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Abstract
We consider computationally tractable methods
for the experimental design problem, where k out
of n design points of dimension p are selected
so that certain optimality criteria are approxi-
mately satisfied. Our algorithm finds a (1 + ε)-
approximate optimal design when k is a linear
function of p; in contrast, existing results require
k to be super-linear in p. Our algorithm also han-
dles all popular optimality criteria, while existing
ones only handle one or two such criteria. Nu-
merical results on synthetic and real-world de-
sign problems verify the practical effectiveness
of the proposed algorithm.

1. Introduction
Experimental design is an important problem in statistics
and machine learning research (Pukelsheim, 2006). Con-
sider a linear regression model

y = Xβ0 +w, (1)

where X ∈ Rn×p is a pool of n design points, y is the re-
sponse vector, β0 is a p-dimensional unknown regression
model and w is a vector of i.i.d. noise variables satisfying
Ewi = 0 and Ew2

i < ∞. The experimental design prob-
lem is to select a small subset of rows (i.e., design points)
XS from the design pool X so that the statistical power of
estimating β0 is maximized from noisy response yS on the
selected designs XS .

As an example, consider a material synthesis application
where p is the number of variables (e.g., temperature, pres-
sure, duration) that are hypothesized to affect the quality of
the synthesized material and n is the total number of com-
binations of different parameters of experimental condi-
tions. As experiments are expensive and time-consuming,
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one wishes to select k � n experimental settings from
X that are the most statistically efficient for establishing a
model that connects experimental parameters with synthe-
sized material quality, y. The experimental design problem
is also related to many machine learning tasks, such as lin-
ear bandits (Deshpande & Montanari, 2012; Huang et al.,
2016), diversity sampling (Kulesza & Taskar, 2012) and
active learning (Ma et al., 2013; Chaudhuri et al., 2015;
Hazan & Karnin, 2015; Balcan & Long, 2013; Wang &
Singh, 2016).

Since statistical efficiency can be measured in various
ways, there exist a number of optimality criteria to guide
the selection of experiments. We review some optimality
criteria in Sec. 2 and interested readers are referred to Sec. 6
of (Pukelsheim, 2006) for a comprehensive review.

Typically, an optimality criterion is a function f : S+
p → R

that maps from the p-dimensional positive definite cone to
a real number. The experimental design problem can then
be formulated as a combinatorial optimization problem:

S∗(k) = arg min
S∈S(n,k)

f(X>SXS), (2)

where S is either a set or a multi-set of size k, and XS ∈
Rk×p is formed by stacking the rows of X that are in S.
The constraint set S1/2(n, k) is defined as follows:

1. With replacement: S1(n, k) = {S multi-set : S ⊆
[n], |S| ≤ k}. Under this setting, XS may contain du-
plicate rows of the design pool X;

2. Without replacement: S2(n, k) = {S standard set :
S ⊆ [n], |S| ≤ k}. Under this setting, XS only con-
tains distinct rows of the design pool X.

The “with replacement” setting is classical in statistics lit-
erature, where the multiple measurements in y with respect
to the same design point lead to different values with statis-
tically independent noise. The “without replacement” set-
ting, on the other hand, is more relevant in machine learn-
ing applications, because labels are not likely to change if
the same data point (e.g., the same image) is considered
twice. Finally, it is worth pointing out that the “with re-
placement” setting is easier, because it can be reduced (in
polynomial time) to the “without replacement” setting by
replicating each row of X for k times.

For many popular choices of f , the exact optimization
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Table 1. Comparison with existing results on computationally efficient experimental design. An algorithm produces a subset Ŝ of size
k, and the approximation ratio is defined as f(X>

Ŝ
XŜ)/minS∈Sb(n,r) f(X>SXS) for r ≤ k. TOPT denotes the time complexity for

solving the continuous convex optimization problem in Eq. (6).

Without
replacement? Deterministic? Time complexity Constraints† Criteria Approx. ratio

Pipage rounding Yes Yes TOPT +O(n2p2) k = r ≥ p D,T (1− 1/e)−1

(Bouhtou et al., 2010) Yes No TOPT +O(n) k = r ≥ p D (n/k)1/p

(Avron & Boutsidis, 2013) Yes Yes O(n2p2) k = r ≥ p A n−p+1
k−p+1

(Wang et al., 2016) No No TOPT +O(nk)
k = Ω(r), and

r = Ω((p log p)/ε2)
A,V 1 + ε

(Wang et al., 2016) Yes Yes TOPT +O(p6) k = r = Ω(p2/ε) A,V 1 + ε

This paper — Eq. (3) No Yes TOPT + Õ(nkp2) k = r = Ω(p/ε2) A,D,T,E,V,G 1 + ε

This paper — Eq. (4) Yes Yes TOPT + Õ(nkp2) k = r > 2p A,D,T,E,V,G O(1)

This paper — Eq. (5) Yes Yes TOPT + Õ(nkp2) k = Ω(r), r ≥ p/ε2 A,D,T,E,V,G 1 + ε

† In Õ(·) and Ω̃(·) we hide logarithmic dependency over n, p and k.

problem in Eq. (2) is NP-hard (Çivril & Magdon-Ismail,
2009; Černỳ & Hladı́k, 2012). In this paper, we propose
a computationally tractable algorithm that approximately
computes Eq. (2) for a wide range of optimality criteria,
and under very weak conditions on n, k and p.

