
Generalization and Equilibrium in Generative Adversarial Nets

(GANs)

Sanjeev Arora∗ Rong Ge † Yingyu Liang‡ Tengyu Ma§ Yi Zhang¶

Abstract

Generalization is defined training of generative adversarial network (GAN), and it’s shown
that generalization is not guaranteed for the popular distances between distributions such as
Jensen-Shannon or Wasserstein. In particular, training may appear to be successful and yet the
trained distribution may be arbitrarily far from the target distribution in standard metrics. It
is shown that generalization does occur for a much weaker metric we call neural net distance. It
is also shown that an approximate pure equilibrium exists in the discriminator/generator game
for a natural training objective (Wasserstein) when generator capacity and training set sizes are
moderate.

Finally, the above theoretical ideas suggest a new training protocol, mix+gan, which can be
combined with any existing method, and empirically is found to improves some existing GAN
protocols out of the box.

1 Introduction

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] have become one of the dominant
methods for fitting generative models to complicated real-life data, and even found unusual uses
such as designing good cryptographic primitives [Abadi and Andersen, 2016]. See a survey by
Goodfellow [2016]. Various novel architectures and training objectives were introduced to address
perceived shortcomings of the original idea, leading to more stable training and more realistic
generative models in practice (see Odena et al. [2016], Huang et al. [2017], Radford et al. [2016],
Tolstikhin et al. [2017], Salimans et al. [2016], Jiwoong Im et al. [2016], Durugkar et al. [2016] and
the reference therein).

The goal is to train a generator deep net whose input is a standard Gaussian, and whose output
is a sample from some distribution D on <d, which has to be close to some real-life distribution
Dreal (which could be, say, real-life images represented using raw pixels). The training uses samples
from Dreal and trains the generator net together with a discriminator deep net that is trained to
maximise its ability to distinguish between samples from Dreal and D. So long as the discriminator
is successful at this task with nonzero probability, its success can be used to generate a feedback
(using backpropagation) to the generator, thus improving its distribution D. Training is continued

∗Princeton University, Computer Science Department, email: arora@cs.princeton.edu
†Duke University, Computer Science Department, email: rongge@cs.duke.edu
‡Princeton University, Computer Science Department, email: yingyul@cs.princeton.edu
§Princeton University, Computer Science Department, email: tengyu@cs.princeton.edu
¶Princeton University, Computer Science Department, email: yz7@cs.princeton.edu

1

Figure 1: Probability density Dreal with many peaks and valleys

until the generator wins, meaning that the discriminator can do no better than random guessing
when deciding whether or not a particular sample came from D or Dreal. This basic iterative
framework has been tried with many training objectives; see Section 2. But it has been unclear
what to conclude when the generator wins this game: is D close to Dreal in some metric? One seems
to need some extension of generalization theory that would imply such a conclusion. The hurdle is
that distribution Dreal could be complicated and may have many peaks and valleys; see Figure 1.
The number of peaks (modes) may even be exponential in d. (Recall the curse of dimensionality:
in d dimensions there are exp(d) directions whose pairwise angle exceeds say π/3, and each could
be the site of a peak.) Whereas the number of samples from Dreal (and from D for that matter)
used in the training is a lot fewer, and thus may not reflect most of the peaks and valleys of Dreal.

A standard analysis due to [Goodfellow et al., 2014] shows that when the discriminator capacity
(= number of parameters) and number of samples is “large enough”, then a win by the generator
implies that D is very close to Dreal (see Section 2). But the discussion in the previous paragraph
raises the possibility that “sufficiently large” in this analysis may need to be exp(d).

A second theoretical issue that remains open is whether an equilibrium always exists in this game
between generator and discriminator. Just as a zero gradient is a necessary condition for standard
optimization to halt, the corresponding necessary condition in a two-player game is an equilibrium.
Conceivably absence of an equilibrium could cause some of the instability often observed while
training GANs. (Recently Arjovsky et al. [2017] suggest that empirically, using their Wasserstein
objective reduces instability, but we still lack proof of existence of an equilibrium.) Standard game
theory is of no help here because we need a so-called pure equilibrium, and simple counter-examples
such as rock/paper/scissors show that it doesn’t exist in general1.

1.1 Our contributions

We formally define generalization for GANs in Section 3 and show that for previously studied
notions of distance between distributions, generalization is not guaranteed (Lemma 1). In fact we
show that the generator can win even when D and Dreal are arbitrarily far in any standard metric.

However, we can guarantee some weaker notion of generalization by introducing a new metric
on distributions, the neural net distance. We show that generalization does happen with moderate
number of training examples (i.e., when the generator wins, the two distributions must be close in
neural net distance).

To explore the existence of equilibria we turn in Section 4 to infinite mixtures of generator deep

1Such counterexamples are easily turned into toy GAN scenarios with generator and discriminator having finite
capacity, and the game lacks a pure equilibrium. See Section B.

2

nets. These are clearly vastly more expressive than a single generator net: e.g., a standard result in
bayesian nonparametrics says that every probability density is closely approximable by an infinite
mixture of Gaussians [Ghosh et al., 2003]. Thus unsurprisingly, an infinite mixture should win the
game. We then prove rigorously that even a finite mixture of fairly reasonable size can closely
approximate the performance of the infinite mixture (Theorem 4.2).

This insight also allows us to show for a natural GAN setting with Wasserstein objective there
exists an approximate equilibrium that is pure. (Roughly speaking, an approximate equilibrium is
one in which neither of the players can gain much by deviating from their strategies.)

This existence proof for an approximate equilibrium unfortunately involves a quadratic blowup
in the “size” of the generator (which is still better than the naive exponential blowup one might
expect). Improving this is left for future theoretical work. But we introduce a heuristic approxima-
tion to the mixture idea to introduce a new framework for training that we call mix+gan. It can
be added on top of any existing GAN training procedure, including those that use divergence ob-
jectives. Experiments (reported in Section 6) show that for several previous techniques, mix+gan
stabilizes the training, and in some cases improves the performance.

2 Preliminaries

Notations: Throughout the paper we use d for the dimension of samples, and p for the number
of parameters in the generator/discriminator. In Section 3 we use m for number of samples.

Generators and discriminators: Let {Gu, u ∈ U} (U ⊂ Rp) denote the class of generators,
where Gu is a function — which is often a neural network in practice — from R` → Rd index
by u that denotes the parameters of the generators. Here U denotes the possible ranges of the
parameters and without loss of generality we assume U is a subset of the unit ball2. The generator
Gu defines a distribution DGu as follows: we generate h from `-dimensional spherical Gaussian
distribution and then apply Gu on h and generate a sample x = Gu(h) of the distribution DGu .
We drop the subscript u in DGu when it’s clear from context.

Let {Dv, v ∈ V} denotes the class of discriminators, where Dv is function from Rd to [0, 1] and v
is the parameters of Dv. The value Dv(x) is usually interpreted as the probability that the sample
x comes from the real distribution Dreal (as opposed to the generated distribution DG).

In most neural network architectures, if the parameters (weights, biases) change by a small
amount, this makes only a small difference in the output. We capture this phenomena by assuming
Gu and Dv are L-Lipschitz with respect to their parameters. For the generator this means using
similar parameters and the same input, we can generate similar examples. Thus for all u, u′ ∈ U and
any input h, we have ‖Gu(h)−Gu′(h)‖ ≤ L‖u−u′‖. For the discriminator the Liptschitz condition
implies that for two discriminators using similar parameters, the output on every sample is quite
similar. More precisely, Similarly for all v, v′ ∈ V and any sample x, we have |Dv(x) −Dv′(x)| ≤
L‖v − v′‖. Notice, this is distinct from the assumption (which we will also sometimes make) that
functions Gu, Dv are Lipschitz: that focuses on the change in function value when we change x,
while keeping u, v fixed3.

2otherwise we can scale the parameter properly by changing the parameterization.
3Both Lipschitz parameters can be exponential in the number of layers in the neural net, however our Theorems

only depend on the log of the Lipschitz parameters

3

Objective functions. The standard GAN training [Goodfellow et al., 2014] consists of training
parameters u, v so as to optimize an objective function:

min
u∈U

max
v∈V

E
x∼Dreal

[logDv(x)] + E
x∼DGu

[log(1−Dv(x))]. (1)

Intuitively, this says that the discriminator Dv should give high values Dv(x) to the real samples
and low values Dv(x) to the generated examples. The log function was suggested because it’s
interpretation as the likelihood, and it enjoys a nice information-theoretic interpretation described
below as well. However, in practice it can cause problems since log x → −∞ as x → 0. The
objective still makes intuitive sense if we replace log by any monotone function φ : [0, 1] → R,
which yields the objective:

min
u∈U

max
v∈V

E
x∼Dreal

[φ(Dv(x))] + E
x∼DGu

[φ(1−Dv(x))]. (2)

We call function φ the measuring function. It should be concave so that when Dreal and DG are
the same distribution, the best strategy for the discriminator is just to output 1/2 and the optimal
value is 2φ(1/2). In later proofs, we will require φ to be bounded and Lipschitz. Indeed, in practice
training often uses φ(x) = log(δ + (1 − δ)x) (which takes values in [log δ, 0] and is 1/δ-Lipschitz)
and the recently proposed Wasserstein GAN [Arjovsky et al., 2017] objective uses φ(x) = x.

