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1 Introduction

1.1 In a nutshell

We prove here the consistency of NPHC estimator using the framework of Generalized Method of Moments [Hansen
[1982]. The main difference with the usual Generalized Method of Moments relies in the relaxation of the moment
conditions, since we have E[gr(6p)] = mr # 0. We adapt the proof of consistency given in Newey and McFadden
[1994].

1.2 Sketch of the proof

We can relate the integral of the Hawkes process’s kernels to the integrals of the cumulant densities, from Jovanovié
et al.| [2015]]. Our cumulant matching method would fall into the usual GMM framework if we could estimate -
without bias - the integral of the covariance on R, and the integral of the skewness on R?. Unfortunately, we can’t do
that easily. We can however estimate without bias [ f/ C}’dt and [ fI' K,’ *dt with f7 a compact supported function
on [—Hp, Hy] that weakly converges to 1, with Hyp S oo In most cases we will take f = L1_ g, pr,(t).

Denoting C*(T) the estimator of [ fTCdt, the term |E[C(T)] — €| = | [ fTCHdt — C'9| can be considered a
proxy to the distance to the classical GMM. This distance has to go to zero to make the rest of GMM’s proof work:
the estimator C*>(7) is then asymptotically unbiased towards C*/ when T goes to infinity.

1.3 Notations

We observe the multivariate point process (IN;) on RT, with Z* the events of the i** component. We will often write
covariance / skewness instead of integrated covariance / skewness. In the rest of the document, we use the following
notations.

Hawkes kernels’ integrals G™° = [ ®,dt = ([ ¢/ dt);; = T4 — (R™) !

Theoretical mean matrix L = diag(A',..., A9)

Theoretical covariance C = R™L(R™)"
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Theoretical skewness K¢ = (Kii),; = (R™)®°CT + 2[R™ @ (C — R™L)|(R™)T

Filtering function f7 >0  supp(f?) C [-Hr, Hr) FT = [ fFds  fI=fT,

Eventssets 7“7\ = Z'N[Hp, T + Hr) 7312 = 7230, T + 2Hr)]
—~. Ni _ N ~. Nj
Estimators of the mean A" = —-%2 T AN = TT;;;ITT

Estimator of the covariance (") = L > rezima (ZT/EZJ;M Jri—r — KjFT>

Estimator of the skewnessE]

Rk (T) — % 3 ( D T\J'FT) > foor —AFFT
reZHLT,1

F1eZi T2 e Zk T2

A Z Z (T % FTYr g — RF(FT)?

T+ 2HT T/GZ]',T,Z T//ezk,T,Z

GMM related notations

=R and 6,=R™
C - RLR'

9) = vec 2 € R2
90(6) lKC ~R”CT —2[R®(C - RL)R"

¢ _RLRT
(T)

~(T)

gr(0) = vee [/\(T) )T —2(R®(C - RL)R'

K¢ - RY(C
Qo(0) = go(0) "W go(0)
Qr(9) = Gr(0) Wrgr(0)

2 Consistency
First, let’s remind a useful theorem for consistency in GMM from Newey and McFadden| [[1994]).

Theorem 2.1. If there is a function Qo(0) such that (i) Qo(0) is uniquely maximized at 6y; (ii) © is compact;
(iii) Qo(6) is continuous; (iv) Qr(0) converges uniformly in probability to Qo (6), then 7 = arg max Q1 (6) 5 0,.

We can now prove the consistency of our estimator.

Theorem 2.2. Suppose that (INt) is observed on R, /WT BN W, and
1. W is positive semi-definite and W go(6) = 0 if and only if 0 = 6,
2. 0 € ©, which is compact,
3. the spectral radius of the kernel norm matrix satisfies || ®||. < 1,

4. Vi, g keld), [ fECHdu — [Clduand [ fIfTKi%dudv — [ Ki7*dudv,

'"When I = Y _ oy, m1p) (), we remind that (fT % fT); = (2Hp — |t|)T. This leads to the estimator we showed in the article.