Below is our main theorem:

Theorem 1.1. Suppose b ∈ {1, 2}, n > k > p and let
f : S+

p → R be a regular optimality criterion (cf. Definition
2.1). There exists a polynomial-time algorithm that outputs
Ŝ ∈ Sb(n, k) for any input matrix X ∈ Rn×p with full
column rank, and Ŝ satisfies the following:

1. For b = 1 (with replacement), there exists an absolute
constant C0 ≤ 32 such that, for any ε ∈ (0, 1), if k ≥
C0p/ε

2 then

f(X>
Ŝ

XŜ) ≤ (1 + ε) · min
S∈S1(n,k)

f(X>SXS) . (3)

2. For b = 2 (without replacement) and any ξ > 2, there
exists constant C1(ξ) > 0 depending only on ξ such
that, if k ≥ ξp then

f(X>
Ŝ

XŜ) ≤ C1(ξ) · min
S∈S2(n,k)

f(X>SXS) . (4)

Moreover, for ξ ≥ 4 we have C1(ξ) ≤ 32.

3. For b = 2 (without replacement) and any ε ∈ (0, 1/2),
if k, r satisfy k ≥ 4(1 + 7ε)r and r ≥ p/ε2, then

f(X>
Ŝ

XŜ) ≤ (1 + ε) · min
S∈S2(n,r)

f(X>SXS). (5)

We interpret the significance of Theorem 1.1 as follows.

• Under a very mild condition of k > 2p, our polynomial-
time algorithm finds a set Ŝ ⊂ [n] of size k, with ob-
jective value f(X>

Ŝ
XŜ) being at most O(1) a constant

times the optimum. See Eq. (4).

• If replacement (b = 1) or over-sampling (k > r) is
allowed, the approximation ratio can be tightened to 1+
ε for arbitrarily small ε > 0. See Eq. (3) and (5).

• In all of the three cases, we only require k to grow lin-
early in p. Recall that k ≥ p is necessary to ensure
the singularity of X>

Ŝ
XŜ . In contrast, no polynomial-

time algorithm has achieved O(1) approximation in the
regime k = O(p) for non-submodular optimality cri-
teria (e.g., A- and V-optimality) under the without re-
placement setting.

• Our algorithm works for any regular optimality cri-
terion. To the best of our knowledge, no known
polynomial-time algorithm can achieve a (1 + ε) ap-
proximation for the D- and T-optimality criteria, or even
an O(1) approximation for the E- and G-optimality cri-
teria. See Table 1 for a comparison.

The key idea behind our proof of Theorem 1.1 is a re-
gret minimization characterization of the least eigenvalue
of positive semidefinite (PSD) matrices. Similar ideas were
developed in (Allen-Zhu et al., 2015; Silva et al., 2016) to
construct efficient algorithms for linear-sized graph sparsi-
fiers. In this paper we adopt the regret minimization frame-
work and present novel potential function analysis for the
specific application of experimental design.

1.1. Notations

S+
p is the positive definite cone of p × p matrices: a
p × p symmetric matrix A belongs to S+

p if and only if
v>Av > 0 for all v ∈ Rp\{0}. For symmetric matri-
ces A and B, we write A � B if v>(A − B)v ≥ 0
for all v ∈ Rp. The inner product 〈A,B〉 is defined
as 〈A,B〉 = tr(B>A) =

∑p
i,j=1 AijBij . We use

‖A‖2 = supv∈Rp\{0} ‖Av‖2/‖v‖2 to denote the spectral

norm, and ‖A‖F =
√∑p

i,j=1 A2
ij =

√
〈A,A〉 to denote
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the Frobenius norm of A. For A � 0, we write B = A1/2

as the unique B � 0 that satisfies B2 = A. For a design
pool X ∈ Rn×p, we use xi ∈ Rp to denote the i-th row of
X. We use σmin(A) for the least (smallest) singular value
of a PSD matrix A.

1.2. Related work

Experimental design is an old topic in statistics research
(Pukelsheim, 2006; Fedorov, 1972). Computationally effi-
cient experimental design algorithms (with provable guar-
antees) are, however, a less studied field. In the case of sub-
modular optimality criteria (e.g., D- and T-optimality), the
classical pipage rounding method (Ageev & Sviridenko,
2004; Horel et al., 2014; Ravi et al., 2016) combined with
semi-definite programming results in computationally ef-
ficient algorithms that enjoy a constant approximation ra-
tio. Bouhtou et al. (2010) improves the approximation ra-
tio when k is very close to n. Deshpande & Rademacher
(2010); Li et al. (2017) considered polynomial-time algo-
rithms for sampling from a D-optimality criterion. These
algorithms are not applicable to non-submodular criteria,
such as A-, V-, E- or G-optimality.

For the particular A-optimality criterion, (Avron & Bout-
sidis, 2013) proposed a greedy algorithm with an approx-
imation ratio of O(n/k) with respect to f(X>X). It
was shown that in the worst case min|S|≤k f(X>SXS) ≈
O(n/k) · f(X>X) and hence the bound is tight. How-
ever, for general design pool min|S|≤k f(X>SXS) could be
far smaller than O(n/k) · f(X>X), making the theoreti-
cal results powerless in such scenarios. Wang et al. (2016)
considered a variant of the greedy method and showed an
approximation ratio quadratic in design dimension p and
independent of pool size n.

