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Abstract
We study a subclass of n-player stochastic games, namely, stochastic games with independent
chains and unknown transition matrices. In this class of games, players control their own internal
Markov chains whose transitions do not depend on the states/actions of other players. However,
players’ decisions are coupled through their payoff functions. We assume players can receive
only realizations of their payoffs, and that the players can not observe the states and actions of
other players, nor do they know the transition probability matrices of their own Markov chain.
Relying on a compact dual formulation of the game based on occupancy measures and the technique
of confidence set to maintain high-probability estimates of the unknown transition matrices, we
propose a fully decentralized mirror descent algorithm to learn an ϵ-Nash equilibrium stationary
policy for this class of games. The proposed algorithm has the desired properties of independence
and convergence. Specifically, assuming the existence of a variationally stable Nash equilibrium
policy, we show that the proposed algorithm in which players make their decisions independently
and in a decentralized fashion converges asymptotically to the stable ϵ-Nash equilibrium stationary
policy with arbitrarily high probability.
Keywords: Stochastic games, independent and decentralized learning, stationary Nash equilibrium
policy, occupancy measure, online mirror descent, variational stability.

1. Introduction

Learning Nash equilibrium (NE) points in noncooperative games is a fundamental problem that has
emerged in many disciplines, such as control and game theory, operations research, and computer
science (Zhang et al., 2021a; Cesa-Bianchi and Lugosi, 2006; Daskalakis et al., 2020). Typically,
efficient and independent learning of NE is challenging, and it is known that computing NE is
PPAD-hard (Daskalakis et al., 2009) for general-sum games. The learning task is even more com-
plex for stochastic dynamic games (Shapley, 1953; Başar and Olsder, 1998) where the existence
of state dynamics introduces additional nonstationarity to the environment. Expanding upon the
existing literature, in this work, we study a subclass of noncooperative stochastic games, namely,
stochastic games with independent chains and unknown transition matrices (Altman et al., 2007;
Etesami, 2024), and our goal is to provide independent learning algorithms that converge to NE
points. In this class of games, a set of n players, each with its own finite state and action space,
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controls its own Markov chain, whose transition does not depend on the states/actions of other play-
ers. However, the players are coupled through their payoff functions, which depend on the states
and actions of all players. We also assume that the players can not observe the states and actions
of other players, nor do they know the transition probability matrices of their own Markov chain.
There are many interesting real-world problems that fit into this subclass of stochastic games, such
as multi-agent robotic navigation (Zhang et al., 2021a), energy management in smart grids (Etesami
et al., 2018), and power/bandwidth allocation in multi-agent wireless communication (Altman et al.,
2007; Narayanan and Theagarajan, 2017; Altman et al., 2008).

To provide a more concrete motivating example from energy management in smart grids (Ete-
sami et al., 2018), one can consider an energy market with one utility company and a set [n] =
{1, . . . , n} of users (players), which can both produce and consume energy. Each player generates
energy using its solar panel or wind turbine and is equipped with a storage device that can store the
remaining energy at the end of each day t ∈ Z+. Let sti denote the (quantized) amount of stored
energy of player i at the beginning of day t with maximum storage capacity C. Moreover, let gti be
a random variable denoting the amount of harvested energy for player i at the end of day t, whose
distribution is determined by the unknown stochastic weather conditions on that day. Now if we use
ati to denote the total amount of energy consumed by player i during day t, then the stored energy at
the end of day t (or the beginning of day t+1) is given by st+1

i = min{C, gti + (sti − ati)
+}, where

(sti − ati)
+ = max{0, sti − ati}. In particular, player i needs to purchase (ati − sti)

+ units of energy
from the utility company on day t to satisfy its demand on that day. On the other hand, the utility
company sets the energy price as a function of total demands {(ati − sti)

+, i ∈ [n]}, which is given
by p(at, st). If ui(ati) denotes the utility that player i derives by consuming ati units of energy, then
the reward of player i at time t is given by ri(a

t, st) = ui(a
t
i)−p(at, st)× (ati−sti)

+. In particular,
if players are at distant locations, they likely experience independent weather conditions, so their
transition probability models that are governed by stochasticity of {gti , i ∈ [n]} will be independent.