Training with finite samples The objective function (2) assumes we have infinite examples
from Dreal to estimate the value Ex∼Dreal [φ(Dv(x))]. With finite training examples x1, . . . , xm ∼
Dreal, in the training, one uses 1

m

∑m
i=1[φ(Dv(xi))] to estimate the quantity Ex∼Dreal [φ(Dv(x))]. We

call the distribution that gives 1/m probability to each of the xi’s the empirical version of the real
distribution. Similarly, one can use a empirical version to estimate Ex∼DGu [φ(1−Dv(x))].
Standard interpretation via distance between distributions.4 Towards analyzing GANs,
researchers have assumed the access to infinite number of examples and that the discriminator is
chosen optimally within some large class of functions that contain all possible neural nets. This
often allows computing analytically the optimal discriminator and therefore removing the maximum
operation from the objective (2), which leads to some interpretation of how and in what sense the
resulting distribution DG is close to the true distribution Dreal.

Using the original objective function (1), then the optimal choice among all the possible func-

tions from Rd → (0, 1) is D(x) = Preal(x)
Preal(x)+PG(x) , as shown in Goodfellow et al. [2014]. Here Preal(x)

is the density of x in the real distribution, and PG(x) is the density of x in the distribution gener-
ated by generator G. Using this discriminator — though it’s computationally infeasible to obtain
it — one can show that the minimization problem over the generator correspond to minimizing the
Jensen-Shannon (JS) divergence between the true distribution Dreal and the generative distribution
DG. Recall that for two distributions µ and ν, the JS divergence is defined by

dJS(µ, ν) =
1

2
(KL(µ‖µ+ ν

2
) +KL(ν‖µ+ ν

2
)).

Other measuring functions φ and choice of discriminator class leads to different distance func-
tion between distribution other than JS divergence. Notably, Arjovsky et al. [2017] shows that

4Distance between distributions is ofter referred to as statistical distance. However, since statistical distance
sometimes refers to the `1 (TV) distance between the distributions, we avoid using this term in this paper as much
as possible.

4

when φ(t) = t, and the discriminator is chosen among all 1-Lipschitz functions, maxing out the
discriminator, the generator is attempting to minimize the Wasserstein distance between Dreal and
Du(h). Recall that Wasserstein distance between µ and ν is defined as

dW (µ, ν) = sup
D is 1-Lipschitz

∣∣∣∣ Ex∼µ[D(x)]− E
x∼ν

[D(x)]

∣∣∣∣ . (3)

3 Generalization theory for GANs

This interpretation of GANs in terms of minimizing distance (such as JS divergence and Wasserstein
distance) between the real distribution and the generated distribution relies on two crucial assump-
tions: (i) very expressive class of discriminators such as the set of all bounded discriminator or the
set of all 1-Lipschitz discriminators, and (ii) very large number of examples to compute/estimate
the objective (1) or (2). Neither of these happens in practice, and we will show next that they do
affect the generalization ability. a notion that we will introduce in Section 3.1.

One of the messages of our analysis will be that disciminators with bounded capacity perform
very differently than the ideal (strong) discriminators analysed in Section 2. First, in Section 3.2
we show that the JS divergence and Wasserstein distance that resulted from strong discriminators
(such as bounded or 1-Lipschitz functions) don’t generalize, whereas in Section 3.3 we show that
discriminator class with bounded number of parameters (such as neural nets) do generalize with
relatively modest number of examples.

Moreover, even though discriminator with capacity p has good generalization power, there might
be a potential diversity issue with weak discriminators. We will see (Corollary 3.2 in Section 3.4)
that a discriminator of capacity p cannot distinguish too well between Dreal and the empirical
distribution D̂real when the number of samples m exceeds (p log p)/ε2. This holds even we have
access to infinite number of examples from Dreal. So this is not a question of “insufficient training
samples,”nor the usual worry of “overfitting.”One way to view this result is that a bounded capacity
discriminator is unable to force the generator to produce a distribution with very high diversity.
We note that similar results have been shown before in study of pseudorandomness [Trevisan et al.,
2009] and model criticism [Gretton et al., 2012].

3.1 Definition of generalization

Let x1, . . . , xm be the training examples, and let D̂real denote the uniform distribution over x1, . . . , xm.
Similarly, let Gu(h1), . . . , Gu(hr) be a set of r examples from the generated distribution DG. In the
training of GANs, one uses Ex∼D̂real [φ(Dv(x))] to approximate the quantity Ex∼Dreal [φ(Dv(x))].
Inspired by the observation that GANs and its variants attempt to minimize some distance (or
divergence) d(·, ·) between Dreal and DG using finite samples, we define the generalization of GANs
as follows:

We say a divergence or distance d(·, ·) between distribution generalizes with m training examples
and error ε if for the learnt distribution DG, the following hold with high probability,∣∣∣d(Dreal,DG)− d(D̂real, D̂G)

∣∣∣ ≤ ε (4)

where D̂real is an empirical version of the true distribution (with m samples) and D̂G is an empirical
version of the generated distribution with polynomial number of samples.

5

In words, generalization in GANs means that the population distance between the true and
generated distribution is close to the empirical distance between the empirical distributions. Our
target is to make the former distance small, whereas the latter one is what we can access and
minimize in practice. We note that for generated distribution we only require polynomial number
of examples because the training algorithm can generate polynomial number of samples by its own
in polynomial time.

We also note that we intentionally didn’t specify the quantifiers in front of equation (4). The
strongest version of generalization — the counterpart of uniform convergence in supervised learning
— would be that for all distribution DG equation (4) holds. A weaker version that takes the
generator into account is that for all DG that is realizable by the family of generators equation (4)
holds. One of the weakest versions would only concern about the learnt distribution DG. In the
rest of the paper, we mostly use the first version unless otherwise specified.

3.2 JS divergence and Wasserstein distance don’t generalize

As a warm-up, we show that JS divergence and Wasserstein distance don’t generalize with any
polynomial number of examples because the the population distance (divergence) is not reflected
by the empirical distance.

Lemma 1. Let µ be uniform Gaussian distributions N (0, 1
dI) and µ̂ be an empirical versions of µ

with m examples. Then we have

dJS(µ, µ̂) = log 2

dW (µ, µ̂) ≥ 1.1

There are two consequences of Lemma 1. First, consider the situation where Dreal = DG = µ,
then we have that dW (Dreal,DG) = 0 but dW (D̂real, D̂G) > 1 as long as we have polynomial number
of examples. This violates the generalization definition equation (4).

Second, consider the case Dreal = µ and DG = D̂real = µ̂, that is, DG memorizes all of the
training examples in D̂real. In this case, since DG is a discrete distribution with finite supports,
with enough (polynomial) examples, in D̂G, effectively we also have that D̂G ≈ DG. Therefore, we
have that dW (D̂real, D̂G) ≈ 0 whereas dW (Dreal,DG) > 1. In other words, with any polynomial
number of examples, it’s possible to overfit to the training examples using Wasserstein distance.
The same argument also applies to JS divergence. See Theorem A.1 for a formal proof.

We also remark that the result in Lemma 1 holds even if we apply add small noise to the
distribution µ̂. That is, if we obtain µ̃ by convolving µ̂ with a Gaussian distribution N(0, σ

2

d I) with
σ < c/

√
logm for some small enough constant c, then dJS(µ, µ̃) > log 2− 1/m. See Appendix A.1

for details.
We remark that this result doesn’t conflict with the experiment of Arjovsky et al. [2017] because

empirically in the experiment, the paper uses a surrogate for the Wasserstein distance, which, as
we will show later, indeed generalizes.

Finally, we note that generalization may not be the only thing that we should concern about
in the setting of GANs (as opposed to the supervised learning setting). See Section 3.4 for more
discussion.

6

3.3 Generalization bounds for neural net distance

Which distance measure between Dreal and DG the GAN objective is truely minimizing? Can we
analyze the generalization performance with finite samples? Towards answering these questions we
consider the following general distance measure that unifies the distance that unifies JS divergence,
Wasserstein distance, and the neural net distance that we define later in this section.