Wang et al. (2016) derived algorithms based on effective re-
sistance sampling (Spielman & Srivastava, 2011) that attain
(1 + ε) approximation ratio if k = Ω(p log p/ε2) and rep-
etitions of design points are allowed. The algorithm funda-
mentally relies on the capability of “re-weighting” (repeat-
ing) design points and cannot be adapted to the more gen-
eral “without replacement” setting. Naive sampling based
methods were considered in (Wang et al., 2016; Chaudhuri
et al., 2015; Dhillon et al., 2013), which also achieve (1+ε)
approximation but requires the subset size k to be much
larger than the condition number of X.

A related however different topic is low-rank matrix col-
umn subset selection and CUR approximation, which seeks
column subset C and row subset R such that ‖X −
CC†X‖F and/or ‖X − CUR‖F are minimized (Drineas
et al., 2008; Boutsidis & Woodruff, 2014; Wang & Singh,
2015b; Drineas & Mahoney, 2005; Wang & Zhang, 2013;
Wang & Singh, 2015a). These problems are unsupervised
in nature and do not in general correspond to statistical

properties under supervised regression settings. Pilanci &
Wainwright (2016); Raskutti & Mahoney (2014); Woodruff
(2014) considered fast methods for solving ordinary least
squares (OLS) problems. They are computationally ori-
ented and typically require knowledge of the full response
vector y, which is different from the experimental design
problem.

2. Regular criteria and continuous relaxation
We start with the definition of regular optimality criteria:

Definition 2.1 (Regular criteria). An optimality criterion
f : S+

p → R is regular if it satisfies the followig properties:

1. Convexity: 1 f(λA + (1 − λ)B) ≤ λf(A) + (1 −
λ)f(B) for all λ ∈ [0, 1] and A,B ∈ S+

p ;

2. Monotonicity: If A � B then f(A) ≥ f(B);

3. Reciprocal multiplicity: f(tA) = t−1f(A) for all t >
0 and A ∈ S+

p .

Almost all optimality criteria used in the experimental de-
sign literature are regular. Below we list a few popu-
lar examples; their statistical implications can be found in
(Pukelsheim, 2006):

- A-optimality (Average): fA(Σ) = 1
p tr(Σ−1);

- D-optimality (Determinant): fD(Σ) = (det |Σ|)− 1
p ;

- T-optimality (Trace): fT (Σ) = p/tr(Σ);

- E-optimality (Eigenvalue): fE(Σ) = ‖Σ−1‖2;

- V-optimality (Variance): fV (Σ) = 1
n tr(XΣ−1X>);

- G-optimality: fG(Σ) = max diag(XΣ−1X>).

The (A-, D-, T-, E-) criteria concern estimates of regres-
sion coefficients and the (V-, G-) criteria are about in-
sample predictions. All criteria listed above are regular.
Note that for D-optimality the proxy function gD(Σ) =
− log det(Σ) is considered to satisfy the convexity prop-
erty. In addition, by the standard arithmetic inequality we
have that fT ≤ fD ≤ fA ≤ fE and that fV ≤ fG.

Although exact optimization of the combinatorial problem
Eq. (2) is intractable, it is nevertheless easy to solve a con-
tinuous relaxation of Eq. (2) given the convexity property
in Definition 2.1. We consider the following continuous
optimization problem:

π∗(b) = arg min
π=(π1,··· ,πn)

f

(
n∑

i=1

πixix
>
i

)
, (6)

s.t. π ≥ 0, ‖π‖1 ≤ r, I[b = 2] · ‖π‖∞ ≤ 1.

1This property could be relaxed to allow a proxy function g :
S+
p → R being convex, where g(A) ≤ g(B)⇔ f(A) ≤ f(B).
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The ‖π‖1 ≤ r constraint makes sure only r rows of X are
“selected”, where r ≤ k is a parameter that controls the
degree of oversampling. The 0 ≤ πi ≤ 1 constraint en-
forces that each row of X is “selected” at most once and is
only applicable to the without replacement setting (b = 2).
Eq. (6) is a relaxation of the original combinatorial prob-
lem Eq. (2), which we formalize below:
Fact 2.1. For b ∈ {1, 2} we have f(

∑n
i=1 π

∗
i (b)xix

>
i ) ≤

minS∈Sb(n,r) f(X>SXS)

In addition, because of the monotonicity property of f the
sum constraint must bind:
Fact 2.2. For b ∈ {1, 2} it holds that

∑n
i=1 π

∗
i (b) = r.

Proofs of Facts 2.1 and 2.2 are straightforward and are
placed in the supplementary material.

Both the objective function and the constraint set in Eq. (6)
are convex, and hence it can be efficiently solved to
global optimality by conventional convex optimization al-
gorithms. In particular, for differentiable f we suggest the
following projected gradient descent (PGD) procedure:

π(t+1) = PC
(
π(t) − γt∇f(π(t))

)
, (7)

where PC(x) = arg miny∈C ‖x − y‖2 is the projection
operator onto the feasible set C = {π ∈ Rp : π ≥
0, ‖π‖1 ≤ r, I[b = 2] · ‖π‖∞ ≤ 1} and {γt}t≥1 > 0 is
a sequence of step sizes typically chosen by backtracking
line search. When f is not differentiable everywhere, pro-
jected subgradient descent could be used with either con-
stant or diminishing step sizes. We defer detailed gradient
computations to the supplementary material. It was shown
in (Wang et al., 2016; Su et al., 2012) that the projection op-
erator PC(x) could be efficiently computed up to precision
δ in O(n log(‖x‖∞/δ)) operations.

