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Abstract

Random Fourier features is one of the most pop-
ular techniques for scaling up kernel methods,
such as kernel ridge regression. However, de-
spite impressive empirical results, the statistical
properties of random Fourier features are still not
well understood. In this paper we take steps to-
ward filling this gap. Specifically, we approach
random Fourier features from a spectral matrix
approximation point of view, give tight bounds
on the number of Fourier features required to
achieve a spectral approximation, and show how
spectral matrix approximation bounds imply sta-
tistical guarantees for kernel ridge regression.

1. Introduction

Kernel methods constitute a powerful paradigm for devis-
ing non-parametric modeling techniques for a wide range
of problems in machine learning. One of the most elemen-
tary is Kernel Ridge Regression (KRR). Given training data
(X1,Y1)s - -+ (Xn, Yn) € X x Y, where ¥ C R%is an input
domain and Y C R is an output domain, a positive definite
kernel function & : X x X — R, and a regularization pa-
rameter A > 0, the response for a given input x is estimated
as:

Flx) = 3 kg %00,

where a = (a1 - - - v, )T is the solution of the equation

(K+\L)a=y. (D
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In the above, K € R"*" is the kernel matrix or Gram
matrix defined by K;; = k(x;,x;) andy = [y1 - - -y )T is
the vector of responses. The KRR estimator can be derived
by minimizing a regularized square loss objective function
over a hypothesis space defined by the reproducing kernel
Hilbert space associated with k(-,-); however, the details
are not important for this paper.

While simple, KRR is a powerful technique that is well
understood statistically and capable of achieving impres-
sive empirical results. Nevertheless, the method has a
key weakness: computing the KRR estimator can be pro-
hibitively expensive for large datasets. Solving (1) gener-
ally requires ©(n?) time and ©(n?) memory. Thus, the de-
sign of scalable methods for KRR (and other kernel based
methods) has been the focus of intensive research in recent
years (Zhang et al., 2015; Alaoui & Mahoney, 2015; Musco
& Musco, 2016; Avron et al., 2016).

One of the most popular approaches to scaling up kernel
based methods is random Fourier features sampling, orig-
inally proposed by Rahimi & Recht (2007). For shift-
invariant kernels (e.g. the Gaussian kernel), Rahimi &
Recht (2007) presented a distribution D on functions from
X to C* (s is a parameter) such that for every x, z € R?

k(x,2) = Epnp [p(x)"¢(2)] -

The idea is to sample ¢ from D and use l}(x,z) =
©(x)*p(y) as a surrogate kernel. The resulting approxi-
mate KRR estimator can be computed in O(ns?) time and
O(ns) memory (see §2.2 for details), giving substantial
computational savings if s < n.

This approach naturally raises the question: how large
should s be to ensure a high quality estimator? Or, using
the exact KRR estimator as a natural baseline: how large
should s be for the random Fourier features estimator to be
almost as good as the exact KRR estimator? Answering
this question can help us determine when random Fourier
features can be useful, whether the method needs to be im-
proved, and how to go about improving it.

The original random Fourier features analysis (Rahimi
& Recht, 2007) bounds the point-wise distance between
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k(-,-) and k(-,-) (for other approaches for analyzing ran-
dom Fourier features, see §2.3). However, the bounds do
not naturally lead to an answer to the aforementioned ques-
tion. In contrast, spectral approximation bounds on the en-
tire kernel matrix, i.e. of the form

(1-A)K+)L,) < K+, < (1+A)(K+AL,), (2)

naturally have statistical and algorithmic implications. In-
deed, in §3 we show that when (2) holds we can bound the
excess risk introduced by the random Fourier features esti-
mator when compared to the KRR estimator. We also show
that K + AL, can be used as an effective preconditioner for
the solution of (1). This motivates the study of how large s
should be as a function of A for (2) to hold.