1.1. Related Work

For dynamic stochastic games, the prior work has largely focused on the special case of two-player
zero-sum stochastic games (Zhao et al., 2022; Qiu et al., 2021; Zhang et al., 2021a; Tian et al., 2021;
Sayin et al., 2021, 2022; Wei et al., 2021). While two-player zero-sum stochastic games constitute
an important basic setting, there are many problems with a large number of players, a situation that
hinders the applicability of the existing algorithms for computing a stationary NE. To address this
issue, researchers have recently developed learning algorithms for finding NE in special structured
stochastic games, e.g., mean-field and aggregative stochastic games (Zhang et al., 2021a; uz Zaman
et al., 2020; Meigs et al., 2019). Moreover, Zhang et al. (2021b); Leonardos et al. (2021) show
that n-player Markov potential games, an extension of static potential games to dynamic stochastic
games, admit polynomial-time algorithms for computing their NE policies.

There has been a line of prior research on the study of decentralized stochastic games with
independent chains (Altman et al., 2007; Singh and Hemachandra, 2014; Qiu et al., 2021; Zhang
and Zou, 2022; Etesami, 2024). Specifically, Altman et al. (2007) showed the existence of a NE
for the class of stochastic games with independent chains.1 The work Singh and Hemachandra
(2014) showed that the set of stationary NE for the class of games can be characterized via the

1. In their work, such a class of games is called constrained cost-coupled stochastic games with independent state
processes that also include additional constraints.
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global minimizers of a certain non-convex mathematical program. Recently, for n-player decen-
tralized stochastic games with independent chains, relying on a dual formulation of the game based
on occupancy measures, Etesami (2024) proposed polynomial-time learning algorithms based on
dual averaging and dual mirror descent, which converge in terms of the averaged Nikaido-Isoda dis-
tance to the set of ϵ-NE policies. However, all of the aforementioned works assume players’ prior
knowledge of the transition probability matrices of their own Markov chain, which is somewhat
restrictive in practice. Moreover, there was no algorithm with an asymptotic convergence guarantee
to NE policies for the class of n-player stochastic games with independent chains.

1.2. Contributions

We consider the class of stochastic games with independent chains and unknown transition matrices.
Relying on a dual formulation of the complete information stochastic game based on occupancy
measures and introducing confidence sets to maintain high-probability estimates of the unknown
transition matrices, we propose a Decentralized Mirror Descent algorithm to learn an ϵ-NE policy.
The proposed algorithm has the desired properties of independence and convergence. Our contribu-
tions can be summarized as follows:

• We propose a learning algorithm that is simple, easy to implement, and works in a fully
decentralized and independent manner. The only coordination needed is a simple signaling
mechanism to indicate the end of each episode among players, which can be further relaxed
by allowing an extra error term in the equilibrium computation.

• Under the assumption that the game admits a globally stable NE policy, which is a relaxation
of the well-known monotonicity condition, we show that the proposed algorithm converges
asymptotically to an ϵ-NE with arbitrarily high probability.

Due to space limitations, all the technical proofs can be found in the full version of this work
available in Qin and Etesami (2023).

2. Problem Formulation

We consider an n-player stochastic game with independent and unknown state transitions, which is
described by the tuple (Si, Ai, ri, Pi)

n
i=1, as follows.

• Si is the finite set of states for player i with elements si ∈ Si. We denote the joint state set of
all the players by S =

∏n
i=1 Si with elements s ∈ S, where s = (s1, . . . , sn).

• Ai is the finite set of actions for player i with elements ai ∈ Ai. We denote the joint action set
of all the players by A =

∏n
i=1Ai, and the elements of A are denoted by a = (a1, . . . , an).

• ri : S×A → [0, 1] is the reward function for player i, where ri(s,a) is the immediate reward
received by player i when the states of the players are s = (s1, . . . , sn), and the actions taken
by them are given by the action profile a = (a1, . . . , an).

• Pi is the transition probability matrix for player i, where Pi(s
′
i|si, ai) is the probability that

the state of player i moves from si to s′i if she chooses action ai. Crucial to this work,
we assume that Pi is unknown to player i and is independent of other players’ transition
probability matrices.
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Assumption 1 We assume that the joint transition probability matrix P (s′|s, a) can be factored
into independent components P (s′|s, a) =

∏n
i=1 Pi(s

′
i|si, ai), where Pi(s

′
i|si, ai) is the transition

probability matrix for player i.