3. Sparsification via regret minimization
The optimal solution π∗ of Eq. (6) does not naturally lead
to a valid approximation of the combinatorial problem in
Eq. (2), because the number of non-zero components in π∗

may far exceed k. The primary focus of this section is to
design efficient algorithms that sparsify the optimal solu-
tion π∗ into s ∈ [k]n (with replacement) or s ∈ {0, 1}n
(without replacement), while at the same time bounding the
increase in the objective.

Due to the monotonicity and reciprocal multiplicity prop-
erties of f , it suffices to find a sparsifier s that satisfies

(
n∑

i=1

sixix
>
i

)
� τ ·

(
n∑

i=1

π∗i xix
>
i

)
(8)

for some constant τ ∈ (0, 1). By Definition
2.1, Eq. (8) immediately implies f(

∑n
i=1 sixix

>
i ) ≤

τ−1f(
∑n
i=1 π

∗
i xix

>
i ). The key idea behind our algorithm

is a regret-minimization interpretation of the least eigen-
value of a positive definite matrix, which arises from recent
progress in the spectral graph sparsification literature (Silva
et al., 2016; Allen-Zhu et al., 2015).

In the rest of this section, we adopt the notation that Π =
diag(π∗) and S = diag(s), both being n×n non-negative
diagonal matrices. We also use I to denote the identity ma-
trix, whose dimension should be clear from the context.

3.1. The whitening trick

Consider the linear transform xi 7→ (XΠX>)−1/2xi =:
x̃i. It is easy to verify that

∑n
i=1 π

∗
i x̃ix̃

>
i = I. Such a

transform is usually referred to as whitening, because the
sample covariance of the transformed data is the identity
matrix. Define W =

∑n
i=1 six̃ix̃

>
i . We then have the

following:

Proposition 3.1. For τ > 0, W � τI if and only if
(
∑n
i=1 sixix

>
i ) � τ(

∑n
i=1 π

∗
i xix

>
i ).

Proof. The proposition holds because W � τI if and
only if (XΠX>)1/2W(XΠX>)1/2 � τXΠX>, and that
(XΠX>)1/2W(XΠX>)1/2 = XSX>.

Proposition 3.1 shows that, without loss of generality, we
may assume

∑n
i=1 π

∗
i xix

>
i = XΠX> = I. The question

of proving W = XSX> � τI is then reduced to lower
bounding the smallest eigenvalue of W.

Recall that W can be written as a sum of rank-1 PSD ma-
trices W =

∑k
t=1 Ft, where Ft = xix

>
i for some i ∈ [n].

In the next section we give a novel characterization of the
least eigenvalue of W from a regret minimization perspec-
tive. The problem of lower bounding the least eigenvalue
of W can then be reduced to bounding the regret of a par-
ticular Follow-The-Regularized-Leader (FTRL) algorithm,
which is a much easier task as FTRL admits closed-form
solutions.

3.2. Smallest eigenvalue as regret minimization

We first review the concept of regret minimization in a clas-
sical linear bandit setting. Let ∆p = {A ∈ Rp×p : A �
0, tr(A) = 1} be an action space that consists of posi-
tive semi-definite matrices of dimension p and unit trace
norm. Consider the linear bandit problem, which operates
in k iterations. At iteration t, the player chooses an action
At ∈ ∆p; afterwards, a “reference” action Ft � 0 is ob-
served and the loss 〈Ft,At〉 is incurred. The objective of
the player is to minimize his/her regret:

R({At}kt=1) :=

k∑

t=1

〈Ft,At〉 − inf
U∈∆p

k∑

t=1

〈Ft,U〉,
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which is the “excess loss” of {At}kt=1 compared to the
single optimal action U ∈ ∆p in hindsight, knowing
all the reference actions {Ft}kt=1. A popular algorithm
for regret minimization is Follow-The-Regularized-Leader
(FTRL), also known to be equivalent to Mirror Descent
(MD) (McMahan, 2011), which solves for

At = arg min
A∈∆p

{
w(A) + α ·

t−1∑

`=1

〈F`,A〉
}
. (9)

Here w(A) is a regularization term and α > 0 is a param-
eter that balances model fitting and regularization. For the
proof of our purpose we adopt the `1/2-regularizerw(A) =

−2tr(A1/2) introduced in (Allen-Zhu et al., 2015), which
leads to the closed-form solution

At =

(
ctI + α

t−1∑

`=1

F`

)−2

, (10)

where ct ∈ R is the unique constant that ensures At ∈ ∆p.
The following lemma from (Allen-Zhu et al., 2015) bounds
the regret of FTRL using the particular `1/2-regularizer:

Lemma 3.1 (Theorem 3.2 of (Allen-Zhu et al., 2015),
specialized to `1/2-regularization). Suppose α > 0,
rank(Ft) = 1 and let {At}kt=1 be FTRL solutions defined
in Eq. (10). If α〈Ft,A1/2

t 〉 > −1 for all t, then

R({At}kt=1) :=
k∑

t=1

〈Ft,At〉 − inf
U∈∆p

k∑

t=1

〈Ft,U〉

≤ α
k∑

t=1

〈Ft,At〉〈Ft,A1/2
t 〉

1 + α〈Ft,A1/2
t 〉

+
2
√
p

α
.