In this paper we rigorously analyze the relation between
the number of random Fourier features and the spectral ap-
proximation bound (2). Our main results are the following:

o We give an upper bound on the number of random fea-
tures needed to achieve (2) (Theorem 7). This bound, in
conjunction with the results in §3, positively shows that
random Fourier features can give guarantees for KRR
under reasonable assumptions.

o We give a lower bound showing that our upper bound is
tight for the Gaussian kernel (Theorem 8).

o We show that the upper bound can be improved dra-
matically by modifying the sampling distribution used
in classical random Fourier features (§4). Our sampling
distribution is based on an appropriately defined lever-
age function of the kernel, closely related to so-called
leverage scores frequently encountered in the analysis of
sampling based methods for linear regression. Unfortu-
nately, it is unclear how to efficiently sample using the
leverage function.

o To address the lack of an efficient way to sample us-
ing the leverage function, we propose a novel, easy-to-
sample distribution for the Gaussian kernel which ap-
proximates the true leverage function distribution and al-
lows random Fourier features to achieve a significantly
improved upper bound (Theorem 10). The bound has an
exponential dependence on the data dimension, so it is
only applicable to low dimensional datasets. Neverthe-
less, it demonstrate that classic random Fourier features
can be improved for spectral approximation and moti-
vates further study. As an application, our improved
understanding of the leverage function yields a novel
asymptotic bound on the statistical dimension of Gaus-
sian kernel matrices over bounded datasets, which may
be of independent interest (Corollary 15).

2. Preliminaries
2.1. Setup and Notation

The complex conjugate of z € C is denoted by x*. For a
vector x or a matrix A, x* or A* denotes the Hermitian
transpose. The | x [ identity matrix is denoted I;. We use
the convention that vectors are column-vectors.

A Hermitian matrix A is positive semidefinite (PSD) if
x*Ax > 0 for every vector x. It is positive definite (PD) if
x*Ax > 0 for every vector x # 0. For any two Hermitian
matrices A and B of the same size, A < B means that
B — A is PSD.

We use Lo(dp) = Lo(R? dp) to denote the space of
complex-valued square-integrable functions with respect to
some measure p(-). Lo(dp) is a Hilbert space equipped
with the inner product

([P La(dp) = f(m)g(n)*dp(n)

R4

= L. f(mg(n)*py(n)dn.

In the above, p,(-) is the density associated with p(-).

We denote the training set by (x1,%1),..., (Xn,¥n) €
X xY C R% x R. Note that n denotes the number of
training examples, and d their dimension. We denote the
kernel, which is a function from X x X to R, by k. We
denote the kernel matrix by K, with K;; = k(x;,x;).
The associated reproducing kernel Hilbert space (RKHS)
is denoted by Hj, and the associated inner product by
(y )%, Some results are stated for the Gaussian kernel
k(x,z) = exp(—|x — z||3/20?) for some bandwidth pa-
rameter o.

We use A = )\, to denote the ridge regularization pa-
rameter. While for brevity we omit the n subscript, the
choice of regularization parameter generally depends on n.
Typically, A\, = w(1) and A\, = o(n). See Caponnetto
& De Vito (2007) and Bach (2013) for discussion on the
asymptotic behavior of \,, noting that in our notation, \ is
scaled by an n factor as compared to those works. As the
ratio between n and A\ will be an important quantity in our
bounds, we denote it as ny = n/\.

The statistical dimension or effective degrees of freedom is
denoted by 55 (K) = Tr ((K + AL,) 'K).

2.2. Random Fourier Features

2.2.1. CLASSICAL RANDOM FOURIER FEATURES

Random Fourier features (Rahimi & Recht, 2007) is an
approach to scaling up kernel methods for shift-invariant
kernels. A shift-invariant kernel is a kernel of the form
k(x,z) = k(x — z) where k(-) is a positive definite func-
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tion (we abuse notation by using k to denote both the kernel
and the defining positive definite function).

The underlying observation behind random Fourier fea-
tures is a simple consequence of Bochner’s Theorem: for
every shift-invariant kernel for which k£(0) = 1 there is a
probability measure p(-) and a corresponding probability
density function py(-), both on R4, such that

—27in" (x—z
/Rde 2T dpy ()

in' (x—z
= /Rd e~2mn =2 (m)dn . (3)

k(x,z) =

In other words, the inverse Fourier transform of the kernel
k() is a probability density function, py(-). For simplicity
we typically drop the k subscript, writing u(-) = p(+) and
p(+) = pi(+), with the associated kernel function clear from
context.

, M, are drawn according to p(-), and we define

o N\ F ..
, e 2min, x) , then it is not

Ifn,,...
(,O(X) = % (e—2ﬂinfx
hard to see that

k(x,2) = Eq [0(x)"0(2)] -

The idea of the Random Fourier features method is then to
define

~ 1 s .
k(X,Z) = SO(X)*(,O(Z) — ; Ze—2ﬂznl (x—2) (4)

as a substitute kernel.