A sequence of probability measures πi = {πt
i , t = 0, 1, . . .} over Ai that, at each time t selects

an action ai ∈ Ai based on past observations Ht
i with probability πt

i(·|Ht
i), consists a general policy

for player i.2 However, use of general policies is often computationally expensive, and in practical
applications, players are interested in the easily implementable stationary policies, as defined next.

Definition 1 A policy πi for player i is called stationary if the probability πt
i(ai|Ht

i) of choosing
action ai at time t depends only on the current state sti = si, and is independent of the time t. In the
case of the stationary policy, we use πi(ai|si) to denote this time-independent probability.

Given some initial state s0, the objective for each player i ∈ [n] is to choose a stationary policy
πi that maximizes its long-term expected average payoff given by

Vi(πi, π−i) = E
[

lim
T→∞

1

T

T∑
t=0

ri(s
t, at)

]
, (1)

where π−i = (πj , j ̸= i),3 and the expectation is with respect to the randomness introduced by
players’ internal chains (P1, . . . , Pn) and their policies π = (π1, . . . , πn).

Next, in order to be able to establish meaningful convergence/learning results, we impose the
following assumption througout this work.

Assumption 2 For any player i and any stationary policy πi chosen by that player, the induced
Markov chain with transition probabilities P πi(s′i|si) =

∑
ai∈Ai

Pi(s
′
i|ai, si)πi(ai|si), is ergodic,

and its mixing time is uniformly bounded above by some parameter τ ; that is,

∥(ν − ν ′)P πi∥1 ≤ e−1/τ∥ν − ν ′∥1, ∀i, πi, ν, ν ′ ∈ ∆(Si).

In fact, Assumption 2 is a standard assumption used in the MDP literature and is much needed.
Otherwise, if the transition probability matrix Pi of a player i is such that for some policy πi the
induced chain P πi takes an arbitrarily large time to mix, then there is no hope that player i can
evaluate the performance of policy πi in a reasonably short time. As is shown in the next section,
under the ergodicity Assumption 2, for any stationary policy profile π, the limit in (1) indeed exists.
This fully characterizes an n-player stochastic game with initial state s0, in which each player i
wants to choose a stationary policy πi to maximize its expected aggregate payoff Vi(πi, π−i). In the
remainder of the paper, we shall refer to the above payoff-coupled stochastic game with independent
chains and unknown transitions as G = ([n], π, {Vi(π)}i∈[n]).

Definition 2 For a policy profile π∗ = (π∗
1, . . . , π

∗
n), π

∗
i is called a best response policy of π∗

−i if
Vi(π

∗
i , π

∗
−i) ≥ Vi(πi, π

∗
−i) for any policy πi. It is called an ϵ-best response policy if Vi(π

∗
i , π

∗
−i) ≥

Vi(πi, π
∗
−i)− ϵ for any policy πi. The policy profile π∗ = (π∗

1, . . . , π
∗
n) is called a Nash equilibrium

(NE) for the game G if for any i, π∗
i is a best response policy of π∗

−i. It is called an ϵ-NE if for any
i, π∗

i is an ϵ-best response policy of π∗
−i.

2. Here, Ht
i = {sli, al

i, ri(s
l, al) : l = 0, 1, . . . , t − 1} ∪ {sti} denotes the history of player i’s past observations, i.e.,

realized states, actions, and rewards.
3. More generally, given a vector v, we let v−i = (vj , j ̸= i) be the vector of all coordinates in v other than the ith one.
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The main objective of this work is to develop a decentralized learning algorithm such that, if
followed by the players independently, it brings the system to an ϵ-NE stationary policy.

3. A Dual Formulation and Preliminaries

In this section, we provide an alternative dual formulation for the stochastic game G based on
occupancy measures (Etesami, 2024; Altman, 2021). Intuitively, from player j’s point of view,
its long-term expected average payoff depends on the proportion of time that player j spends in
state sj and takes action aj , denoted by its occupancy measure. Thus, the policy optimization for
player j can be viewed as an optimization problem in the space of occupancy measures, where
players want to force their chains to spend most of their time in high-reward states.

