] if Ωk,h+1

holds then Ωk,h also holds.

If Ωk,h−1 holds then Vi,j ≥ V ∗j for every (i, j) ∈ [k, h]hist. We can then invoke the result of Lem. 17 which implies

Vk,h+1(x)− V ∗h+1(x) ≤ 100H1.5SL
√
A√

N ′k,h+1(x)
.

Using this result which guarantees that Vk,h+1 is close to V ∗h+1 we prove that Vk,h − V ∗h ≥ 0, that is the event Ωk,h holds.

Vk,h − V ∗h = min(Vk−1,h, Tk,hVi,j+1, H)− V ∗h

If Vk−1,h ≤ Tk,hVi,j+1 the result Vk,h − V ∗h = Vk−1,h − V ∗h ≥ 0 holds trivially. Also if Vk−1,h ≥ H the result trivially
holds. So we only need to consider the case that Tk,hVi,j+1 ≤ Vk−1,h ≤ H in that case we have w
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Vk,h(x)− V ∗h (x) ≥ Tk,hVi,j+1(x)− T V ∗h+1(x)

(I)

≥ bk,h(x, π∗(x, h)) + P̂π
∗

h Vi,j+1(x)− Pπ∗h V ∗h+1(x)

= bk,h(x, π∗(x, h)) + (P̂π
∗

h − Pπ
∗

h )V ∗h+1(x) + P̂π∗h (Vi,j+1 − V ∗h+1)(x)

(II)

≥ bk,h(x, π∗(x, h)) + (P̂π
∗

h − Pπ
∗

h )V ∗h+1(x),

where in (I) we rely on the fact that πk,h is the greedy policy w.r.t. Vk,h. Thus

bk,h(x, π∗(x, h)) + P̂π
∗

h Vi,j+1(x) ≤ bk,h(x, πk(x, h)) + P̂πkh Vi,j+1(x).

Also (II) follows from the induction assumption. Under the event E we have

Vk,h − V ∗h ≥ bk,h − c1(V̂∗h, Nk)

≥

√
8V̂k,hL
Nk

− 2

√
V̂∗hL
Nk︸ ︷︷ ︸

(a)

− 14L

3Nk

+

√√√√ P̂k

[
8 min

(
1002H3S2A2L2

N ′k,h+1
, H2

)]
Nk

+
14L

3Nk
.

We now prove a lower bound on (a):

(a) ≥

−
√

4V̂∗k,h − 8V̂k,h
Nk

V̂k,h ≤ V∗,

0 otherwise.

We proceed by bounding V̂∗k,h in terms of V̂k,h from above:

V̂∗k,h
(I)

≤ 2V̂k,h + 2Vary∼P̂k(Vk,h+1(y)− V ∗h+1(y)) ≤ 2V̂k,h + 2 P̂k(Vk,h+1 − V ∗h+1)2︸ ︷︷ ︸
(b)

,

where (I) is an application of Lem. 2. We now bound (b). Combining this result with the result of Eq. 64 leads to the
following bound on (a)

(a) ≥

−
√√√√8P̂k

[
min

(
1002H3S2AL2

N ′k,h+1
, H2

)]
Nk

V̂k,h ≤ V̂∗,

0 otherwise,

where the last inequality holds under the event E . The proof is completed by plugging (a) and (b) into Eq. 64 which proves
that Vk,h ≥ V ∗h thus the event Ωk,hholds.