Now suppose that Z € C"** is the matrix whose 4t row
is p(x;)*, and let K = ZZ". K is the kernel matrix corre-
sponding to k(-,-). The resulting random Fourier features
KRR estimator is f(x) = Z] L k(x;,x)a; where & is the

solution 0f~(I~{ + AL,)& = y. Typically, s < n and we can
represent f(-) more efficiently as:

where
w = (Z"Z + \1,)"'Z*y

We can compute w in O(ns?) time, making random
Fourier features computationally attractive if s < n.

2.2.2. MODIFIED RANDOM FOURIER FEATURES

While it seems to be a natural choice, there is no fundamen-
tal reason that we must sample the frequencies 1, ..., 7,
using the Fourier transform density function p(-). In fact,
our results show that it is advantageous to use a different
sampling distribution based on the kernel leverage function
(defined later).

Let ¢(-) be any probability density function whose support
includes that of p(-). If we sample 74, ...,n, using q(-),

and define
= < / _27”771 l —271'17] x)
. We refer to this

we still have k(x,z) = E,, [¢(x)*¢
method as modzﬁed random Fourier features and remark
that it can be viewed as a form of importance sampling.

2.2.3. ADDITIONAL NOTATIONS AND IDENTITIES

Now that we have defined (modified) random Fourier fea-
tures, we can introduce some additional notation and iden-
tities that shall prove useful in the rest of the paper.

The (j,1) entry of Z is given by
1

—27ix)
Zit="75° e /p(my) fa(my).- 5)
Let z : RY — C™ be defined by
Z(n)j — e—27rix§n .

Note that column [ of Z from the previous section is exactly

2(m)v/p(m) s - q(my)- So we have:

22 = 15 My )
=1

q(m;)
Finally, by (3) we have E [ZZ"] = K since
K= [ almatn)dutn) = | am)am)*s(m)in,
Rd Rd
2.3. Related Work

Rahimi & Recht (2007)’s original analysis of random
Fourier features bounded the point-wise distance between
k(-,-) and k(-,-) . In follow-up work, they give learning
rate bounds for a broad class of estimators using random
Fourier features. However, their results do not apply to
classic KRR (Rahimi & Recht, 2008). Their main bound
becomes relevant only when the number of sampled fea-
tures is on order of the training set size.

Rudi et al. (2016) prove generalization properties for KRR
with random features, under somewhat difficult to verify
technical assumptions, some of which can be seen as con-
straining the leverage function distribution that we study.
They leave open improving their bounds via a more re-
fined sampling approach. Bach (2017) analyzes random
Fourier features from a function approximation point of
view. He defines a similar leverage function distribution
to the one that we consider, but leaves open establishing
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bounds on and effectively sampling from this distribution,
both of which we address in this work. Finally, Tropp
(2015) analyzes the distance between the kernel matrix and
its approximation in terms of the spectral norm, ||K — K|,
which can be a significantly weaker error metric than (2).

Outside of work on random Fourier features, risk infla-
tion bounds for approximate KRR and leverage score sam-
pling have been used to analyze and improve the Nystrom
method for kernel approximation (Bach, 2013; Alaoui &
Mahoney, 2015; Rudi et al., 2015; Musco & Musco, 2016).
We apply a number of techniques from this line of work.

Spectral approximation bounds, such as (2), are quite pop-
ular in the sketching literature; see Woodruff (2014). Most
closely related to our work is analysis of spectral approxi-
mation bounds without regularization (i.e. A = 0) for the
polynomial kernel (Avron et al., 2014). Improved bounds
with regularization (still for the polynomial kernel) were
recently proved by Avron et al. (2016).

3. Spectral Bounds and Statistical Guarantees

Given a feature transformation, like random Fourier fea-
tures, how do we analyze it and relate its use to non-
approximate methods? A common approach, taken for
example in the original paper on random Fourier fea-
tures (Rahimi & Recht, 2007), is to bound the difference
between the true kernel k(-, -) and the approximate kernel
k(-,-). However, it is unclear how such bounds translate
to downstream guarantees on statistical learning methods,
such as KRR. In this paper we advocate and focus on spec-
tral approximation bounds on the regularized kernel matrix,
specifically, bounds of the form

(1-A)(K+AL,) X ZZ"+ )1, < (1+A)(K+AL,) (6)

for some A < 1.