3.1. Occupancy Measure

For a given MDP with a transition probability matrix P and any stationary policy π, one can asso-
ciate with P and π notions of occupancy measures ρ : S ×A → [0, 1], and q : S ×A× S → [0, 1]:

ρ(s, a) = lim
t→∞

1

T

T∑
t=0

P(st = s, at = a), (2)

q(s, a, s′) = lim
t→∞

1

T

T∑
t=0

P(st = s, at = a, st+1 = s′). (3)

Intuitively, ρ(s, a) and q(s, a, s′) are the long-term average proportion of time of encountering the
state-action pair (s, a), and state-action-next-state triple (s, a, s′), when executing policy π in an
MDP with transition probability matrix P . It can be readily shown that under Assumption 2, the
limits in, (2), and (3) indeed exist.

In this work, we are primarily concerned with the occupancy measure q(s, a, s′) due to players
not knowing their independent transition probability matrix Pi in the stochastic game G. In the
following, we provide conditions that fully characterize the set of feasible occupancy measures q.

Definition 3 We define the polytope of feasible occupancy measures, denoted by ∆, as

∆ =
{
q ∈ [0, 1]|S×A×S| :

∑
s,a,s′

q(s, a, s′) = 1,
∑
s′,a

q(s′, a, s) =
∑
a,s′

q(s, a, s′), ∀s ∈ S
}
.

(4)

For any q ∈ ∆, we define its induced transition probability matrix P q and stationary policy πq by

P q(s′|s, a) = q(s, a, s′)∑
s′ q(s, a, s

′)
∀s, a, s′, πq(a|s) =

∑
s′ q(s, a, s

′)∑
a′,s′ q(s, a

′, s′)
∀s, a.

Moreover, for a fixed transition probability matrix P , we denote by ∆(P ) ⊂ ∆ the set of occupancy
measures whose induced transition probability matrix P q is exactly P . Similarly, we denote by
∆(P) ⊂ ∆ the set of occupancy measures whose induced transition probability matrix P q belongs
to a set of transition matrices P .
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Given the above definition, we have the following useful lemma that extends a result from Altman
(2021) to the case of q occupancy measures.

Lemma 4 If a function q : S × A × S → [0, 1] belongs to the feasible occupancy polytope (4),
then it is exactly the occupancy measure associated with its induced transition probability matrix
P q and stationary policy πq. Specifically, we have (3) hold if one executes policy πq in an MDP
with transition probability matrix P q.

3.2. A Dual Formulation

It is shown in Etesami (2024) that under the ergodicity Assumption 2, due to the independency of
players’ internal chains, the payoff functions admit a simple decomposable form in terms of occu-
pancy measures ρ. However, since we are interested in stochastic games with unknown transition
probabilities, we first extend this result in terms of occupancy measures q. Specifically, assume that
each player i is following a stationary policy πi, and let qi be the corresponding occupancy measures
given in (3), that are induced by Pi and following the stationary policy πi. Then, we have:

Proposition 5 Let Assumptions 1 and 2 hold, and assume that each player i follows a stationary
policy πi. Then, we have

Vi(πi, π−i) = Vi(qi, q−i) ≜
∑
s,a

n∏
j=1

∑
s′j

qj(sj , aj , s
′
j)ri(s, a) = ⟨qi, li(q−i)⟩, (5)

where li(q−i) is defined to be a vector of dimension |Ai||Si|2 whose (si, ai, s′i)-th coordinate equals

li(q−i)(si,ai,s′i) =
∑

s−i,a−i

∏
j ̸=i

∑
s′j

qj(sj , aj , s
′
j)ri(s, a). (6)

We remark here that Proposition 5 lies at the core of our analysis, and it relies heavily on
the assumption that players have independent internal Markov chains (Assumption 1). This is the
reason why our analysis would not generalize to stochastic games without the independent chain
assumption. Using Lemma 4 and Proposition 5, the problem of finding the optimal stationary
policies for the players reduces to finding the optimal feasible occupancy measures for them.

Definition 6 Let us define the feasible occupancy polytope for player i by

∆i =
{
qi ∈ [0, 1]|Ai||Si|2 :

∑
si,ai,s′i

qi(si, ai, s
′
i) = 1,

∑
s′i,ai

qi(s
′
i, ai, si) =

∑
s′i,ai

qi(si, ai, s
′
i),∀si

}
.