Now consider each Ft = xitx
>
it

to be the outer product of a
design point selected from the design pool X. One remark-
able consequence of Lemma 3.1 is that, in order to lower
bound the smallest eigenvalue of

∑k
t=1 Ft, which by defi-

nition is infU∈∆p
〈∑k

t=1 Ft,U〉, it suffices to lower bound∑k
t=1 〈Ft,At〉. Because At admits closed-form expres-

sion in Eq. (10), choosing a sequence of {Ft}kt=1 with large∑k
t=1 〈Ft,At〉 becomes a much more manageable analyt-

ical task, which we shall formalize in the next section.

3.3. Proof of Theorem 1.1

Re-organizing terms in Lemma 3.1 we obtain

inf
U∈∆p

k∑

t=1

〈Ft,U〉 ≥
k∑

t=1

〈Ft,At〉
1 + α〈Ft,A1/2

t 〉
− 2
√
p

α
. (11)

The k near-optimal design points are selected in a sequen-
tial manner. Let Λt ∈ Sb(n, t) be the set of selected de-
sign points at or prior to iteration t (Λ0 = ∅), and define

Ft = xitx
>
it

, where it is the design point selected at itera-
tion t. Define also Λt =

∑t
`=1 F` =

∑
i∈Λt

xix
>
i .

We first consider the with replacement setting b = 1.

Lemma 3.2. Suppose
∑n
i=1 π

∗
i xix

>
i = I where π∗i ≥ 0

and
∑n
i=1 π

∗
i = r. Then for 1 ≤ t ≤ k we have that

maxi∈[n]
〈xix

>
i ,At〉

1+α〈xix>i ,A
1/2
t 〉
≥ 1

r+α
√
p .

Proof. Recall that tr(At) = 1 and
∑n
i=1 π

∗
i xix

>
i =

I. Subsequently,
∑n
i=1 π

∗
i 〈xix>i ,At〉 = 1. On the

other hand, we have that
∑n
i=1 π

∗
i (1 + α〈xix>i ,A

1/2
t 〉) =

∑n
i=1 π

∗
i + α · tr(A

1/2
t )

(a)

≤ r + α · tr(A
1/2
t )

(b)

≤ r +
α
√
p. Here (a) is due to the optimization constraint that

‖π∗‖1 ≤ r, and (b) is because tr(A
1/2
t ) = ‖σ(A

1/2
t )‖1 ≤√

p‖σ(A
1/2
t )‖2 =

√
p
√
‖σ(At)‖1 =

√
p
√

tr(At) =√
p, where σ(·) is the vector of all eigenvalues of a

PSD matrix. Combining both inequalities we have that
maxi∈[n]

〈xix
>
i ,At〉

1+α〈xix>i ,A
1/2
t 〉

≥
∑n

i=1 π
∗
i 〈xix

>
i ,At〉∑n

i=1 π
∗
i (1+α〈xix>i ,A

1/2
t 〉)

,

where the right-hand side is lower bounded by 1/(r +
α
√
p).

Let it = arg maxi∈[n]
〈xix

>
i ,At〉

1+α〈xix>i ,A
1/2
t 〉

be the design point

selected at iteration t. Combining Eq. (11) and Lemma 3.2,

Λk =
∑

i∈Λk

xix
>
i �

(
k

r + α
√
p
− 2
√
p

α

)
I. (12)

To prove Eq. (3), set α = 8
√
p/ε. Because k = r ≥

C0p/ε
2, we have that k

r+α
√
p −

2
√
p

α ≥ 1
1+8ε/C0

− ε
4 . With

C0 = 32 the right-hand side is lower bounded by 1− ε/2.
Eq. (3) is thus proved because (1− ε/2)−1 ≤ 1 + ε.

We next consider the without replacement setting b = 2.

Lemma 3.3. Fix arbitrary β ∈ (0, 1] and suppose∑n
i=1 π

∗
i xix

>
i = I where π∗i ∈ [0, β] and

∑n
i=1 π

∗
i = r.

Then for all 1 ≤ t ≤ k,

max
i/∈Λt−1

〈xix>i ,At〉
1 + α〈xix>i ,A

1/2
t 〉

≥ 1− βσmin(Λt−1)−√p/α
r + α

√
p

.

Proof. On one hand, we have
∑
i/∈Λt−1

π∗i 〈xix>i ,At〉
(a)

≥
〈At, I− βΛt−1〉

(b)
= 1 − tr

[
(αΛt−1 + ctI)

−2
βΛt−1

]
=

1+ βct
α −

β
α tr

[
(αΛt−1 + ctI)

−1
]

= 1+ βct
α −

tr(A
1/2
t )
α

(c)

≥
1 + βct

α −
√
p

α . Here (a) is due to
∑n
i=1 π

∗
i xix

>
i = I and

π∗i ∈ [0, β]; (b) is due to 〈At, I〉 = tr(At) = 1 and (c) is
proved in the proof of Lemma 3.2. Because αΛt−1 +ctI �
0, we conclude that ct ≥ −ασmin(Λt−1) and therefore∑
i/∈Λt−1

π∗i 〈xix>i ,At〉 ≥ 1 − βσmin(Λt−1) − √p/α.

On the other hand,
∑
i/∈Λt−1

π∗i (1 + α〈xix>i ,A
1/2
t 〉) ≤
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r + α
√
p by the same argument as in the proof of

Lemma 3.2. Subsequently, maxi/∈Λt−1

〈xix
>
i ,At〉

1+α〈xix>i ,A
1/2
t 〉
≥

∑
i/∈Λt−1

π∗i 〈xix
>
i ,At〉

∑
i/∈Λt−1

π∗i (1+α〈xix>i ,A
1/2
t 〉)

≥ 1−βσmin(Λt−1)−√p/α
r+α
√
p .

