Supplementary Material: Online Incremental Feature Learning with
Denoising Autoencoders

Guanyu Zhou
Department of EECS
University of Michigan
Ann Arbor, MI 48109
guanyuzQumich.edu

1 Discussion of the Update Rules

We introduce the update rules that were considered in
this work and discuss the robustness of each update
rule in relation to its hyperparameters.

1.1 Update rule based on heuristics

Roughly speaking, this update rule is based on the
following idea: increase the number of feature incre-
ments when the performance improves (i.e., the model
is not at optimum), and decrease the number of feature
increments when there is minimal or no performance
improvement (i.e., the model has converged). From
this intuition, we consider the following update rule
(referred to as “update rule I”):

AN,; +1, effl <(1-e)
ANy = § [ANy/2], 2= > (1—e), (1)
ANy, otherwise
AM; = [yAN{], (2)

where AN; is the number of feature increments, AM;
is the number of merged features, and e; is the objec-
tive function value for recent 10,000 training examples
at time ¢.

We have four hyperparameters €1, €,7v, ANy in this
rule. It is quite evident from equation (1) that e;
and ey adjust the pace of feature increments, where we
accelerate by decreasing e; or increasing es, and vice
versa. Further, we can control the rate of convergence
by tuning v and ANjy. Ideally, these hyperparameters
should be determined through cross-validation, which
makes the algorithm quite complicated. However, we
found through several controlled experiments that the
proposed update rule is fairly insensitive to the selec-
tion of hyperparameters. For example, given the rea-
sonable value of v = 0.5 and ANy = 20, the incremen-
tal feature learning with update rule I resulted in com-
parable classification accuracies for ¢; € [0.005,0.05]

Kihyuk Sohn
Department of EECS
University of Michigan
Ann Arbor, MI 48109
kihyuks@umich.edu

Honglak Lee
Department of EECS
University of Michigan
Ann Arbor, MI 48109
honglak@eecs.umich.edu

Algorithm 1 Update rule II

Given a batch of data (e.g., 10,000 examples),
repeat
Add k new features and compute the validation
performance.
until the validation performance decreases
Merge AM;=[yAN,] features.

and €3 € [0,0.02] (e.g., within 1% difference on bg-
img-1M dataset).

1.2 Alternative update rules

Although the update rule I has shown robustness to its
hyperparameters, the learning algorithm with many
hyperparameters is generally difficult to use since it
requires additional efforts in finding their correct val-
ues. In this section, we consider two alternatives that
involve fewer hyperparameters.

Before we discuss about the update rules, we first de-
scribe how we performed walidation in online setting.
At each iteration, we take the current batch of on-
line data for training and the next two batches of data
for validation and testing, where the first one is used
for validation, and the second one is used for testing.
Specifically, after updating the parameters with the
current “training” batch, then these three batches are
shifted by one (i.e., in the next iteration, “testing”
batch becomes “validation” batch, “validation” batch
becomes “training” batch, and we fetch the next batch
for “testing”). In other words, each batch is used first
for testing, then for validation, and finally for training.
This ensures that our training and validation proce-
dure does not give any unfair advantage to the online
testing performance.

The first approach is to select AN; that minimizes the
objective function value (i.e., classification error) given
a current data batch. For example, at each iteration,
we keep adding k features until the validation classi-

Supplementary Material: Online Incremental Feature Learning with Denoising Autoencoders

Algorithm 2 Update rule II1
Given a batch of data, add one feature and compute
the validation performance.
if the validation performance decreases then

Remove the newly added feature.
end if

fication accuracy begins to decrease. We denote this
method as an update rule II. We also evaluated with
v = 0.5 for the update rule II.

The update rule III is motivated by the forward stage-
wise additive models [2, 3], which shares a similar fla-
vor with AdaBoost [1]. In update rule III, we train
with a single new feature at each iteration and deter-
mine whether to keep the feature based on the perfor-
mance without merging process.

In our experiments, the update rules IT and III showed
similar classification performance to that of the update
ruleI (e.g., classification errors within 1% difference for
bg-img-1M dataset), which assures that the proposed
incremental feature learning algorithm is fairly robust
to several variants of update rules.

1.3 Update rule based on information
criteria

Finally, we introduce an update rule using an approx-
imate Bayesian method (e.g., regularizing with Akaike
Information Criterion (AIC) or Bayesian Information
Criterion (BIC)) that penalize on the model complex-
ity. To be more specific, we describe the updating
procedures as follows:

1. At each batch of online data, propose ¢ differ-
ent models for the number of feature increments
{(AN,AM);}?_, and initialize them.