Moreover, denote by ∆i(Pi) ⊂ ∆i the set of feasible occupancy measures whose induced transition
probability matrix P qi is exactly Pi. The virtual game V = ([n], q, {Vi(q)}i∈[n]) associated with
the stochastic game G is an n-player continuous-action static game, where the action of player i is
to choose an qi from its action set ∆i(Pi), and its payoff function is given by (5).

Ideally, we would like every player to work with the virtual game V with action set ∆i(Pi)
as it admits a payoff function that is linear with respect to the player’s action, hence making it
amenable to the use of online learning algorithms. However, this can not be performed as Pi is
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not known to player i so the player can not compute ∆i(Pi). Nevertheless, observe that once each
player i has decided on her occupancy measure q̂i ∈ ∆i (which may not belong to ∆i(Pi)), then
the game G is fully determined by the players’ policies {πq̂i

i }ni=1, where πq̂i
i is the stationary policy

induced by q̂i. In this regard, with some abuse of notations, the payoff function of player i is
given by Vi(q̂i, q̂−i) = Vi(π

q̂i
i , π

q̂−i

−i ), where q̂i ∈ ∆i, and Vi(π
q̂i
i , π

q̂−i

−i ) is as defined in (1). When
q̂i ∈ ∆i(Pi), we also have Vi(q̂i, q̂−i) = Vi(π

q̂i
i , π

q̂−i

−i ) = ⟨q̂i, li(q̂−i)⟩ as defined in (5).

4. A Learning Algorithm for ϵ-NE Policies

In this section, we develop our learning algorithm for the stochastic game G. The algorithm proceeds
in different episodes, each containing a random number of time instances. The main idea is that each
player i will use confidence sets and online mirror descent (OMD) to learn an occupancy measure q̂i
such that (i) its induced transition probability matrix P q̂i

i approximates the true transition probability
matrix Pi, and (ii) its induced stationary policy πq̂i

i approximates player i’s best response to π
q̂−i

−i .
The complete pseudo-code of the proposed learning algorithm is presented in Algorithm 1. We first
consider the following definition of a shrunk polytope.

Definition 7 (Shrunk Polytope) Given δi ∈ (0, 1), we define

∆i,δi ≜
{
qi ∈ ∆i :

∑
s′i

qi(si, ai, s
′
i) ≥ δi,∀si, ai

}
to be the shrunk polytope of feasible occupancy measures for player i. Moreover, for a fixed transi-
tion probability matrix Pi or a set of transition probability matrices Pi, we define ∆i,δi(Pi) ⊆ ∆i,δi

or ∆i,δi(Pi) ⊆ ∆i,δi as the set of occupancy measures qi whose induced transition probability
matrix P qi equals Pi or belongs to the set Pi, respectively.

Restricting player i’s occupancy measures to be in ∆i,δi ensures that player i uses stationary
policies that choose any action with probability at least δi, hence encouraging exploration during
the learning process. Thanks to the continuity of the payoff functions, working with shrunk polytope
∆i,δi with a sufficiently small threshold δi can only result in a negligible loss in players’ payoffs, as
shown in the following lemma (Etesami, 2024, Lemma 2).

Lemma 8 For any ϵ > 0, there exist polynomial-time computable thresholds {δi > 0, i ∈ [n]},
such that

max
q′i∈∆i,δi

(Pi)
Vi(q

′
i, q−i) ≥ max

q′i∈∆i(Pi)
Vi(q

′
i, q−i)− ϵ, ∀q ∈ ∆1 × · · · ×∆n. (7)

Finally, we consider the following “nondegeneracy” assumption on players’ internal chains,
which requires that with some positive probability αi > 0, all states are reachable for each player
i and under all policies. Assumption 3 serves to provide an upper bound for the length of each
episode in our learning algorithm and can be viewed as a relaxation of that made in other works for
the case of single-agent MDPs (Rosenberg and Mansour, 2019; Neu et al., 2010).

Assumption 3 There exists some α > 0 such that for every player i,
∑

ai
Pi(s

′
i|si, ai) > α, ∀si, s′i.