Definition 1 (F-distance). Let F be a class of functions from Rd to [0, 1] and φ be a concave
measuring function. Then the F-divergence with respect to φ between two distribution µ and ν
supported on Rd is defined as

dF ,φ(µ, ν) = sup
D∈F

∣∣∣∣ Ex∼µ[φ(D(x))] + E
x∼ν

[φ(1−D(x))]

∣∣∣∣− 2φ(1/2) (5)

When φ(t) = t, we have that dF ,φ is a distance function (or technically, a pseudometric5) , and
with slightly abuse of notation we write it simply as

dF (µ, ν) = sup
D∈F

∣∣∣∣ Ex∼µ[D(x)]− E
x∼ν

[D(x)]

∣∣∣∣ .
Example 1. When φ(t) = log(t) and F = {all functions from Rd to [0, 1]}, we have that dF ,φ is
the same as JS divergence. When φ(t) = t and F = {all 1-Lipschitz functions from Rd to [0, 1]},
then dF ,φ is the Wasserstein distance.

Example 2. Suppose F is a set of neural networks and φ(t) = log t, then original GAN objective
function is equivalent to

min
G
dF ,φ(D̂real, D̂G) .

Suppose F is the set of neural networks, and φ(t) = t, then the objective function used empirically
in Arjovsky et al. [2017] is equivalent to

min
G
dF (D̂real, D̂G) . (6)

For simplicity, when F is a neural net, we also refer dF to as the neural net distance.

In the next theorem, we address the generalization of GANs by showing that using a class of
neural nets with p parameters, the GAN learning generalizes in the sense of equation (4) (with a
uniform convergence) with relatively modest number of examples. We assume that the measuring
function takes values in [−∆,∆] is Lφ-Lipschitz. Further, F = {Dv, v ∈ V} is the class of dis-
criminators that is L-Lipschitz with respect to the parameters v. As usual, we use p to denote the
number of parameters in v.

Theorem 3.1. In the setting of previous paragraph, let µ, ν be two distributions and µ̂, ν̂ be em-
pirical versions with at least m samples each. There is a universal constant c such that when

m ≥ cp∆2 log(LLφp/ε)

ε2
, we have with probability at least 1− exp(−p) over the randomness of µ̂ and ν̂,

|dF ,φ(µ̂, ν̂)− dF ,φ(µ, ν)| ≤ ε.
5A pseudometric satisfies nonnegativity, symmetry and triangle inequality. A metric in addition needs to satisfy

identity of indiscernibles in the sense that d(x, y) = 0 if and only if x = y. This metric is also known as the integral
probability metrics[Müller, 1997].

7

The proof (in Appendix A.1) uses standard concentration inequalities and a standard ε-net
argument: there aren’t too many distinct discriminators, and thus given enough samples the ex-
pectation over the empirical distribution converges to the expectation over the true distribution for
all discriminators.

Theorem 3.1 shows that the neural network divergence (and neural network distance) has a much
better generalization bound than Jensen-Shannon divergence or Wasserstein distance. If the GAN
successfully minimized the neural network divergence between the empirical distributions, that is,
d(D̂real, D̂G), then we know the neural network divergence d(Dreal,DG) between the distributions
Dreal and DG is also small.

One would need to argue that this generalization continues to hold at every iteration of the
training. While we can resample from DG, it is infeasible to get more fresh samples from Dreal in
every iteration. The following corollary shows the generalization bound holds for every iteration as
long as the number of iterations is not too large.

Corollary 3.1. In the setting of Theorem 3.1, suppose G(1), G(2), ..., G(T) (log t � d) be the T
generators in the T iterations of the training, and assume log T ≤ p. There is a some universal

constant c such that when m ≥ cp∆2 log(LLφp/ε)

ε2
, with probability at least 1− exp(−p), for all t ∈ [T],∣∣∣dF ,φ(Dreal,DG(t))− dF ,φ(D̂real, D̂G(t))

∣∣∣ ≤ ε .
The key observation here is that the objective is separated into two parts and the generator is

not directly related to Dreal. So even though we cannot resample real samples, the generalization
bound still holds. Detailed proof appear in Appendix A.1.

3.4 Generalization vs Diversity

Note that the ability to generalize also comes with a cost (that might be necessary). For JS
divergence and Wasserstein distance, when the distance between two distributions µ, ν is small, it
is safe to conclude that the distributions µ and ν are almost the same. However, the neural net
distance dNN (µ, ν) can be small even if µ, ν are not very close. As a simple Corollary of Lemma 3.1,
we obtain:

Corollary 3.2 (Low-capacity discriminators cannot detect lack of diversity). Let µ̂ be the empirical
version of distribution µ with m samples. There is a some universal constant c such that when

m ≥ cp∆2 log(LLφp/ε)

ε2
, we have that with high probability

dF ,φ(µ, µ̂) ≤ ε.

That is, the neural network distance cannot distinguish between the real distribution µ and an
empirical distribution with roughly p/ε2 samples. Thus the discriminator is incapable of detecting
when the synthetic distribution has low diversity.

4 Expressive power and existence of equilibrium

Section 3 clarified the notion of generalization for GANs: namely, neural-net divergence between
the generated distribution D and Dreal on the empirical samples closely tracks the divergence on

8

the full distribution (i.e., unseen samples). But this doesn’t explain why in practice the generator
usually “wins”so that the discriminator is unable to do much better than random guessing at the
end. In other words, was it sheer luck that so many real-life distributions Dreal turned out to be
close in neural-net distance to a distribution produced by a fairly compact neural net? This section
suggests no luck may be needed.

The explanation starts with a thought experiment. Imagine allowing a much more powerful
generator, namely, an infinite mixture of deep nets, each of size p. So long as the deep net class
is capable of generating simple gaussians, such mixtures are quite powerful, since a classical result
says that an infinite mixtures of simple gaussians can closely approximate Dreal. Thus an infinite
mixture of deep net generators will “win” the GAN game, not only against a discriminator that is
a small deep net but also against more powerful discriminators (e.g., any Lipschitz function).

The next stage in the thought experiment is to imagine a much less powerful generator, which
is a mix of only a few deep nets, not infinitely many. Simple counterexamples show that now the
distribution D will not closely approximate arbitrary Dreal with respect to natural metrics like `p.
Nevertheless, could the generator still win the GAN game against a deep net of bounded capacity
(i.e., the deep net is unable to distinguish D and Dreal)? We show it can.

informal theorem: If the discriminator is a deep net with p parameters, then a mixture of
Õ(p log(p/ε)/ε2) generator nets can produce a distribution D that the discriminator will be unable
to distinguish from Dreal with probability more than ε. (Here Õ(·) notation hides some nuisance
factors.)

This informal theorem is also a component of our result below about the existence of an ap-
proximate pure equilibrium. With current technique this existence result seems sensitive to the
measuring function φ, and works for φ(x) = x (i.e., Wasserstein GAN). For other φ we only show
existence of mixed equilibria with small mixtures.

4.1 General φ: Mixed Equilibrium

For general measuring function φ we can only show the existence of a mixed equilibrium, where we
allow the discriminator and generator to be finite mixtures of deep nets.

For a class of generators {Gu, u ∈ U} and a class of discriminators {Dv, v ∈ V}, we can define
the payoff F (u, v) of the game between generator and discriminator

F (u, v) = E
x∼Dreal

[φ(Dv(x))] + E
x∼DG

[φ(1−Dv(x)))]. (7)

Of course as we discussed in previous section, in practice these expectations should be with respect
to the empirical distributions. Our discussions in this section does not depend on the distributions
Dreal and Dh, so we define F (u, v) this way for simplicity.

The well-known min-max theorem [v. Neumann, 1928] in game theory shows if both players are
allowed to play mixed strategies then the game has a min-max solution. A mixed strategy for the
generator is just a distribution Su supported on U , and one for discriminator is a distribution Sv
supported on V.

Theorem 4.1 (vonNeumann). There exists a value V , and a pair of mixed strategies (Su,Sv) such
that

∀v, E
u∼Su

[F (u, v)] ≤ V and ∀u, E
v∼Sv

[F (u, v)] ≥ V.

9

Note that this equilibrium involves both parties announcing their strategies Su,Sv at the start,
such that neither will have any incentive to change their strategy after studying the opponent’s
strategy. The payoff is generated by the generator first sample u ∼ Su, h ∼ Dh, and then generate
an example x = Gu(h). Therefore, the mixed generator is just a linear mixture of generators. The
discriminator will first sample v ∼ Sv, and then output Dv(x). Note that in general this is very
different from a discriminator D that outputs Ev∼Sv [Dv(x)], because the measuring function φ is
in general nonlinear. In particular, the correct payoff function for a mixture of discriminator is:

E
v∼Sv

[F (u, v)] = E
x∼Dreal
v∼Sv

[φ(Dv(x))] + E
h∼Dh
v∼Sv

[φ(1−Dv(Gu(h)))].