5. (FTY2/T -5 0 and ||| = O(1).
Then
~ p
Or — 90.
Remark 1. In practice, we use a constant sequence of weighting matrices: WT =1,

Proof. Proceed by verifying the hypotheses of Theorem 2.1 from [Newey and McFadden! [[1994]. Condition 2.1(%)
follows by (i) and by Qo(0) = [W/2go(0)] T [W'/2g4(0)] > 0 = Qo(6). Indeed, there exists a neighborhood N
of 0y such that § € N\{6y} and go(0) # O since go(6) is a polynom. Condition 2.1(#¢) follows by (¢i). Condition
2.1(#4) is satisfied since Qo(#) is a polynom. Condition 2.1(iv) is harder to prove. First, since gr(6) is a polynom of
6, we prove easily that E[supycg [g7(0)|] < co. Then, by © compact, go(€) is bounded on ©, and by the triangle and
Cauchy-Schwarz inequalities,

|Qr(8) — Qo(6)]
< |(@r(9) — 90(0)) T Wr(gr(8) — )| + |90(6) T(Wr + W) (Gr(0) - )| + |g0(6) T(Wr — W)go(0)]|
< [97(6) — go(0)|]° W + 2||go( )||||9T( ) = go (O Wr | + llgo (6 )||2HWT - W]

To prove supycg @T (0) — Qo(0)] i> 0, we should now prove that sup0€@||§T(9) —g0(0)]| 0. By © compact,
it is sufficient to prove that || L — L|| —» 0, ||C’ —C|| — 0,and HK° g — K¢ 0

Proof that | L — L|| 0

The estimator of L is unbiased so let’s focus on the variance of L.

E[(A" — A)?] =E (; /T+HT(dNZ - Aidt)>
Hr

T+Hrp T-‘rHT ) ) ) )
/ E[(dN} — Adt)(dN}, — Aldt)]

T+HT T+Hr
1 / [ o e

T+Hr

Chdt =

0
—T2 " T—>

By Markov inequality, we have just proved that | L — L|| 0.

Proof that ||6‘(T) - C| i> 0

First, let’s remind that E(C ) # C. Indeed,

~ij (T) _ 1 T i T j NG pT
E(C =E dN/{ AN} fo— — NN F
T Ju, “Jo

1 T+Hr ~ TH+2Hr—t 4 o )
—F f / dNtZ / ngJréfg - AZA]FT —+ EljvTvHT FT

Hr —t
T+Hr
/ szdNtJJrs _ AZAJdS) + 6z],T HTFT
= /fsC;st + e T Hr pT



Now,
i (Aw - R)

T+Hr T+2HT .
i j /
—= / / E (dN;aNy — AN dtdr)

T+Hr T+2H~r
- T2 / Cy, dtdt’
H t
:_/<1+< A ||> ) Cdt
. . . (1) . ~(T) (D) p
Since f satisfies F'* = o(T"), we have E(C" ") — C. It remains now to prove that ||[C" "~ —E(C" ")|| — 0.
Let’s now focus on the variance of C'4-(T) : Y (C(T)) = ((éij»<T>)2) — E(C(T))2,
Now,
~Nid 1
E((C#M)) =E | 7 > (Frr—r = (T 4+ 2H2)) (fypy — FT /(T + 267))
(rm, 7! ") E(Z5T51)2 % (Z3:T12)2
1 S o
=E ( / AN ANGANIANY (fo o — FT /(T + 2Hz) (fo—, — FT/(T + 2HT>>>
T Jy s€[Hp,T+Hr) Jt' s’
1 S L
== / E (dN;ng,dN;ng,) (fy—t — FT /(T +2Hr))(fo—s — F* /(T + 2Hr))
T t,s€[Hr, T+Hr] Jt',s'€[0,T+2H7] i
And,

o 1 o .
E(CM)? = — / B (aN;dNg ) B (ANIANG, ) (fo—o = FT/(T + 2H7))(fo—s — FT/(T + 2Hz))
T t,s€[Hr,T+Hr) Jt',s'€[0,T+2Hr]

Then, the variance involves the integration towards the difference of moments p">:H% — p™®

sum of cumulants, since cumulants density are integrable.