Now, we are ready to describe our main distributed learning algorithm. Each player i performs
two tasks in parallel: (i) maintains and updates a confidence set Pi of its own (unknown) transition
probability matrix Pi, and (ii) uses an OMD rule to update the occupancy measure q̂i ∈ ∆(Pi).
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4.1. Confidence Set

For each player i, the algorithm maintains counters Ni(si, ai) and Mi(si, ai, s
′
i) to record the total

number of visits of each state-action pair (si, ai) and each state-action-state triple (si, ai, s
′
i) so

far, respectively. A confidence set Pi, which includes all transition probability matrices that are
close to Pi with high confidence, is maintained and updated for each episode. Specifically, at
the end of each episode k ≥ 1, player i will compute the empirical transition probability matrix
P̄ k
i (s

′
i|si, ai) =

Mk
i (si,ai,s

′
i)

max{1,Nk
i (si,ai)}

from the current counters Nk
i (si, ai) and Mk

i (si, ai, s
′
i), and will

update the confidence set for episode k as

Pk
i =

{
P̂ : |P̂ (s′i|si, ai)− P̄i(s

′
i|si, ai)| ≤ ϵki (s

′
i|si, ai), ∀s′i, si, ai

}
∩ Pk−1

i , (8)

where ϵki (·) is a parameter that will be determined later. Note that the confidence set in (8) is also a
polytope with an efficient description in terms of the problem parameters.

4.2. Online Mirror Descent (OMD)

The OMD component of our algorithm is similar to Etesami (2024). Given any desired accuracy
ϵ > 0 for an ϵ-NE, each player first uses Lemma 8 to determine a threshold δi. During each episode

k, player i takes actions according to the stationary policy πk
i := π

q̂ki
i . The episode continues until

each player i has visited all its state-action pairs (si, ai) at least once. At the end of the episode,
player i will first update the confidence set Pk

i as in (8), and then will update its occupancy measure
q̂k+1
i using OMD:

q̂k+1
i = argmax

q̂i∈∆i,δi
(Pk

i )

{
ηk⟨q̂i, Rk

i ⟩ −Dhi
(q̂i||q̂ki )

}
,

where ηk is the stepsize, Dhi
(p||q) ≜ hi(p) − hi(q) − ⟨∇hi(q), p − q⟩ is the Bregman divergence

induced by a µ-strongly convex regularizer hi(·), and Rk
i is an estimator for the gradient of the pay-

off function Vi(π
q̂ki
i , π

q̂k−i

−i ) constructed using the collected samples of the reward ri during episode
k. Since q̂ki ∈ ∆i,δi , from Assumption 3, at any time t, P(sti = si) ≥ αδi ∀si. As a result, the

expected length of each episode k is at most Õ
(
maxi

|Si|
αδ2i

)
, where Õ(·) hides logarithmic terms.

5. Asymptotic Convergence to an ϵ-Nash Equilibrium Policy

In this section, we show that if Algorithm 1 is run with the choice of δ = (δ1, . . . , δn) satisfying
Lemma 8, then the iterates generated by Algorithm 1 will converge asymptotically to a globally
stable ϵ-NE policy of the game G (see Assumption 4) with high probability. Following Algorithm 1,
every player i will hold a occupancy measure q̂ki during episode k, and will play according to policy
πk
i = πq̂ki as defined in (9).4 We denote the occupancy measure induced by πk

i and the unknown
transition probability matrix Pi over the space Si ×Ai × Si, by qki .

Definition 9 Given δ = (δ1, . . . , δn), we define Vδ to be the constrained version of the virtual game
V in which the action set for each player i is given by ∆i,δi(Pi) (instead of ∆i(Pi)).

4. We use bold symbols to denote aggregate variables of all the players, e.g., πk = (πk
1 , . . . , π

k
n), qk = (qk1 , . . . , q

k
n),

q̂k = (q̂k1 , . . . , q̂
k
n), P =

∏n
i=1 Pi, ∆ =

∏n
i=1 ∆i, and ∆δ =

∏n
i=1 ∆i,δi .
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Algorithm 1 A Decentralized Online Mirror Descent Algorithm for Player i
Input: Initial occupancy measure q̂1i = 1

|Ai||Si|2 · 1, counters Ni(si, ai) = 0, Mi(si, ai, s
′
i) = 0,

step-size sequence {ηk}Kk=1, mixing time thresholds {dk}Kk=1, and the regularizer hi : ∆i,δi → R.
For k = 1, . . . ,K, do the following:

• At the start of episode k, compute πk
i = πq̂ki , i.e.,

πk
i (ai|si) =

∑
s′i
q̂ki (ai, si, s

′
i)∑

a′i,s
′
i
q̂ki (si, a

′
i, s

′
i)

∀si ∈ Si, ai ∈ Ai, (9)

and keep playing according to this stationary policy πk
i during expisode k. Update counters

Ni(si, ai) and Mi(si, ai, s
′
i) at each step.