Definition 1. We say that a matrix A is a A-spectral ap-
proximation of another matrix B, if (1 — A)B < A <
(1+A)B.

Remark 1. When A = 0, bounds of the form of (6)
can be viewed as a low-distortion subspace embedding
bounds. Indeed, when A = 0 it follows from (6) that
Sp (k(x1,-),...,k(xn,-)) C Hj can be embedded with
A-distortion in Sp (p(x1), ..., p(x,)) C R".

The main mathematical question we seek to address in this
paper is: when using random Fourier features, how large
should s be in order to guarantee that ZZ* + \I,, is a A-
spectral approximation of K + AI,,? To motivate this ques-
tion, in the following two subsections we show that such
bounds can be used to derive risk inflation bounds for ap-
proximate kernel ridge regression. We also show that such
bounds can be used to analyze the use of ZZ* + A1, as a
preconditioner for K + AIL,.

While this paper focuses on KRR for conciseness, we re-
mark that in the sketching literature, spectral approxima-
tion bounds also form the basis for analyzing sketching
based methods for tasks like low-rank approximation, k-
means and more. In the kernel setting, such bounds where
analyzed, without regularization, for the polynomial ker-
nel (Avron et al., 2014). Cohen et al. (2017) recently
showed that (6) along with a trace condition on ZZ™ (which
holds for all sampling approaches we consider) yields a so
called “projection-cost preservation” condition for the ker-
nel approximation. With A chosen appropriately, this con-
dition ensures that ZZ" can be used in place of K for ap-
proximately solving kernel k-means clustering and for cer-
tain versions of kernel PCA and kernel CCA. See Musco &
Musco (2016) for details, where this analysis is carried out
for the Nystrém method.

3.1. Risk Bounds

One way to analyze estimators is via risk bounds; sev-
eral recent papers on approximate KRR employ such an
analysis (Bach, 2013; Alaoui & Mahoney, 2015; Musco &
Musco, 2016). In particular, these papers consider the fixed
design setting and seek to bound the expected in-sample
predication error of the KRR estimator f, viewing it as an
empirical estimate of the statistical risk. More specifically,
the underlying assumption is that y; satisfies

yi = [F(xi) + v @)

for some f* : X — R. The {v;}’s are i.i.d noise terms,
distributed as normal variables with variance o2. The em-
pirical risk of an estimator f, which can be viewed as a
measure of the quality of the estimator, is

R(F) = Bpuy | = D7) — 1 (x0))

j=1
(note that f itself might be a function of {v;}).

Let f € R™ be the vector whose j" entry is f*(x;). Itis
quite straightforward to show that for the KRR estimator f
we have (Bach, 2013; Alaoui & Mahoney, 2015):

R(f) = n "N T (K + \L,)
+n ol Tr (KX (K + ML,) %) .
Since M fT(K + AL,)72f < MT(K + AL,)"!f and

Tr (K*(K + A\L,)"2) < Tr (K(K + AL,) ') = s\ (K),
we define

Ri(F) = n "MT(K + AL) "' + n o2, (K)

and note that R(f) < ﬁK(f ). The first term in the above

— ~

expressions for R(f) and Rk (f) is frequently referred to
as the bias term, while the second is the variance term.
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Lemma 2. Suppose that (7) holds, and let f € R™ be the
vector whose j" entry is f*(x;). Let f be the KRR es-
timator, and let f be KRR estimator obtained using some
other kernel k(-, -) whose kernel matrix is K. Suppose that
K + AL, is a A-spectral approximation to K + AL, for
some A < 1, and that |K|2 > 1. The following bound
holds:

A rank(K)

RHSA-) " Rel®) + gy~ O

0

(®)

The proof appears in the supplementary material (Ap-
pendix B).

In short, Lemma 2 bounds the risk of the approximate
KRR estimator as a function of both the risk upper bound
Rk (f) (8) and an additive term which is small if the rank of
rank(K) and/or A is small. In particular, it is instructive
to compare the additive term (A/(14+-A))n~'o2-rank(K)
to the variance term n =102 - s)(K). Since approximation
K is only useful computationally if rank(K) < n we
should expect the additive term in (8) to also approach 0 an

generally be small when n is large.

Remark 2. An approximation K is only useful computa-
tionally if rank(K) < n so K gives a significantly com-
pressed approximation to the original kernel matrix. Ide-
ally we should have rank(K)/n — 0 as n — oo and so
the additive term in (8) will also approach 0 and generally

be small when n is large.