Let it = arg maxi/∈Λt−1

〈xix
>
i ,At〉

1+α〈xix>i ,A
1/2
t 〉

. Combining

Eq. (11) and Lemma 3.3 with β = 1, we have that

Λk �
(

k∑

t=1

1− κt −√p/α
r + α

√
p

− 2
√
p

α

)
I, (13)

where κt := σmin(Λt). We are now ready to prove
Eqs. (4,5) in Theorem 1.1.

Proof of Eq. (4). Note that

Λk � sup
u>0

min

{
u,

1− u−√p/α
r + α

√
p

· k − 2
√
p

α

}
I. (14)

Eq. (14) can be proved by a case analysis: if u ≤ κt for
some 1 ≤ t ≤ k then σmin(Λk) ≥ σmin(Λt−1) ≥ u;
otherwise 1−κt−√p/α ≥ 1−u−√p/α for all 1 ≤ t ≤ k.
Suppose k = r ≥ ξp for some ξ > 2. and let α = ν

√
p,

u = (1−2/ξ)ν−3
ν(2+ν/ξ) , where ν > 1 is some parameter to be

specified later. Eq. (14) then yields Λk � (1−2/ξ)ν−3
ν(2+ν/ξ) I.

Because ξ > 2, it is possible to select ν > 0 such that
C1(ξ)−1 = (1−2/ξ)ν−3

ν(2+ν/ξ) > 0. Finally, for ξ ≥ 4 and ν = 8

we have C1(ξ)−1 ≥ 1/32. Eq. (4) is thus proved.

Proof of Eq. (5). Let β ∈ (0, 1) be a parameter to be spec-
ified later, and define Σ∗β :=

∑
π∗i≥β π

∗
i xix

>
i and Σ̄∗β :=

I − Σ∗β =
∑
π∗i<β

π∗i xix
>
i . Let Ŝ be constructed such

that it includes all points in S∗β := {i : π∗i ≥ β}, plus
the resulting set by running Algorithm 1 on the remaining
weights smaller than β, with subset size k−k′ = k−|S∗β |.
Define α = 2

√
p/ε, r′ :=

∑
π∗i≥β π

∗
i , k̃ := k − k′ and

r̃ := r− r′+α
√
p = r− r′+ 2p/ε. Let Λ =

∑
i∈Ŝ xix

>
i

be the sample covariance of the selected subset. By the
definition of Ŝ and Lemma 3.3, together with the whiten-
ing trick (Sec. 3.1) on Σ̄∗β , we have

Λ � Σ∗β + sup
u>0

min
{
u, (1− βu− ε/2)k̃/r̃ − ε

}
Σ̄∗β

� sup
u>0

min
{
u, (1− βu− ε/2)k̃/r̃ − ε

}
I,

where the second line holds because Σ∗β + Σ̄∗β = I and
u ≤ 1. Now set β = 0.5 and note that k′ ≤ r′/β ≤
2r′ by definition of S∗β . Subsequently, r ≥ p/ε2 and k ≥
4(1 + 7ε)r for ε ∈ (0, 1/2) implies that k̃r̃ ≥ 1+2ε

(1−ε/2)(1−β) ,
which yields u ≥ 1 − ε/2 and hence f(X>

Ŝ
XŜ) ≤ (1 +

ε)f(X>S∗XS∗). Eq. (5) is thus proved.

Algorithm 1 Near-optimal experimental design
1: Input: design pool X ∈ Rn×p, budget parameters k ≥
r ≥ p, algorithmic parameter α > 0.

2: Solve the convex optimization problem Eq. (6) with
parameter s; Let π∗ be the optimal solution;

3: Whitening: X← X(X>diag(π∗)X)−1/2;
4: Initialization: Λ0 = ∅;
5: for t = 1 to k do
6: ct ← FINDCONSTANT(

∑
i∈Λt−1

xix
>
i , α);

7: At ← (ctI +
∑
i∈Λt−1

xix
>
i )−2;

8: If b = 1 then Γt = [n]; else Γt = [n]\Λt−1;

9: it ← arg maxi∈Γt

〈xix
>
i ,At〉

1+α〈xix>i ,A
1/2
t 〉

;

10: Λt = Λt−1 ∪ {it};
11: end for
12: Output: Ŝ = Λk.

Algorithm 2 FINDCONSTANT(Z, α)

1: Initialization: c` = −σmin(Z), cu =
√
p; ε = 10−9;

2: while |c` − cu| > ε do
3: c̄← (c` + cu)/2;
4: If tr[(c̄I + Z)−2] > 1 then c` ← c̄; else cu ← c̄;
5: end while
6: Output: c = (c` + cu)/2.

Our proof of Theorem 1.1 is constructive and yields a com-
putationally efficient iterative algorithm which finds sub-
set Ŝ ∈ Sb(n, k) that satisfies the approximation results in
Theorem 1.1. In Algorithm 1 we give a pseducode descrip-
tion of the algorithm, which makes use of a binary search
routine (Algorithm 2) that finds the unique constant ct for
which tr(At) = tr[(ctI +

∑
i∈Λt−1

xix
>
i )−2] = 1. Note

that for Eq. (5) to be valid, it is necessary to run Algorithm
2 on the remaining set of π∗ after including all points xi
with π∗i ≥ 1/2 in Ŝ.