• Let τki ≥ dk be the first (random) time such that all state-action pairs (si, ai) are visited
during steps [dk, τki ]. Episode k terminates after τk=maxi τ

k
i steps.

• Let X ′
i = Si × Ai, and Rk

i ∈ R|Si||Ai|
+ be a random vector (initially set to zero), which is

constructed sequentially during the sampling interval [τk + d, τk+1] as follows:

– For t = dk, . . . , τk and while Xi ̸= ∅, player i picks an action ati according to πk
i (·|sti),

and observes the payoff ri(st, at) and its next state st+1
i . If (sti, a

t
i) ∈ Xi, then update

Xi = Xi \ {(sti, ati)}, and let Rk
i = Rk

i + ri(s
t, at) e(sti,ati), where e(sti,ati) is the basis

vector with all entries being zero except that the (sti, a
t
i)-th entry is 1.

• Expand Rk
i from R|Si×Ai| to R|Si×Ai×Si|, i.e., set Rk

i (si, ai, s
′
i) = Rk

i (si, ai),∀si, ai, s′i.

• At the end of episode k, update the confidence set Pk
i as in (8), and the occupancy measure:

q̂k+1
i = argmax

q̂i∈∆i,δi
(Pk

i )

{
ηk⟨q̂i, Rk

i ⟩ −Dhi
(q̂i||q̂ki )

}
. (10)

From Lemma 8, we know that a NE of Vδ is an ϵ-NE of the game V , and so its induced policy is
an ϵ-NE of the original complete information stochastic game G. We make the following assumption
on the constrained virtual game Vδ.

Assumption 4 (Mertikopoulos and Zhou (2019)) The constrained virtual game Vδ admits a unique
NE q∗ that is globally stable, i.e.,

⟨v(q), q∗ − q⟩ ≥ 0, ∀q ∈ ∆δ(P ), (11)

with equality if and only if q = q∗, where v(q) = (vi(q−i), i ∈ [n]) is the vector of players’ payoff
gradients with respect to their own strategies.

The notion of variational stability was first introduced in Mertikopoulos and Zhou (2019) as
a relaxation of the well-known monotonicity condition (Rosen, 1965). Specifically, it is shown in
Mertikopoulos and Zhou (2019) that the monotonicity condition implies that the game admits a
unique NE that is globally stable. We are now ready to state the main result of this paper.

9
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Theorem 10 Assume Assumptions 1, 2, 3 and 4 hold. Given any ϵ > 0, assume each player i
follows Algorithm 1 with a choice of δi satisfying Lemma 8, and a nonincreasing sequence of step-
sizes satisfying

∑∞
k=1 η

k = ∞,
∑∞

k=1(η
k)2 < ∞, and

∑∞
k=1 η

k
√
ln k/k < ∞. Then, for any

γ ∈ (0, 1) and the choice of parameters dk = 2τ ln k and ϵki (s
′
i|si, ai) =

√
ln(2nk2|Ai||Si|2)−ln γ

2max(1,Nk
i (si,ai))

, we

have limk→∞ πk = π∗ with probability at least 1− γ, where π∗ is an ϵ-NE policy of the game G.

Proof To prove Theorem 10, we first show in Lemma 11 that the event {Pi ∈ Pk
i ∀k ∈ N, i ∈ [n]}

happens with probability at least 1− γ. Moreover, Lemma 12 shows the convergence of q̂k to qk.

Lemma 11 Under the same assumptions as in Theorem 10, with probability at least 1−γ, we have
Pi ∈ Pk

i ,∀k ∈ N, i ∈ [n].