3.2. Random Features Preconditioning

Suppose we choose to solve (K + A,)a = y using
an iterative method (e.g. CG). In this case, we can ap-
ply ZZ* + M, as a preconditioner. Using standard anal-
ysis of Krylov-subspace iterative methods it is immedi-
ate that if ZZ* + AL, is a A-spectral approximation of
K + M, then the number of iterations until convergence
is O(y/(1+A)/(1 — A))). Thus, if ZZ* + AL, is, say, a
1/2-spectral approximation of K+ AI,,, then the number of
iterations is bounded by a constant. The preconditioner can
be efficiently applied (after preprocessing) via the Wood-
bury formula, giving cost per iteration (if s < n) of O(n?).
The overall cost of computing the KRR estimator is there-
fore O(ns?+n?). Thus, as long as s = o(n) this approach
gives an advantage over direct methods which cost O(n?).
For small s it also beats non-preconditioned iterative meth-
ods cost O(n?/k(K)). We reach again the question that
was poised earlier: how big should s be so that ZZ* + I,
is a 1/2-spectral approximation of K + A\IL,,?

See Cutajar et al. (2016) and Avron et al. (2016) for more
details and discussion on random features preconditioning.

4. Ridge Leverage Function Sampling and
Random Fourier Features

In this section we present upper bounds on the num-
ber of random Fourier features needed to guarantee that
Z7Z" + A1, is a A-spectral approximation to K + A\IL,,. Our
bounds are applicable to any shift-invariant kernel, and a
wide range of feature sampling distributions (and, in par-
ticular, for classical random Fourier features).

Our analysis is based on relating the sampling density to an
appropriately defined ridge leverage function. This func-
tion is a continuous generalization of the popular lever-
age scores (Mahoney & Drineas, 2009) and ridge leverage
scores (Alaoui & Mahoney, 2015; Cohen et al., 2017) used
in the analysis of linear methods. Bach (2017) defined the
leverage function of the integral operator given by the ker-
nel function and the data distribution. For our purposes, a
more appropriate definition is with respect to a fixed input
dataset:

Definition 3. For given x, . .., X, and shift-invariant ker-
nel k(-, -), define the ridge leverage function as

ma(n) = p(n)z(n)* (K + AI) " 'z(n) .

In the above, K is the kernel matrix and p(-) is the distri-
bution associated with k(- -).

Proposition 4.

p(m)n/(n+ A) < 1a(n) < p(n)n/A
/ () = 53 (K)
Rd

The (simple) proof of the proposition is given in the sup-
plementary material (Appendix C).

Recall that we denote the ratio n/)\, which appears fre-
quently in our analysis, by ny = n/A. As discussed, theo-
retical bounds generally set A = w(1) (as a function of n)
so ny = o(n). However we remark that in practice, it may
frequently be the case that A is very small and n) > n.

Corollary 5. For any K, s)(K) < n.

For any shift-invariant kernel with k(x,x) = 1 and
k(x,z) — 0as ||x — z||2 — oo (e.g., the Gaussian ker-
nel) if we allow points to be arbitrarily spread out, the ker-
nel matrix converges to the identity matrix, and sy(L,) =
n/(1+A) = Q(ny) if A = Q(1) so the above bound is tight.
However, this requires datasets of increasingly large diam-
eter (as n grows). In contrast, the usual assumption in sta-
tistical learning is that the data is sampled from a bounded
domain X. In §7.2 we show via a leverage function upper
bound that for the important Gaussian kernel, for bounded
datasets we have s)(K) = o(ny).
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In the matrix sketching literature it is well known that spec-
tral approximation bounds similar to (6) can be constructed
by sampling columns relative to upper bounds on the lever-
age scores. In the following, we generalize this for the case
of sampling Fourier features from a continuous domain.

Lemma 6. Let 7 : R? — R be a measurable function such
that 7(n) > 75(n) for all n € RY, and furthermore assume
that

is finite. Denote pz(n) = 7(n)/sz. Let A < 1/2 and
p € (0,1). Assume that |K||2 > X Suppose we take
s> 3A72s:In(165x(K)/p) samples ny, . .., n, from the
distribution associated with the density pz(-) and the con-
struct the matrix Z according to (5) with ¢ = pz. Then
77" + M\, is A-spectral approximation of K + A\, with
probability of at least 1 — p.