4. Extension to generalized linear models
The experimental algorithm presented in this paper could
be easily extended beyond the linear regression model. For
this purpose we consider the Generalized Linear Model
(GLM), which assumes that

y|x i.i.d.∼ p(y|x>β0),

where p(·|·) is a known distribution and β0 is an unknown
p-dimensional regression model. Examples include the lo-
gistic regression model p(y = 1|x) = exp(x>β0)

1+exp(x>β0)
, the

Possion count model p(yi = y|x) = exp(yx>β0−e−x
>β0 )

y! ,
and many others.

Let S ∈ Sb(n, k) be the set of selected design
points from X. Under the classical statistics regime,
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Table 2. Simulation results on synthetic data of size n = 1000 and k = 50. Uniform sampling and weighted sampling are run for 50
independent trials and the median objective is reported. “Inf” means the sample covariance X>SXS does not belong to S+

p .

k = 2p = 100 k = 3p = 150
fA fD fT fE fV fG fA fD fT fE fV fG

UNIFORM SAMPLING 34.29 7.25 2.05 349.4 101.4 381.4 24.61 6.40 2.03 196.2 73.7 219.1
WEIGHTED SAMPLING 23.42 4.57 Inf Inf 60.22 202.6 11.18 4.26 0.96 Inf 46.20 119.5

FEDOROV’S EXCHANGE 23.17 5.52 1.15 172.9 44.43 117.7 12.26 4.65 1.22 173.7 73.97 101.8
(running time /secs) 4 .6 26 2442 28 488 8893 296 282 311 360 < 1 11478

ALGORITHM 1 12.55 4.72 1.19 53.52 50.47 90.77 11.90 4.60 1.27 41.53 45.97 80.94
(running time /secs) < 1 < 1 < 1 < 1 < 1 < 1 < 2 < 2 < 2 < 2 < 2 < 2

k = 5p = 250 k = 10p = 500

UNIFORM SAMPLING 20.02 5.82 2.00 137.1 60.2 155.2 17.57 5.51 2.02 103.9 52.93 123.5
WEIGHTED SAMPLING 10.36 4.23 1.14 Inf 41.91 90.61 11.22 4.53 1.44 52.75 43.04 80.74

FEDOROV’S EXCHANGE 11.70 5.84 1.38 116.1 53.14 133.67 12.13 5.52 1.65 108.4 45.05 99.07
(running time /secs) 441 < 1 352 2552 196 1152 100 < 1 575 < 1 1515 26804

ALGORITHM 1 11.14 4.67 1.38 36.67 45.6 76.20 11.60 4.77 1.56 49.27 45.14 81.78
(running time /secs) < 2 < 2 < 2 < 2 < 2 < 2 < 5 < 5 < 5 < 5 < 5 < 5

the maximum likelihood (ML) estimator β̂
ML

=
arg minβ

∑
i∈S log p(yi|x>i β) is asymptotically efficient,

and its asymptotic variance equals the Fisher’s information

I(XS ;β0) :=
∑

i∈S
Ey|x>i β0

[
−∂

2 log p(y|xi;β0)

∂β∂β>

]

ηi=x
>
i β0=

∑

i∈S
Ey|ηi

[
−∂

2 log p(y|ηi)
∂η2

i

]
· xix>i .

Here the second equality is due to the sufficiency of x>i β0

in a GLM. Note that for the linear regression model y =
Xβ0 + w, the ML estimator is the ordinary least squares
(OLS) β̂ = (X>SXS)−1XSyS and its Fisher’s information
equals the sample covariance X>SXS . The experimental
design problem can then be formalized as follows: 2

min
S∈Sb(n,k)

f(I(XS ;β0)) = min
S∈Sb(n,k)

f

(∑

i∈S
ziz
>
i

)
;

(15)

zi =

√
−Ey|ηi

[
−∂

2 log p(yi|ηi)
∂η2

i

]
, ηi = x>i β0.

Suppose β̌ is a “pilot” estimate of β0, obtained from a uni-
formly sampled design subset S1. A near-optimal design
set S2 can then be constructed by minimizing Eq. (15) us-
ing η̌i = x>i β̌. Such an approach was adopted in sequen-
tial design and active learning for ML estimators (Chaud-
huri et al., 2015; Khuri et al., 2006); however, with our
algorithm the quality of S2 is greatly improved.

2Under very mild conditions E[− ∂2 log p
∂η2 ] = E[( ∂ log p

∂η
)2] is

non-negative (Van der Vaart, 2000).

5. Numerical results
We compare the proposed method with several baseline
methods on both synthetic and real-world data sets. We
only consider the harder “without replacement” setting,
where each row of X can be selected at most once.

5.1. Methods and their implementation

We compare our algorithm with three simple heuristic
methods that apply to all optimality criteria:

1. Uniform sampling: Ŝ is sampled uniformly at random
without replacement from the design pool X;

2. Weighted sampling: first the optimal solution π∗ of
Eq. (6) is computed with r = k; afterwards, Ŝ is sam-
pled without replacement according to the distribution
specified by π∗/k. Recall that (Wang et al., 2016)
proved that weighted sampling works when k is suf-
ficiently large compared to p (cf. Table 1). 3

3. Fedorov’s exchange (Miller & Nguyen, 1994): the al-
gorithm starts with a random subset S0 ∈ Sb(n, k) and
iteratively exchanges two coordinates i ∈ S0, j /∈ S0

such that the objective is minimized after the exchange.
The algorithm terminates if no such exchange can re-
duce the objective, or T iterations are reached.