Of course, this equilibrium involving an infinite mixture makes little sense in practice. We
show that (as is folklore in game theory [Lipton and Young, 1994]) that we can approximate this
min-max solution with mixture of finitely many generators and discriminators. More precisely we
define ε-approximate equilibrium:

Definition 2. A pair of mixed strategies (Su,Sv) is an ε-approximate equilibrium, if for some value
V

∀v ∈ V, E
u∼Su

[F (u, v)] ≤ V + ε;

∀u ∈ U , E
v∼Sv

[F (u, v)] ≥ V − ε.

If the strategies Su,Sv are pure strategies, then this pair is called an ε-approximate pure equilibrium.

Suppose φ is Lφ-Lipschitz and bounded in [−∆,∆], the generator and discriminators are L-
Lipschitz with respect to the parameters and L′-Lipschitz with respect to inputs, in this setting we
can formalize the above Informal Theorem as follows:

Theorem 4.2. In the settings above, there is a universal constant C > 0 such that for any ε, there

exists T =
C∆2p log(LL′Lφ·p/ε)

ε2
generators Gu1 , . . . GuT and T discriminators Dv1 , . . . DvT , let Su be a

uniform distribution on ui and Sv be a uniform distribution on vi, then (Su,Sv) is an ε-approximate
equilibrium. Furthermore, in this equilibrium the generator “wins,”meaning discriminators cannot
do better than random guessing.

The proof uses a standard probabilistic argument and epsilon net argument to show that if we
sample T generators and discriminators from infinite mixture, they form an approximate equilib-
rium with high probability. For the second part, we use the fact that every distribution can be
approximated by infinite mixture of Gaussians, so the generator must be able to approximate the
real distribution Dreal and win. Therefore indeed a mixture of Õ(p) generators can achieve an
ε-approximate equilibrium.

4.1.1 φ(x) = x: Pure Equilibrium

Now we consider the special case of Wasserstein-GAN, which is equivalent to setting φ(x) = x
in Equation (2). In this case, it is possible to augment the network structure, and achieve an
approximate pure equilibrium for the GAN game for networks of size Õ(p2). This should be

10

interpreted as: if deep nets of size p are capable of generating a Gaussian, then the W-GAN game
for neural networks of size Õ(p2) has an approximate equilibrium in which the generator wins. (The
theorem is stated for RELU gates but also holds for standard activations such as sigmoid.)

Theorem 4.3. Suppose the generator and discriminator are both k-layer neural networks (k ≥ 2)
with p parameters, and the last layer uses ReLU activation function. In the setting of Theorem 4.2,
when φ(x) = x there exists k + 1-layer neural networks of generators G and discriminator D

with O
(

∆2p2 log(LL′Lφ·p/ε)
ε2

)
parameters, such that there exists an ε-approximate pure equilibrium.

Furthermore, if the generator is capable of generating a Gaussian then the value V = 1.

To prove this theorem, we consider the mixture of generators and discriminators as in Theo-
rem 4.2, and show how to fold the mixture into a larger k+ 1-layer neural network. We sketch the
idea; details are in the supplementary.

Mixture of Discriminators Given a mixture of T discriminators Dv1 , ..., DvT , we can just define
D(x) = 1

T

∑T
i=1Dvi(x). Because φ(x) = x, we know for any generator Gu

E
x∼Dreal

[D(x)] = E
x∼Dreal,i∈[T]

[Dvi(x)]

E
h∼Dh

[(1−D(Gu(h))] = E
h∼Dh,i∈[T]

[(1−Dvi(Gu(h))].

Therefore, the payoff for D is exactly the same as the payoff for the mixture of discriminators.
Also, the discriminator D is easily implemented as a network T times as large as the original
network by adding a top layer that averages the output of the T generators Dvi(x).

Mixture of Generators For mixture of generators, we construct a single neural network that
approximately generates the mixture distribution using the gaussian input it has. To do that, we
can pass the input h through all the generators Gu1 , Gu2 , ..., GuT . We then show how to implement
a “multi-way selector” that will select a uniformly random output from Gui(h) (i ∈ [T]). The
selector involves a simple 2-layer network that selects a number i from 1 to T with the appropriate
probability and “disables”all the neural nets except the ith one by forwarding an appropriate large
negative input.

Theorem 4.3 suggests that the objective of Wasserstein GAN may have approximate pure equi-
librium for certain architectures of neural networks, which lends credence that Wasserstein GAN
may be more robust.

Remark: In practice, GANs use highly structured deep nets, such as convolutional nets. Our
current proof of existence of pure equilibrium requires introducing less structured elements in the
net, namely, the multiway selectors that implement the mixture within a single net. It is left for
future work whether pure equilibria exist for the original structured architectures. In the meantime,
in practice we recommend using, even for W-GAN, a mixture of structured nets for GAN training,
and it seems to help in our experiments reported below.

5 MIX+GANs

Theorem 4.2 and Theorem 4.3 show that using a mixture of (pot too many) generators and dis-
criminators guarantees existence of approximate equilibrium. This suggests that using a mixture
may lead to more stable training.

11

Of course, it is impractical to use very large mixtures, so we propose mix + gan: use a mixture
of T components, where T is as large as allowed by size of GPU memory (usually T ≤ 5). Namely,
train a mixture of T generators {Gui , i ∈ [T]} and T discriminators {Dvi , i ∈ [T]}) which share the
same network architecture but have their own trainable parameters. Maintaining a mixture means
of course maintaining a weight wui for the generator Gui which corresponds to the probability of
selecting the output of Gui . These weights are also updated via backpropagation. This heuristic
can be combined with existing methods like dcgan, w-gan etc., giving us new training methods
mix+dcgan, mix+w-gan etc.

We use exponentiated gradient [Kivinen and Warmuth, 1997]: store the log-probabilities {αui , i ∈
[T]}, and then obtain the weights by applying soft-max function on them:

wui =
eαui∑T
k=1 e

αuk
, i ∈ [T]

Note that our algorithm is maintaining weights on different generators and discriminators. This
is very different from the idea of boosting where weights are maintained on samples. AdaGAN [Tol-
stikhin et al., 2017] uses ideas similar to boosting and maintains weights on training examples.

Given payoff function F , training mix + gan boils down to optimizing:

min
{ui},{αui}

max
{vj},{αvj }

E
i,j∈[T]

F (ui, vj)

= min
{ui},{αui}

max
{vj},{αvj }

∑
i,j∈[T]

wuiwvjF (ui, vj).

Here the payoff function is the same as Equation (7). We use both measuring functions φ(x) = log x
(for original GAN) and φ(x) = x (for WassersteinGAN). In our experiments we alternatively update
generators’ and discriminators’ parameters as well as their corresponding log-probabilities using
ADAM [Kingma and Ba, 2015], with learning rate lr = 0.0001.

Empirically, it is observed that some components of the mixture tend to collapse and their
weights diminish during the training. To encourage full use of the mixture capacity, we add to the
training objective an entropy regularizer term that discourages the weights being too far away from
uniform:

Rent({wui}, {wvi}) = − 1

T

T∑
i=1

(log(wui) + log(wvi))

6 Experiments

In this section, we first explore the qualitative benefits of mix+gan on image generation tasks:
MNIST dataset [LeCun et al., 1998] of hand-written digits and the CelebA [Liu et al., 2015] dataset
of human faces. Then for more quantitative evaluation we use the CIFAR-10 dataset [Krizhevsky
and Hinton, 2009] and use the Inception Score introduced in Salimans et al. [2016]. MNIST contains
60,000 labeled 28× 28-sized images of hand-written digits, CelebA contains over 200K 108× 108-
sized images of human faces (we crop the center 64×64 pixels for our experiments), and CIFAR-10
has 60,000 labeled 32× 32-sized RGB natural images which fall into 10 categories.

12

Table 1: Inception Scores on CIFAR-10. Mixture of DCGANs achieves higher score than any
single-component DCGAN does. All models except for WassersteinGAN variants are trained with
labels.

Method Score
SteinGAN [Wang and Liu, 2016] 6.35
Improved GAN [Salimans et al., 2016] 8.09±0.07
AC-GAN [Odena et al., 2016] 8.25 ± 0.07
S-GAN (best variant in [Huang et al., 2017]) 8.59± 0.12
DCGAN (as reported in Wang and Liu [2016]) 6.58
DCGAN (best variant in Huang et al. [2017]) 7.16±0.10
DCGAN (5x size) 7.34±0.07
MIX+DCGAN (Ours, with 5 components) 7.72±0.09
Wasserstein GAN 3.82±0.06
MIX+WassersteinGAN (Ours, with 5 components) 4.04±0.07
Real data 11.24±0.12

To reinforce the point that this technique works out of the box, no extensive hyper-parameter
search or tuning is necessary. Related code is public online at https://github.com/yeezhang/

MIX-plus-GAN. Please refer to our code for hyper-parameters and experimental setup.