Lemma 12 Under the same assumptions as in Theorem 10, and by conditioning on the event
{Pi ∈ Pk

i ∀k ∈ N, i ∈ [n]}, we have limk→∞ qk − q̂k = 0.

It suffices to show with probability at least 1 − 2γ, we have limk→∞ qk = q∗, where q∗ is the
unique stable NE of the constrained virtual game Vδ. Let us define Dh(q

∗||q̂k) ≜
∑n

i=1Dhi
(q∗i ||q̂ki ).

From the definition of Bregman divergence as well as Lemma 12, we have

lim
k→∞

qk = q∗ ⇔ lim
k→∞

q̂k = q∗ ⇔ lim
k→∞

Dh(q
∗||q̂k) = 0. (12)

The rest of the proof proceeds in two steps. In the first step, we show that every neighborhood
U ⊂ ∆(P ) of q∗ is recurrent in {qk}∞k=1. Then, we further show that for any ϵ, δ > 0, there exists
k0 ∈ N, such that P

{
Dh(q

∗||q̂k) ≤ ϵ,∀k > k0
}
≥ 1− δ.

Lemma 13 Under the same assumptions as in Theorem 10, and by conditioning on the event
{Pi ∈ Pk

i ∀k ∈ N, i ∈ [n]}, every open neighborhood U ⊂ ∆(P ) of q∗ is recurrent in {qk}∞k=1.
More specifically, there exists a subsequence qkm of qk such that qkm → q∗ almost surely.

Lemma 14 Under the same assumptions as in Theorem 10, and by conditioning on the event
{Pi ∈ Pk

i ∀k ∈ N, i ∈ [n]}, for any ϵ, δ > 0, there exists k0 ∈ N such that P
{
Dh(q

∗||q̂k) ≤
ϵ,∀k > k0

}
≥ 1− δ.

To complete the proof Theorem 10, for any ϵ > 0, let us consider the event Eϵ := {∃k0 ∈ N :
Dh(q

∗||q̂k) ≤ ϵ, ∀k > k0}. Then, we have P{limk→∞Dh(q
∗||q̂k) = 0} = P

{
∩∞
r=1 E2−r

}
.

Using Lemma 14 and conditioned on the event {Pi ∈ Pk
i ∀k ∈ N, i ∈ [n]}, we can show that

P
{
limk→∞Dh(q

∗||q̂k) = 0
}
= P

{
∩∞
r=1 E2−r

}
= 1. Therefore, using Lemma 11 and relation

(12), we conclude that with probability at least 1− γ, we have limk→∞ qk = q∗.

6. Conclusion

In this work, we studied the class of stochastic games with unknown independent chains. Relying
on a compact dual formulation of the game based on occupancy measures and the technique of con-
fidence set to maintain high-probability estimates of the unknown transition matrices, we proposed
a fully decentralized and independent online mirror descent algorithm to learn an ϵ-NE stationary
policy for this class of stochastic games. The proposed algorithm has the desired properties of in-
dependence and convergence such that under the variational stability assumption of the game, it
converges asymptotically to an ϵ-NE stationary policy with arbitrarily high probability.
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Gergely Neu, András György, Csaba Szepesvári, et al. The online loop-free stochastic shortest-path
problem. In COLT, volume 2010, pages 231–243. Citeseer, 2010.

Tiancheng Qin and S Rasoul Etesami. Scalable and independent learning of Nash equilib-
rium policies in n-player stochastic games with unknown independent chains. arXiv preprint
arXiv:2312.01587, 2023.

11



QIN ETESAMI

Shuang Qiu, Xiaohan Wei, Jieping Ye, Zhaoran Wang, and Zhuoran Yang. Provably efficient ficti-
tious play policy optimization for zero-sum Markov games with structured transitions. In Inter-
national Conference on Machine Learning, pages 8715–8725. PMLR, 2021.

J Ben Rosen. Existence and uniqueness of equilibrium points for concave n-person games. Econo-
metrica: Journal of the Econometric Society, pages 520–534, 1965.

Aviv Rosenberg and Yishay Mansour. Online stochastic shortest path with bandit feedback and
unknown transition function. Advances in Neural Information Processing Systems, 32, 2019.

Muhammed Sayin, Kaiqing Zhang, David Leslie, Tamer Başar, and Asuman Ozdaglar. Decentral-
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