The proof is based on matrix concentration inequalities,
and appears in the supplementary material (Appendix D).

Lemma 6 shows that if we could sample using the ridge
leverage function, then O(sy(K)log(sx(K))) samples
suffice for spectral approximation of K (for a fixed A and
failure probability). While there is no straightforward way
to perform this sampling, we can consider how well the
classic random Fourier features sampling distribution ap-
proximates the leverage function, obtaining a bound on its
performance (the proof is in Appendix D as well):

Theorem 7. Let A < 1/2 and § € (0,1). Assume that
[K|l2 > X If we use s > $A=2n, In(1655(K)/p) ran-
dom Fourier features (i.e., sampled according to p(-)), then
77" + M\, is A-spectral approximation of K + AL, with
probability of at least 1 — p.

Theorem 7 establishes that if A = w(log(n)) and A is fixed,
o(n) random Fourier features suffice for spectral approxi-
mation, and so the method can provably speed up KRR.
Nevertheless, the bound depends on n) instead of sy (K),
as is possible with true leverage function sampling (see
Lemma 6). This gap arises from our use of the simple,
often loose, ridge leverage function upper bound given by
Proposition 4.

Unfortunately, as the next section shows, the bound in
Theorem 7 cannot be improved since the classic random
Fourier features sampling distribution can be far enough
from the ridge leverage distribution that Q(n,) features
may be needed even when sy (K) = o(ny).

5. Lower Bound

Our lower bound shows that the upper bound of Theorem
7 on the number of samples required by classic random
Fourier features to obtain a spectral approximation to K +

AL, is essentially best possible. The full proof is given in
the supplementary material (Appendix I).

Theorem 8. Consider the Gzaussian kernel with ¢ =
(2m)~L (so p(n) = \/%e_" /2). Suppose n > 17 is
an odd integer, \ satisfies % < A < L, and R satisfies

2’
1.5 < < n o
30001log™” (ny) < R < PNIETCNE Then, there exists a

dataset of n points {x;}7_, C [~R, R] such that if s ran-
dom Fourier features (i.e., sampled according to p(-)) are
used for some s < ZT/\O’ then with probability at least 1/2,
there exists a vector o € R"™ such that

2
T (K+M\,)a < gaT(ZZ* + L) a. )

Furthermore, for the said dataset we have s)(K) = O(R -
poly (logny)).

Thus, the number of samples s required for ZZ* + AL, to
be a 1/2-spectral approximation to K + AI,, for a bounded
dataset of points must either depend exponentially on the
radius of the point set, or at least linearly on n, and there is
an asymptotic gap between what is achieved with classical
random Fourier features and what is achieved by modified
random Fourier features using leverage function sampling.

We note that the above lower bound is proven for a one-
dimensional point set, which makes it only stronger: even
at low dimensions, and for the common Gaussian kernel,
there is a large gap between the performance of classic ran-
dom Fourier features and leverage function sampling.

The bound applies for datasets bounded on the range
[~R,R] for R = Q(log"°n,). As we will see in §7,
the key idea behind the proof is to show that for such a
dataset, the ridge leverage function is large on a range of
low frequencies. In contrast, the classic random Fourier
features distribution is very small at the edges of this fre-
quency range, and so significantly undersamples some fre-
quencies and does not achieve spectral approximation.

We remark that it would be preferable if Theorem 8 ap-
plied to bounded datasets (i.e. with R fixed), as the usual
assumption in statistical learning theory is that data is sam-
pled from a bounded domain. However, our current tech-
niques are unable to address this scenario. Nevertheless,
our analysis allows R to grow very slowly with n and we
conjecture that the upper bound is tight even for bounded
domains.

6. Improved Sampling (Gaussian Kernel)

Contrasting with the lower bound of Theorem 8, we now
give a modified Fourier feature sampling distribution that
does perform well for the Gaussian kernel on bounded in-
put sets. Furthermore, unlike the true ridge leverage func-
tion, this distribution is simple and efficient to sample from.
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To reduce clutter, we state the result for a fixed bandwidth
o = (2m)~L. This is without loss of generality since we
can rescale the points and adjust the bounding interval.

Our modified distribution essentially corrects the classic
distribution by “capping” the probability of sampling low
frequencies near the origin. This allows it to allocate more
samples to higher frequencies, which are undersampled by
classical random Fourier features. For simplicity, we fo-
cus on the one-dimensional setting. Our results extend to
higher dimensions, albeit with an exponential in the dimen-
sion loss.