6.1 Qualitative Results

The DCGAN architecture [Radford et al., 2016] uses deep convolutional nets as generators and
discriminators. We trained mix + dcgan on MNIST and CelebA using the authors’ code as a
black box, and compared visual qualities of generated images vs DCGAN.

Results on MNIST is shown in Figure 2. In this experiment, the baseline DCGAN consists of a
pair of a generator and a discriminator, which are 5-layer deconvoluitonal neural networks, and are
conditioned on image labels. Our MIX+DCGAN model consists of a mixture of such DCGANs so
that it has 3 generators and 3 discriminators. We observe that mix + dcgan produces somewhat
cleaner digits than dcgan (pote the fuzziness in the latter). Interestingly, each component of our
mixture learns a slightly different style of strokes.

Figure 3 demonstrates results on CelebA dataset, using the same architecture as for MNIST,
except the models are not conditioned on image labels anymore.

The MIX+DCGAN model generates more faithful and more diverse samples than the baseline
DCGAN does on both datasets, even though one may need to zoom in to fully perceive the difference
since the two datasets are rather easy for a powerful training like DCGAN.

6.2 Quantitative Results

Now we turn to quantitative measurement using Inception Score [Salimans et al., 2016]. Through-
out, we use mixtures of 5 generators and 5 discriminators. We compare our MIX+DCGAN with
DCGAN, and our MIX+Wasserstein with Wasserstein GAN. We note that at first sight the compar-
ison dcgan vs mix + dcgan seems unfair because the latter uses as much capacity as 5 dcgan’s,
with corresponding penalty in running time per epoch. To address, we also compare MIX+DCGAN

13

https://github.com/yeezhang/MIX-plus-GAN
https://github.com/yeezhang/MIX-plus-GAN

Figure 2: MNIST Samples. Digits generated from (a) MIX+DCGAN. (b) DCGAN. (c)-(d)-(e)
From each of 3 components of MIX+DCGAN. (View on-screen with zooming in.)

with larger versions of DCGAN with roughly the same number of parameters, and we found the
former is consistently better than the later, as shown below.

To construct MIX+DCGAN, we build on top of the DCGAN trained with losses proposed
by Huang et al. [2017], namely adversarial loss, entropy loss and conditional loss, which is the best
DCGAN so far without improved training techniques. The same hyper-parameters are used for fair
comparison. See Huang et al. [2017] for more details. Similarly, for the MIX+WassersteinGAN,
the base GAN is identical to that proposed by Arjovsky et al. [2017] using their hyper-parameter
scheme.

Table 1 is a quantitative comparison between our mixture models and other state-of-the-art
GAN models on the CIFAR-10 dataset, with inception score calculated using 50,000 freshly gen-
erated samples from each model that are not used in training. To sample a single image from our
MIX+ models, we first select a generator from the mixture according to their assigned weights
{wui}, and then draw a sample from the selected generator. We find surprisingly that, simply
by applying MIX+ to the baseline models, our MIX+ models achieve 7.72 v.s. 7.16 gain in the
score on DCGAN, and 4.04 v.s. 3.82 gain on WassersteinGAN. To confirm that the superiority of
MIX+ models is not solely due to more parameters, we observe that a DCGAN model that has 5

14

(a) (b)

(c) (d) (e)

Figure 3: CelebA Samples. Faces generated from (a) MIX+DCGAN. (b) DCGAN.(c)-(d)-(e)
Each of 3 components of MIX+DCGAN. (View on-screen with zooming in.)

times more parameters than the one mentioned above (roughly the same number of parameters as
a 5-component MIX+DCGAN) gets only 7.34 (labeld as 5x size in Table 1), which is considerably
lower than that of a MIX+DCGANs. The result of the 5 times larger DCGAN is tuned using a grid
search over 27 sets of hyper-parameters including learning rates, dropout rates, and regularization
weights.

Figure 4 shows how Inception Scores of MIX+DCGAN v.s. DCGAN evolve during training.
MIX+DCGAN outperforms DCGAN throughout the entire training process, showing that it makes
effective use of the additional capacity.

Arjovsky et al. [2017] shows that (approximated) Wasserstein loss, which is the neural net-
work divergence by our definition, is meaningful because it correlates well with visual quality
of generated samples. Figure 5 shows the training dynamics of neural network divergence of
MIX+WassersteinGAN v.s. WassersteinGAN, which strongly indicates that MIX+WassersteinGAN
is capable of achieving a much lower divergence as well as of improving the visual quality of gen-
erated samples.

15

Figure 4: MIX+DCGAN v.s. DCGAN Training Curve (Inception Score). MIX+DCGAN
is consistently higher than DCGAN.

7 Conclusions

The notion of generalization for GANs has been clarified by introducing a new notion of distance
between distributions, the neural net distance. (Whereas popular distances such as Wasserstein
and JS may not generalize.) Assuming the visual cortex also is a deep net (or some network of
moderate capacity) generalization with respect to this metric is in principle sufficient to make the
final samples look realistic to humans.

One issue raised by our analysis is that the current GANs objectives cannot enforce that the
synthetic distribution has high diversity. This cannot be fixed by simply providing the discriminator
with more training examples. Possibly some other change to the GANs setup can fix this.

The paper also made progress on other unexplained issues about GANs, by showing that a pure
approximate equilibrium exists for a certain natural training objective (Wasserstein) and in which
the generator wins the game. No assumption about distribution Dreal is needed.

Suspecting that a pure equilibrium may not exist for all objectives, we recommend in practice
our mix+ gan protocol using a small mixture of discriminators and generators. Our experiments
show it improves the quality of several existing GAN training methods.

Finally, note that existence of an equilibrium does not imply that a simple algorithm (in this
case, backpropagation) would find it easily. That still defies explanation.

Acknowledgements

This paper was done in part while the authors were hosted by Simons Institute. We thank Moritz
Hardt, Kunal Talwar, Luca Trevisan, and the referees for useful comments. This research was
supported by NSF, Office of Naval Research, and the Simons Foundation.

16

Figure 5: MIX+WassersteinGAN v.s. WassersteinGAN Training Curve (Wasserstein
Objective). MIX+WassersteinGAN is better towards the end but loss drops less smoothly, which
needs further investigation.

17

References

Mart́ın Abadi and David G Andersen. Learning to protect communications with adversarial neural
cryptography. arXiv preprint arXiv:1610.06918, 2016.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

I. Durugkar, I. Gemp, and S. Mahadevan. Generative Multi-Adversarial Networks. ArXiv e-prints,
November 2016.

Jayanta K Ghosh, RVJK Ghosh, and RV Ramamoorthi. Bayesian nonparametrics. Technical
report, 2003.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pages 2672–2680, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge Belongie. Stacked generative
adversarial networks. In Computer Vision and Patter Recognition, 2017.

D. Jiwoong Im, H. Ma, C. Dongjoo Kim, and G. Taylor. Generative Adversarial Parallelization.
ArXiv e-prints, December 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. Information and Computation, 132(1):1–63, 1997.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, 2009.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten
digits, 1998.

Richard J Lipton and Neal E Young. Simple strategies for large zero-sum games with applications
to complexity theory. In Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pages 734–740. ACM, 1994.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE International Conference on Computer Vision, pages 3730–3738,
2015.

Alfred Müller. Integral probability metrics and their generating classes of functions. Advances in
Applied Probability, 29(02):429–443, 1997.

18

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with aux-
iliary classifier gans. arXiv preprint arXiv:1610.09585, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. In International Conference on Learning Repre-
sentations, 2016.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
2016.

Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard
Schölkopf. Adagan: Boosting generative models. arXiv preprint arXiv:1701.02386, 2017.

Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity, boosting, and efficiently simulating
every high-entropy distribution. In Computational Complexity, 2009. CCC’09. 24th Annual IEEE
Conference on, pages 126–136. IEEE, 2009.

J v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.

Dilin Wang and Qiang Liu. Learning to draw samples: With application to amortized mle for
generative adversarial learning. Technical report, 2016.

19

A Omitted Proofs

In this section we give detailed proofs for the theorems in the main document.

A.1 Omitted Proofs for Section 3

We first show that JS divergence and Wasserstein distances can lead to overfitting.