All algorithms are implemented in MATLAB, except for the
Fedorov’s exchange algorithm, which is implemented in C
due to efficiency concerns. We also apply the Sherman-
Morrison formula (A+λuu>)−1 = A−1 + λA−1uu>A−1

1+λu>A−1u

and the matrix determinant lemma det(A + λuu>) =

3Fact 2.2 ensures that π∗/k is a valid probability distribution.
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Table 3. Results on the Minnesota wind speed dataset (n =

2642, p = 15, k = 30). MSE is defined as
√

1
n
‖y −Vβ̂‖22.

fV MSE fG MSE

UNIFORM SAMPLING 94.1 1.10 3093 1.34
WEIGHTED SAMPLING 21.4 0.89 2451 1.13

FEDOROV’S EXCHANGE 10.0 0.86 29.2 0.78
(running time /secs) 15 - 1857 -

ALGORITHM 1 10.8 0.72 29.2 0.76
(running time /secs) < 1 - < 1 -

FULL-SAMPLE OLS - 0.55 - 0.55

(1 + λu>A−1u>) det(A) to accelerate computations of
rank-1 updates of matrix inverse and determinant. For uni-
form sampling and weighted sampling, we report the me-
dian objective of 50 indpendent trials. We only report the
objective for one trial of Fedorov’s exchange method due
to time constraints. The maximum number of iterations T
for Fedorov’s exchange is set at T = 100. We always set
k = r in the optimization problem Eq. (6), and details of
solving Eq. (6) are placed in the appendix. In Algorithm 1
we set α = 10; our similuations suggest that the algorithm
is not sensitive to α.

5.2. Synthetic data

We synthesize a 1000× 50 design pool X as follows:

X =

[
XA 0500×25

0500×25 XB

]
.

XA is a 500 × 25 random Gaussian matrix, re-scaled so
that the eigenvalues of X>AXA satisfy a quadratic decay:
σj(X

>
AXA) ∝ j−2; XB is a 500 × 25 Gaussian matrix

with i.i.d. standard Normal variables. Both XA and XB

have comparable Frobenius norm.

In Table 2 we report results on all 6 optimality criteria
(fA, fD, fT , fE , fV , fG) for k ∈ {2p, 3p, 5p, 10p}. We
also report the running time (measured in seconds) of Algo-
rithm 1 and the Fedorov’s exchange algorithm. The other
two sampling based algorithms are very efficient and al-
ways terminate within one second. We observe that our al-
gorithm has the best performance for fE and fG, while still
achieving comparable results for the other optimality crite-
ria. It is also robust when k is small compared to p, while
sampling based methods occasionally produce designs that
are not even full rank. Finally, Algorithm 1 is computation-
ally efficient and terminates within seconds for all settings.

5.3. The Minnesota wind speed dataset

The Minnesota wind dataset collects wind speed informa-
tion across n = 2642 locations in Minnesota, USA for a

period of 24 months (for the purpose of this experiment, we
only use wind speed data for one month). The 2642 loca-
tions are connected with 3304 bi-directional roads, which
form an n× n sparse unweighted undirected graph G. Let
L = diag(d)?G be the n×n Laplacian of G, where d is a
vector of node degrees, and let V ∈ Rn×p be an orthonor-
mal eigenbasis corresponding to the smallest p eigenvalues
of L. (Chen et al., 2015) shows that the relatively smooth
wind speed signal y ∈ Rn can be well approximated by
using only p = 15 graph Laplacian basis.

In Table 3 we compare the mean-square error (MSE)
for prediction on the full design pool V: MSE =√

1
n‖y −Vβ̂‖22. Because the objective is prediction

based, we only consider the two prediction related
criteria: fV (Σ) = tr(VΣ−1V>) and fG(Σ) =
max diag(VΣ−1V>). The subset size k is set as k =
2p = 30, which is much smaller than n = 2642. We ob-
serve that Algorithm 1 consistently outperforms the other
heuristic methods, and is so efficient that its running time
is negligible. It is also interesting that by using k = 30
samples Algorithm 1 already achieves an MSE that is com-
parable to the OLS on the entire n = 2642 design pool.

6. Concluding remarks and open questions
We proposed a computationally efficient algorithm that ap-
proximately computes optimal solutions for the experimen-
tal design problem, with near-optimal requirement on k
(i.e., the number of experiments to choose). In particular,
we obtained a constant approximation under the very weak
condition k > 2p, and a (1 + ε) approximation if replace-
ment or over-sampling is allowed. Our algorithm works for
all regular optimality criteria.

An important open question is to achieve (1 + ε) relative
approximation ratio under the “proper sampling” regime
k = r, or the “slight over-sampling” regime k = (1 + δ)r,
for the without replacement model. It was shown in (Wang
et al., 2016) that a simple greedy method achieves (1 + ε)
approximation ratio for A- and V-optimality provided that
k = Ω(p2/ε). Whether such analysis can be extended to
other optimality criteria and whether the p2 term can be
further reduced to a near linear function of p remain open.

Another practical question is to develop fast-converging
optimization methods for the continuous problem in
Eq. (6), especially for criteria that are not differentiable
such as the E- and G-optimality, where subgradient meth-
ods have very slow convergence rate.
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