Definition 9 (Improved Fourier Feature Distribution for the
Gaussian Kernel). Define the function

Tr(n) = {

Let sz, = [, Tr(n)dn and define the probability density
function pr(n) = Tr(n)/S7x-

25 max(R, 3000 log"® ny)
p(m)m

In| < 104/log(n)
0.W.

Note that pr(n) is just the uniform distribution for low
frequencies with |n| < 104/log(ny), and the classic
Fourier features distribution, appropriately scaled, outside
this range. As we show in §7, 7r(n) upper bounds the true
ridge leverage function 7, (n) for all . Hence, simply ap-
plying Lemma 6:

Theorem 10. For any integer n and parameter 0 < \ < Z,
consider the one dimensional Gaussian kernel with o =
(27)~t (sop(n) = \/%6’772/2) and any dataset of n points
{z;}7_, C [~ R, R] with any radius R > 0. If we sample
s > 8A7%sz, In(16sz,/p) random Fourier features ac-
cording to pgr(-) and construct Z according to (5), then
with probability at least 1 — p, ZZ* + N, is A-spectral
approximation of K+ AL, forany A < 1/2and p € (0,1).
Furthermore, s-, = O(Ry/log(ny) + log® ny) and pg(-)
can be sampled from in O(1) time.

Theorem 10 represents a possibly exponential improve-
ment over the bound obtainable by classic random Fourier
features. For R > log"®(n,) our modified distribution re-
quires O(R+/log(ny)) samples, as compared to the lower

bound of & given by Theorem 8.

7. Bounding the Ridge Leverage Function

We conclude by discussing our approach to bounding the
ridge leverage function of the Gaussian kernel, which leads
to Theorems 8 and 10. The key idea is to reformulate the
leverage function as the solution of two dual optimization
problems. By exhibiting suitable test functions for these
optimization problems, we are able to give both upper and
lower bounds on the ridge leverage function, and corre-
spondingly on the sampling performance of classic and
modified Fourier feature sampling.

7.1. Primal-Dual Characterization

In this section we prove two alternative characterizations of
the ridge leverage function: one as a minimization, and the
other as a maximization. These characterization are useful
for bounding the leverage function, as we exhibit in the next
subsection for the Gaussian kernel.

Define the operator ® : Lo(du) — C™ by

®y= [ AEEn(e) (10)

The following two lemmas constitute the main result of this
subsection. The proofs can be found in the supplementary
material (Appendix E).

Lemma 11. The ridge leverage function can alternatively
be defined as follows:

. —1 2 2
,oin, ARy — vVemzm)z + 1Yl17, a0
(11)

Lemma 12. The ridge leverage function can alternatively
be defined as follows:

(1)

p(n) - |o*z(n)|*
‘I)*a”%z(du) + A3

- 12
7a(n) = max (12)

Similar results are well known for the finite dimensional
case. Here we extend these results to an infinite dimen-
sional case. Lemma 11 allows us to upper bound the lever-
age function at any point n € R? by exhibiting a care-
fully constructed function y(-) and upper bounding the ra-
tio in (11), while Lemma 12 allows us to lower bound it in
a similar fashion.

7.2. Leverage Function: the Gaussian Case

In this section we prove nearly matching bounds on the
leverage score function for the one-dimensional Gaussian
kernel on bounded datasets. For simplicity of presentation
we focus on the one-dimensional setting. Our results ex-
tend to higher dimensions, albeit with an exponential in the
dimension loss in the gap between upper and lower bounds.

Our bounds are parameterized by the width of the point
set, which we denote by R. To reduce clutter, we present
all results for fixed o = (27)~!. This is without loss of
generality since we can rescale the points. All the proofs
appear in the supplementary material (Appendices F—H).