Lemma 2 (Lemma 1 restated). Let µ be uniform Gaussian distributions N (0, 1
dI) and µ̂ be an

empirical versions of µ with m examples. Then we have

dJS(µ, µ̂) = log 2

dW (µ, µ̂) ≥ 1.1

Proof. For Jensen-Shannon divergence, observe that µ is a continuous distribution and µ̂ is discrete,
therefore dJS(µ, µ̂) = log 2.

For Wasserstein distance, let x1, x2, ..., xm be the empirical samples (fixed arbitrarily). For
y ∼ N (0, 1

dI), by standard concentration and union bounds, we have

Pr[∀i ∈ [m]‖y − xi‖ ≥ 1.2] ≥ 1−m exp(−Ω(d)) ≥ 1− o(1).

Therefore, using the earth-mover interpretation of Wasserstein distance, we know dW (µ, µ̂) ≥
1.2 Pr[∀i ∈ [m]‖y − xi‖ ≥ 1.2] ≥ 1.1.

Next we consider sampling for both the generated distribution and the real distribution, and
show that the JS divergence or Wasserstein distance do not generalize.

Theorem A.1. Let µ, ν be uniform Gaussian distributions N (0, 1
dI). Suppose µ̂, ν̂ are empirical

versions of µ, ν with m samples. Then with probability at least 1−m2 exp(−Ω(d)) we have

dJS(µ, ν) = 0,dJS(µ̂, ν̂) = log 2.

dW (µ, ν) = 0,dW (µ̂, ν̂) ≥ 1.1.

Further, let µ̃, ν̃ be the convolution of µ̂, ν̂ with a Gaussian distribution N(0, σ
2

d I), as long as
σ < c√

logm
for small enough constant c, we have with probability at least 1−m2 exp(−Ω(d)).

dJS(µ̃, ν̃) > log 2− 1/m.

Proof. For the Jensen-Shannon divergence, we know with probability 1 the supports of µ̂, ν̂ are
disjoint, therefore dJS(µ̂, ν̂) = 1.

For Wasserstein distance, note that for two random Gaussian vectors x, y ∼ N(0, 1
dI), their

difference is also a Gaussian with expected square norm 2. Therefore we have

Pr[‖x− y‖2 ≤ 2− ε] ≤ exp(−Ω(ε2d)).

As a result, setting ε to be a fixed constant (0.1 suffices), with probability 1−m2 exp(−Ω(d)),
we can union bound over all the m2 pairwise distances for points in support of µ̂ and support of
ν̂. With high probability, the closest pair between µ̂ and ν̂ has distance at least 1, therefore the
Wasserstein distance dW (µ̂, ν̂) ≥ 1.1.

20

Finally we prove that even if we add noise to the two distributions, the JS divergence is still
large. For distributions µ̃, ν̃, let ρ1, ρ2 be their density functions. Let g(x) = ρ1(x) log 2ρ1(x)

ρ1(x)+ρ2(x) +

ρ2(x) log 2ρ2(x)
ρ1(x)+ρ2(x) , we can rewrite the JS divergence as

dJS(µ̃, ν̃) =

∫
1

2
g(x)dx.

Let zx be a Bernoulli variable with probability ρ1(x)/(ρ1(x) + ρ2(x)) of being 1. Note that g(x) =
(ρ1(x) + ρ2(x))(log 2 − H(zx)) where H(zx) is the entropy of zx. Therefore 0 ≤ g(x) ≤ (ρ1(x) +
ρ2(x)) log 2. Let X be the union of radius-0.2 balls near the 2m samples in µ̂ and ν̂. Since with
high probability, all these samples have pairwise distance at least 1, by Gaussian density function
we know (a) the balls do not intersect; (b) within each ball max{d1(x),d2(x)}

min{d1(x),d2(x)} ≥ m2; (c) the union of

these balls take at least 1− 1/2m fraction of the density in (µ̂+ ν̂)/2.
Therefore for every x ∈ X , we know H(zx) ≤ o(1/m), therefore

dJS(µ̃, ν̃) =

∫
1

2
g(x)dx

≥
∫
x∈X

1

2
g(x)dx

≥
∫
x∈X

(ρ1(x) + ρ2(x))(log 2− o(1/m))dx

≥ log 2− 1/2m− o(1/m) ≥ log 2− 1/m.

Next we prove the neural network distance does generalize, given enough samples. Let us first
recall the settings here: we assume that the measuring function takes values in [−∆,∆] is Lφ-
Lipschitz. Further, F = {Dv, v ∈ V} is the class of discriminators that is L-Lipschitz with respect
to the parameters v. As usual, we use p to denote the number of parameters in v.

Theorem A.2 (Theorem 3.1 restated). In the setting described in the previous paragraph, let µ, ν
be two distributions and µ̂, ν̂ be empirical versions with at least m samples each. There is a universal

constant c such that when m ≥ cp∆2 log(LLφp/ε)

ε2
, we have with probability at least 1 − exp(−p) over

the randomness of µ̂ and ν̂,
|dF ,φ(µ̂, ν̂)− dF ,φ(µ, ν)| ≤ ε.

Proof. The proof uses concentration bounds. We show that with high probability, for every dis-
criminator Dv,

| E
x∼µ

[φ(Dv(x))]− E
x∼µ̂

[φ(Dv(x))]| ≤ ε/2, (8)

| E
x∼ν

[φ(1−Dv(x))]− E
x∼ν̂

[φ(1−Dv(x))]| ≤ ε/2. (9)

21

If dF ,φ(µ, ν) = t, let Dv be the optimal discriminator, we then have

dF ,φ(µ, ν) ≥ E
x∼µ̂

[φ(Dv(x))] + E
x∼ν̂

[φ(Dv(x))].

≥ E
x∼µ

[φ(Dv(x))] + E
x∼ν

[φ(Dv(x))]

− | E
x∼µ

[φ(Dv(x))]− E
x∼µ̂

[φ(Dv(x))]|

− | E
x∼ν

[φ(1−Dv(x))]− E
x∼ν̂

[φ(1−Dv(x))]|

≥ t− ε.

The other direction is similar.
Now we prove the claimed bounds (8) (proof of (9) is identical). Let X be a finite set such that

every point in V is within distance ε/8LLφ of a point in X (a so-called ε/8LLφ-net). Standard
constructions give an X satisfying log |X | ≤ O(p log(LLφp/ε)). For every v ∈ X , by Chernoff bound
we know

Pr[| E
x∼µ

[φ(Dv(x))]− E
x∼µ̂

[φ(Dv(x))]| ≥ ε

4
] ≤ 2 exp(− ε

2m

2∆2
).

Therefore, when m ≥ Cp∆2 log(LLφp/ε)

ε2
for large enough constant C, we can union bound over all

v ∈ X . With high probability (at least 1 − exp(−p)), for all v ∈ X we have |Ex∼µ[φ(Dv(x))] −
Ex∼µ̂[φ(Dv(x))]| ≥ ε

4 .
Now, for every v ∈ V, we can find a v′ ∈ X such that ‖v − v′‖ ≤ ε/8LLφ. Therefore

| E
x∼µ

[φ(Dv(x))]− E
x∼µ̂

[φ(Dv(x))]|

≤| E
x∼µ

[φ(Dv′(x))]− E
x∼µ̂

[φ(Dv′(x))]|

+ | E
x∼µ

[φ(Dv′(x))]− E
x∼µ

[φ(Dv(x))]|

+ | E
x∼µ̂

[φ(Dv′(x))]− E
x∼µ̂

[φ(Dv(x))]|

≤ε/4 + ε/8 + ε/8

≤ε/2.

This finishes the proof of (8).

Finally, we generalize the above Theorem to hold for all generators in a family.

Corollary A.1 (Corollary 3.1 restated). In the setting of Theorem 3.1, suppose G(1), G(2), ..., G(T)

be the T generators in the T iterations of the training, and assume log T ≤ p. There is a some

universal constant c such that when m ≥ cp∆2 log(LLφp/ε)

ε2
, with probability at least 1− exp(−p), for

all t ∈ [T], ∣∣∣dF ,φ(Dreal,DG(t))− dF ,φ(D̂real, D̂G(t))
∣∣∣ ≤ ε .

Proof. This follows from the proof of Theorem 3.1. Note that we have fresh samples for every
generator distribution, so Equation (9) is true with high probability by union bound. For the real
distribution, notice that Equation (8) does not depend on the generator, so it is also true with high
probability.

22

A.2 Omitted Proof for Section 4: Expressive power and existence of equilibrium

Mixed Equilibrium We first show there is a finite mixture of generators and discriminators that
approximates the equilibrium of infinite mixtures.

Again we recall the settings here: suppose φ is Lφ-Lipschitz and bounded in [−∆,∆], the
generator and discriminators are L-Lipschitz with respect to the parameters and L′-Lipschitz with
respect to inputs.