ubv. Let’s write it as a

‘ur,s,t,u _ ﬂr,sut,u — Hr,s,t,u 4 [{T’S’tﬂu[ll] + K/T sﬂt u[3] + H’l‘ SI{tKu [6] 4 Iirﬂsfitﬂu _ (Kr,s + I{rlis)(lit’u + I{tﬂu)

—_ Kr,s,t,u

_|_K/rst,€u+/€urs,€t+Ktu,rﬁs+ms,t,uﬁr

_’_K;rtﬂsu_’_nrul‘{st

—|—,‘<;Tt,‘<,9/<,u—|—,‘ﬁjru/{9/<,t—|—/ﬁ‘,gt,‘§‘,rﬁu+/§§t/§r,‘{u

In the rest of the proof, we denote a; = Lic(m, 71 17> bt = Licio,742m7] ¢t = Lie|— by Hy)» 9t = ft — FT

Before starting the integration of each term, let’s remark that:

1
T+2Hr

Lo, =3 @g*n) > ( since ®; > 0.

2. The regular parts of C'%/, S}j % (skewness density) and K }} 5lw (fourth cumulant density) are positive as polynoms

of integrals of ¢)*® with positive coefficients. The integrals of the singular parts are positive as well.
3. (a) f atbt/ ft/_tdtdt/ = TFT
(b) f atbt/gt/,tdtdt/ =0
(C) fatbt/|gt/_t|dtdt’ < 2TFT



4.Vt € Ryai(b*xg): = 0, where gs = g_s.

Fourth cumulant ~ We want here to compute [ nt’g,’;] Sty asbs gy —1gs — sdtdt' dsds’.

We remark that |gy 1 gsr—s| < (|| f]]oo(1+ 2H7/T))? < 4| f]|%.

9 2
< (”‘;'OO) /dtat/dtlbt’/dsas/dslb KZ’ﬂts t,s'—t
2/ flloo \?

< (Too> /dtat/dt/bt’/dsas/dwKZ’JUts tw
4

1
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21 £10e \ 2
||f|> /dtat/K”” dudvdw

||f”00K’L]’Lj — 0

T—o0

\ /\

Third x First ~ We have four terms, but only two different forms since the roles of (s, s’) and (¢,t’) are symmetric.
First form

, A
/f@igi N Gydt = ﬁ/“t’? arby sy gy —1gs —sdtdt'dsds'

AJ
= ﬁ/“ig; atbt’as(b*msgt/_tdtdt/ds
=0 since as(bxg)s =0

Second form

. A
‘/Ht’;/js"/\ tht’ - ’ﬁ/,‘gt W LGy by G _ 1 gor — s dtdt’ dsds’

A
= ﬁ/ﬁ;:i}?s,atbt/gy,tbsl(a*g)srdtdt'ds’

Al
< —22|\f||oo/dsb (a*lg])s /dtat/dt b S} s

< 4| flloo S’”Al — 0
T—

o0

Second x Second
First form

‘ / ke DT, tht’ ”f ||°° / Ci O aby|ge—_i|asby dtdt dsds’

2| f]oo
Hf” C”C’j]/atbt’|gt/—t‘dtdt/

. FT
< 4 e
< 4| f]|CHCT = — 0

Second form

. FT
| [ iz Gt < alflllc? o 0
Second x First x First
First form
ATAI

/ ’j AZAJG dt = —— / ’fii{,atbygtutdtdt'/asbszgsf,sdsds’ =0



Second form
o A ~
/ K NN Gyt = <T> / K s eby gy —eas (b* g)sdtdt'ds = 0

. ~(T), P . Lo ~(T) ~(T) P
We have just proved that V(C~ ") — 0. By Markov inequality, it ensures us that |C° ~ —E(C" ")|| — 0, and
(T
finally that | — C|| - 0. O

)

—=(T P
Proof that | K¢ ~ — K¢ — 0

The scheme of the proof is similar to the previous one. The upper bounds of the integrals involve the same kind of
terms, plus the new term (F'7)2 /T that goes to zero thanks to the assumption 5 of the theorem.
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