Theorem 13. Consider the one dimensional Gaussian ker-
nel with o = (27)~1. For any integer n and parameter
0 < A < %, and any radius R > 0, if 1, ...,x, € [-R, R],

Sor every |n| < 10+/logny:
(1) < 25 max(R, 3000log' " ny) .
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Theorem 14. Consider the one dimensional Gaussian ker-
nel with o = (2w)~L. For any integer n > 17, any param-
eter % <A< %, and every radius 1000 logl'5 ny < R<

1 xn, € [—R, R] such that for

W’ there exist x4, ...,
every ) € [~100y/log nx, +100v/Tognx] we have:

Zlfo(mﬁ%)-

The last two theorems lead to a tight bound on the statistical
dimension matrices corresponding to bounded points sets:

(1)

Corollary 15. Consider the Gaussian kernel with o
(2m)~1. For any integer n and parameter 0 < \ <
and any R > 0, if x1, ..., x, € [—R, R] then we have:

s

vol3

sx(K) < 500 - max(R,3000log"® ny)y/logny + 1
O(R+/logny + log® ny)
Furthermore, if 1000log*® ny < R < n

— 5004/log(ny)
xn C [—R, R] such that:

there

exists a set of points x1, ...,

s\(K) = Q(Ry/log(na/R) ).

The bounds above match up to constant factors if
100010g1") ny < R < n{%. For any 100010g1'5 ny <

R < 500 /log(m) they match up to a \/logny factor.

7.3. Theorems 13 and 14: Proof Outline

Lemma 11 allows us to bound 7)(7) simply by exhibit-
ing any y(-) which makes the cost function small. One
simple attempt might be yy(,s)(f) = §(n — &) where 0(+)
is the Dirac delta function. This choice zeros out the first
term. However the delta function is not square integrable,
y,(,s) & Lo(dp), so the lemma cannot be used. Another
trivial attempt is y(©)(¢) = 0, which zeros out the second
term and recovers the trivial bound 7 (n) < p(n)ny. Nev-
ertheless, a smarter test functions y(+) can yield improved
bounds, yielding results on the leverage score function that
are parameterized by the diameter of the point set.

At a high level, our approach is to replace the spike func-
tion at 17 with a ‘soft spike’ whose Fourier transform still
looks approximately like a cosine wave on [—R, R], yet is
still square integrable. The smaller R is, the more spread
out this function will be able to be, and hence the smaller
its /5 norm, and the better the leverage score bound. A
natural candidate for a ‘soft spike’ is a Gaussian of appro-
priate variance, but this choice does not suffice to obtain
tight bounds, due to two difficulties. First, for the upper
bound a simple Gaussian does not result in a function that
is close enough to a pure frequency in time domain (first

real component
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Figure 1. ‘Soft spike’ function y and its Fourier transform ®y,
which is approximately a pure cosine wave on [— R, R).

term of the objective function in Lemma 11) unless we set-
tle for an upper bound of O(R - poly (ny)) as opposed
to the tight O(R) on the leverage score density function.
Second, the lower bound on the leverage score function
resulting from using a Gaussian pulse would only be of
the form Q(R/+/logny), leading to a weak lower bound
on the statistical dimension, namely Q2(R) as opposed to
Q(R - /logny), thereby missing entirely the effect of the
regularization parameter A on the statistical dimension!

The remedy to the issues above turns out to be the convo-
lution of a (modulated) Gaussian with a rectangular pulse
in time domain (product of a shifted Gaussian with the sinc
function in frequency domain). Specifically, our bounds
are based on variants of a flattened Gaussian spike function

Yoo (€) = = EDV/A g sine (u(E — 7). (13)

forsome b > 0,v > 0andn € R.

It turns out that with a proper setting of parameters (where
one should think of b as large, i.e. the spike y is rather
narrow) the function ®y,, ; ,, satisfies

. a4+ 42 /0p2
(®ynb0)(x) ~p(n) - exp2minz) [[Z7 A=t /2 dt.

An illustration of this function in y is given in Fig. 1, (left)
and the function @y in Fig. 1, (right). Note that if the pa-
rameter v is chosen to be large, then for x not too large we

have f;j; ﬁe‘tz/zbzdt ~ [T ﬁe_tz/%zdt, ie.
the second multiplier is essentially constant, i.e. flat as a
function of = (hence the term ‘flattened Gaussian spike’).
This means that @y, 5, is essentially the kernel density
evaluated at 7 times a pure harmonic term exp(2minz),
which is exactly what one needs to minimize the first term
on the rhs of (11) in Lemma 11, up to a factor of y/p(n) —
see Appendix F. One can also see that setting v to be not too
large results in a good function to use in the maximization
problem in (12) in Lemma 12 — see Appendix G. Obtain-
ing tight bounds and in particular achieving the right de-
pendence on +/log ny requires several modifications to the
function y above, but the intuition we just described works!
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