Theorem A.3 (Theorem 4.2 restated). In the settings described in the previous paragraph, there

is a large enough constant C > 0 such that for any ε, there exists T =
C∆2p log(LL′Lφ·p/ε)

ε2
generators

Gu1 , . . . GuT and T discriminators Dv1 , . . . DvT , let Su be a uniform distribution on ui and Sv be a
uniform distribution on vi, then (Su,Sv) is an ε-approximate equilibrium.

Further, if the class of generator can generate a Gaussian, and the class of discriminator in-
cludes constant functions, then the value of the game V = 2φ(1/2) (where φ is the connection
function in (2)).

Proof. Let (S ′u,S ′v) be the pair of optimal mixed strategies as in Theorem 4.1 and V be the optimal
value. We will show that randomly sampling T generators and discriminators from these two
distributions gives the desired mixture with high probability.

Construct ε/4LL′Lφ-nets U, V for U and V. By standard construction, the sizes of these ε-nets
satisfy log(|U |+ |V |) ≤ C ′n log(LL′Lφ ·p/ε) for some constant C ′. Let u1, u2, ..., uT be independent
samples from Du, and v1, v2, ..., vT be independent samples from Dv. By Chernoff bound, for any
u ∈ U , we know

Pr[E
i∈[T]

[F (u, vi)] ≤ E
v∈V

[F (u, v)]− ε/2] ≤ exp(− ε
2T

2∆2
).

When T =
C∆2p log(L·Lφ·p/ε)

ε2
and the constant C is large enough (C ≥ 2C ′), with high probability

this inequality is true for all u ∈ U . Now, for any u ∈ U , let u′ be the closest point in the ε-net. By
the construction of the net, ‖u−u′‖ ≤ ε/4LL′Lφ. It is easy to check that F (u, v) is 2LL′Lφ-Lipschitz
in both u and v, therefore

E
i∈[T]

[F (u′, vi)] ≥ E
i∈[T]

[F (u, vi)]− ε/2.

Combining the two inequalities we know for any u′ ∈ U ,

E
i∈[T]

[F (u′, vi)] ≥ V − ε.

This finishes the proof for the second inequality. The proof for the first inequality is identical.
By probabilistic argument we know there must exist such generators and discriminators.

Finally, we prove the fact that the value V must be equal to 2φ(1/2). For the discriminator,
one strategy is to just output 1/2. This strategy has payoff 2φ(1/2) no matter what the generator
does, so V ≥ 2φ(1/2). For the generator, consider the distribution Dζ = Dreal + ζN(0, I), which is
the convolution of Dreal and a Gaussian of variance ζI. For any ζ, Dζ can be expressed as a infinite
mixture of Gaussians and is therefore a mixed strategy of the generator. The Wasserstein distance
between Dζ and Dreal is O(ζ). Since the discriminator is L′-Lipschitz, it cannot distinguish between
Dζ and Dreal. In particular we know for any discriminator Dv

| E
x∼Dζ

[φ(1−Dv(x))]− E
x∼Dreal

[φ(1−Dv(x))]| ≤ O(LφL
′ζ).

23

Therefore,

max
v∈V

E
x∼Dreal

[φ(Dv(x))] + E
x∼Dζ

[φ(1−Dv(x))]

≤O(LφL
′ζ) + max

v∈V
E

x∼Dreal
[φ(Dv(x)) + φ(1−Dv(x))]

≤2φ(1/2) +O(LφL
′ζ).

Here the last step uses the assumption that φ is concave. Therefore the value is upperbounded by
V ≤ 2φ(1/2) +O(LφL

′ζ) for any ζ. Taking limit of ζ to 0, we have V = 2φ(1/2).

Pure equilibrium Now we show for Wasserstein objective, there exists an approximate pure
equilibrium

Theorem A.4 (Theorem 4.3 restated). Suppose the generator and discriminator are both k-layer
neural networks (k ≥ 2) with p parameters, and the last layer uses ReLU activation function. In the
setting of Theorem 4.2 there exists k + 1-layer neural networks of generators G and discriminator

D with O
(

∆2p2 log(LL′Lφ·p/ε)
ε2

)
parameters, such that there exists an ε-approximate pure equilibrium.

Furthermore, if the generator is capable of generating a Gaussian then the value V = 1.

In order to prove this theorem, the major step is to construct a generator that works as a
mixture of generators.

Mixture of Generators For mixture of generators, we need to construct a single neural network
that approximately generates the mixture distribution using the gaussian input it has. To do
that, we can pass the input h through all the generators Gu1 , Gu2 , ..., GuT . We then show how to
implement a “multi-way selector” that will select a uniformly random output from Gui(h) (i ∈ [T]).

In order to do that, we first observe that it is possible to compute a step function using a two
layer neural network. This is fairly standard for many activation functions.

Lemma 3. Fix an arbitrary q ∈ N and z1 < z2 < · · · < zq. For any 0 < δ < min{zi+1 − zi}, there
is a two-layer neural network with a single input h ∈ R that outputs q + 1 numbers x1, x2, ..., xq+1

such that (i)
∑q+1

i=1 xi = 1 for all h; (ii) when h ∈ [zi−1 + δ/2, zi − δ/2], xi = 1 and all other xj’s
are 06.

Proof. Using a two layer neural network, we can compute the function fi(h) = max{h−zi−δ/2δ , 0}−
max{h−zi+δ/2δ , 0}. This function is 0 for all h < zi − δ/2, 1 for all h ≥ zi + δ/2 and change
linearly in between. Now we can write x1 = 1 − f1(h), xq+1 = fq(h), and for all i = 2, 3, ..., q,
xq = fi(h)− fi−1(h). It is not hard to see that these functions satisfy our requirements.

Using these step functions, we can essentially select one output from the T generators.

Lemma 4. In the setting of Theorem 4.3, for any δ > 0, there is a k+ 1-layer neural network with

O
(

∆2p2 log(LL′Lφ·p/ε)
ε2

)
parameters that can generate a distribution that is within δ total variational

difference with the mixture of Gu1 , Gu2 , ..., GuT .

6When h ≤ z1 − δ/2 only x1 is 1 and when h ≥ zq + δ/2 only xq+1 = 1

24

The idea is simple: since we have implemented step functions from Lemma 3, we can just pass
through the input through all the generators Gu1 , ..., GuT . For the last layer of Gui , we add a
large multiple of −(1 − xi) where xi is the i-th output from the network in Lemma 3. Clearly, if
xi = 0 this is going to effectively disable the neural network; if xi = 1 this will have no effect. By
properties of xi’s we know most of the time only one xi = 1, hence only one generator is selected.

Proof. Suppose the input for the generator is (h0, h) ∼ N(0, 1) × Dh (i.e. h0 is sampled from a
Gaussian, h is sampled according to Dh independently). We pass the input h through the generators
and gets outputs Gui(h), then we use h0 to select one as the true output.

Let z1, z2, ..., zT−1 be real numbers that divides the probability density of a Gaussian into T
equal parts. Pick δ′ = δ/100T in Lemma 3, we know there is a 2-layer neural network that computes
step functions x1, ..., xT . Moreover, the probability that (x1, ..., xT) has more than 1 nonzero entry
is smaller than δ. Now, for the output of Gui(h), in each output ReLU gate, we add a very large
multiple of −(1 − xi) (larger than the maximum possible output). This essentially “disables” the
output when xi = 0 because before the result before ReLU is always negative. On the other hand,
when xi = 1 this preserves the output. Call the modified network Ĝui , we know Ĝui = Gui when
xi = 1 and Ĝui = 0 when xi = 0. Finally we add a layer that outputs the sum of Ĝui . By
construction we know when (x1, ..., xT) has only one nonzero entry, the network correctly outputs
the corresponding Gui(xi). The probability that this happens is at least 1−δ so the total variational
distance with the mixture is bounded by δ.

Using the generator and discriminators we constructed, it is not hard to prove Theorem 4.3.
The only thing to notice here is that when the generator is within δ total variational distance to
the true mixture, the payoff F (u, v) can change by at most 2∆δ.

Proof of Theorem 4.3. Let T be large enough so that there exists an ε/2-approximate mixed equilib-
rium. Let the new set of discriminators be the convex combination of T discriminators {Dv, v ∈ V}.
Let the new set of generators be constructed as in Lemma 4 with δ ≤ ε/4∆ and Gu1 , ..., GuT from
the original set of generators. Let D be the discriminator which is the average of the T discrim-
inators from the approximate mixed equilibrium, and G be the generator constructed by the T
generators from the approximate mixed equilibrium. Define F ?(G,D) be the payoff of the new
two-player game. Now, for any discriminator D′, think of it as a distribution of Gv, we know

F ?(G,D′) ≥ E
i∈[T],v∈D′

F (ui, v)

− |F ?(G,D′)− E
i∈[T],v∈D′

F (ui, v)|

≥ V − ε/2− 2∆
ε

4∆
≥ V − ε.

The bound from the first term comes from Theorem 4.2, and the fact that the expectation is smaller
than the max. The bound for the second term comes from the fact that changing a δ fraction of
probability mass can change the payoff F by at most 2∆δ.

25

Similarly, for any generator G′, we know it is close to a mixture of generators Gu, therefore

F ?(G′, D) ≤ E
i∈[T],u∈G′

F (u, vi)

+ |F ?(G′, D)− E
i∈[T],u∈G′

F (u, vi)|

≤ V + ε/2 + 2∆
ε

4∆
≤ V + ε.

This finishes the proof.

B Examples when best response fail

In this section we construct simple generators and discriminators and show that if both generators
and discriminators are trained to optimal with respect to Equation (2), the solution will cycle and
cannot converge. For simplicity, we will show this when the connection function is φ, but it is
possible to show similar result even when φ is the traditional log function.

We consider a simple example where we try to generate points on a circle. The true distribution
Dtrue has 1/3 probability to generate a point at angle 0, 2π/3, 4π/3. Let us first consider a case
when the generator does not have enough capacity to generate the true distribution.

Definition 3 (Example 1). The generator G has one parameter θ ∈ [0, 2π), and always generates a
point at angle θ. The discriminator D has a parameter φ ∈ [0, 2π), and Dφ(τ) = exp(−10d(τ, φ)2).
Here d(τ, φ) is the angle between τ and φ and is always between [0, π].

We will analyze the “best response” procedure (as in Algorithm 1). We say the procedure
converges if limi→∞ φ

i and limi→∞ θ
i exist.

Algorithm 1 Best Response

Initialize θ0.
for i = 1 to T do

Let φi = arg maxφ Eτ∼Dtrue [Dφ(τ)]− Eτ∼G(θ)[Dφ(τ)].
Let θi = arg minθ −Eτ∼G(θ)[Dφ(τ)].

end for

Theorem B.1. For generator G and discriminator D in Example 1, for every choice of parameter
θ, there is a choice of φ such that Dφ(θ) ≤ 0.001 and Eτ∼Dt∇ue [Dφ(τ)] ≥ 1/3. On the other hand,
for every choice of φ, there is always a θ such that Dφ(θ) = 1. As a result, the sequence of best
response cannot converge.

Proof. For any θ, we can just choose φ to be the farthest point in {0, 2π/3, 4π/3}. Clearly the
distance is at least 2π/3 and therefore Dφ(θ) ≤ exp(−10) ≤ 0.001. On the other hand, for the true
distribution, it has 1/3 probability of generating the point φ, therefore Eτ∼Dt∇ue [Dφ(τ)] ≥ 1/3.
For every φ, we can always choose θ = φ, and we have Dφ(θ) = 1.

By the construction of φi and θi in Algorithm 1, we know for any i Dφi(θ
i) = 1, but Eτ∼Dtrue [Dφ(τ)]−

Dφi−1(θi) ≥ 1/4. Therefore |Dφi(θ
i) − Dφi−1(θi)| ≥ 1/4 for all i and the sequences cannot con-

verge.

26

Figure 6: Optimization problem for φ

This may not be very surprising as the generator does not even have the capacity to generate the
true distribution. One might hope that once we use a large enough neural network, the generator
will be able to generate the true distribution. However, our next example shows even in that case
the best response algorithm may not converge.

Definition 4 (Example 2). Let θ, φ ∈ [0, 2π)3 will be 3 -dimensional vectors. The generator G(θ)
generates the uniform distribution over points θ1, θ2, θ3. The discriminator function is chosen to be
Dφ(τ) = 1

3

∑3
i=1 exp(−10d(τ, φi)

2).

Clearly in this example, the true distribution can be generated by the generator (just by choosing
θ = (0, 2π/3, 4π/3)). However we will show that the best response algorithm still cannot always
converge.

Theorem B.2. Suppose the generator and discriminator are described as in Example 2, and θ0 =
(0, 0, 0), then we have: (1) In every iteration the three points for generator θi1,2,3 are equal to each

other. (2) In every iteration θi1 is 0.1-close to one of the true points {0, 2π/3, 4π/3}, and its closest
point is different from the previous iteration.

Before giving detailed calculations, we first give an intuitive argument. In this example, we
will use induction to prove that at every iteration t, two properties are preserved: 1. The three
points of the generator (θt1, θ

t
2, θ

t
3) are close to the same real example (0, 2π/3 or 4π/3); 2. The

three points of the discriminator (φt+1
1 , φt+1

2 , φt+1
3) will be close to the other two real examples. To

go from 1 to 2, notice that in this case the three φ values can be optimized independently (and
the final objective is the sum of the three), so it suffices to argue for one of them. For one φ, by
our construction the objective function is really close to the sum of two Gaussians at the other two
real examples, minus twice of a Gaussian at the real example that θti ’s are close to (see Figure 6).
From the Figure it is clear that the maximum of this function is close to one of the real examples
that is different from θti .Now all the three φt+1

i ’s will be close to one of the two real examples, so
one of them is going to get at least two φt+1

i ’s. In the next iteration, as the generator is trying
to maximize the output of discriminator, all three θt+1

i ’s will be close to the real example with at
least two φt+1

i ’s.
Now we make this intuition formal through calculations.

27

Proof. The optimization problems here are fairly simple and we can argue about the solutions
directly. Throughout the proof we will use the fact that exp(−10∗(2π/3)2) < 1e−4 and exp(1+ε) ≈
1 + ε. The following claim describes the properties we need:

Claim 1. If θ1 = θ2 = θ3 and θ1 is 0.1-close to one of {0, 2π/3, 4π/3}, then the optimal φ must
satisfy φ1, φ2, φ3 be 0.05-close to the other two points in {0, 2π/3, 4π/3}.

We first prove the Theorem with the claim. We will do this by induction. The induction
hypothesis is that for every j ≤ t, we have θj1,2,3 are equal to each other, and θj1 is 0.1-close to one
of the true points {0, 2π/3, 4π/3}. This is clearly true for t = 0. Now let us assume this is true for
t and consider iteration t+ 1.

Without loss of generality we assume θt1 is close to 0. Now by Claim we know φt1, φ
t
2, φ

t
3 are

0.05-close to either 2π/3 or 4π/3. Without loss of generality assume there are more φti’s close
to 2π/3 (the number of φti’s close to the two point has to be different because there are 3 φti’s).
Now, by property of Gaussians, we know Dφt(τ) has a unique maximum that is within 0.1 of 2π/3
(the influence from the other point is much smaller than 0.05). Since the generator is trying to
maximize Eτ∼G(θ)[Dφ(τ)], all three θti(i = 1, 2, 3) should be at this maximizer. This finishes the
induction.

Now we prove the claim.

Proof. The objective function is

max
φ

1

3

(
E

τ∼Dtrue
[

3∑
i=1

exp(−10d(τ, φi)
2)]− E

τ∼G(θ)
[

3∑
i=1

exp(−10d(τ, φi)
2)]

)
.

In this objective function φi’s do not interact with each other, so we can break the objective function
into three (one for each φi). Without loss of generality, assume θ1,2,3 are 0.1-close to 0, we are trying
to maximize

max
φ

(
1

3

3∑
i=1

exp(−10d(φ, i · 2π/3)2)]− exp(−10d(θ, φ)2)

)
.

Clearly, if φ is not 0.05 close to either 2π/3 or 4π/3, we have D ≤ 1/3− 10 · 0.052 + exp(−10) ≤
1/3− 0.02. On the other hand, when φ = 2π/3 or 4π/3, we have D ≥ 1/3− exp(−10). Therefore
the maximum must be 0.05-close to one of the two points.

Note that this example is very similar to the mode collapse problem mentioned in NIPS 2016
GAN tutorial[Goodfellow, 2016].

28

	Introduction
	Our contributions

	Preliminaries
	Generalization theory for GANs
	Definition of generalization
	JS divergence and Wasserstein distance don't generalize
	Generalization bounds for neural net distance
	Generalization vs Diversity

	Expressive power and existence of equilibrium
	General : Mixed Equilibrium
	(x)=x: Pure Equilibrium

	MIX+GANs
	Experiments
	Qualitative Results
	Quantitative Results

	Conclusions
	Omitted Proofs
	Omitted Proofs for Section 3
	Omitted Proof for Section 4: Expressive power and existence of equilibrium

	Examples when best response fail