2. Evaluate the objective function penalized by ei-
ther of the following information criterion penalty
for each proposed model (described in more detail
below):

AIC : ﬁhybmd(x, y) + M (3)
1
BIC : Ehybm‘d(x, y) + EMlog N, (4)

where M is the number of adjustable parameters
(proportional to the number of features) and N is
the number of training examples in each batch.

3. Accept the model with the best validation perfor-
mance.

We used ¢ = 3 and set {(AN,AM);}!_, as constant
values for our experiments. In step 2, we adaptively
switch between the AIC and BIC penalties to acceler-

(b)
Figure 1: Visualizations of the learned filters using (a)
IncMDAE and (b) DAE on bg-rand-1M dataset

ate the convergence based on the following idea: de-
pending on our decision in the previous iteration, if
we have chosen to increase the number of features, we
select the AIC penalty, which is weaker than the BIC
penalty since it doesn’t depend on the number of train-
ing examples; in a similar manner, we select the BIC
penalty if we have picked the model that decreases the
number of features in the previous step.

As seen from the Figure 3 in the main paper, the incre-
mental learning algorithm with this update rule con-
verges to a similar number of features regardless of
the initial number of features. Moreover, they also re-
sult in similar classification accuracies within 1% dif-
ference.

2 Visualization of the Filters

For qualitative evaluation, we visualize sets of fil-
ters learned using incremental and non-incremental
DAEs on bg-rand-1M datasets. As Figure 1(a) shows,
most of the filters learned using IncMDAE captured
meaningful “pen-stroke” bases, whereas the filters
learned using the baseline DAE are typically noisy
(Figure 1(b)). They are similar to the background
patterns of the training examples and contain only a
few pen-stroke bases. We believe that these visualized
filters partially reveal the reason our model achieved
less significant improvement in incremental learning
over the non-incremental counterpart in the genera-
tive performance measure (reconstruction error) than
in the discriminative criteria (classification error). In
fact, the reconstruction error can be easily reduced by
simply adding more hidden units in the DAE (i.e., by
learning more background patterns), as suggested by
Figure 1(b). However, our incremental feature learn-
ing method learns new features from the most difficult
subset of the data; in classification tasks, this sub-
set consists of misclassified examples. Therefore, the
new features learned from these difficult examples help
learning a better decision boundary, and our model can
outperform the baseline model in classification.

Guanyu Zhou, Kihyuk Sohn, Honglak Lee

Extended datasets

[

MNIST variation datasets

Foreground digits

randomly sampled from MNIST-
8M (with deformations)

selected from MNIST

Background images

randomly sampled from a subset of
2,000 images from CIFAR-10

randomly sampled from a set of 20
images downloaded from the inter-
net

Foreground rectan-
gles (rect-img-1M)

randomly extracted (with random
widths and heights) from a disjoint
subset of another 2,000 images from
CIFAR-10

one of the same 20 images down-
loaded from the internet except the
one used for background

Table 1: Comparison between extended and original dataset

Model DBN-3 SAE-3 SDAE-3
dataset Ext. || Orig. | Ref. [6] [Ext. [[Orig. | Ref. [6] | Ext. [[Orig. [Ref. [6]
rot-bg-img || 60.90 || 48.19 47.39 66.47 || 52.97 51.93 61.09 || 46.12 44.49
rot 25.29 || 10.81 10.30 29.08 || 11.06 10.30 27.02 || 10.66 10.29
bg-rand 15.51 7.30 6.73 20.11 || 13.19 11.28 17.07 || 10.39 10.38
bg-img 24.97 || 18.24 16.31 32.20 || 24.07 23.00 24.07 || 17.14 16.68
rect-img 33.25 || 23.16 22.50 34.16 || 25.11 24.05 32.07 || 21.68 21.59

Table 2: Classification errors of baseline methods on several datasets

* Extended (Ext.): The performance of the models implemented on the datasets with 10,000 training examples and 50,000
test examples (same number of examples in MNIST variation dataset) sampled from our extended datasets.

* Original (Orig.): The performance of the models implemented on MNIST variation and rect-img datasets.

* Reference (Ref.): The performance of the models reported in [6] on MNIST variation and rect-img datasets.

3 Extended MNIST Variation
Datasets

The large-scale dataset used in the paper was extended
from the original benchmark! introduced in [6] based
on a similar process. However, the details are not iden-
tical to the previously published datasets. Here, we
clarify the differences in Table 1.

To generate bg-img-1M, bg-rand-1M, rot-1M and rot-
bg-img-1M datasets, we randomly selected 1 million
digit images from MNIST-8M dataset [5] and ap-
plied corresponding variations; for bg-img-1M and rot-
bg-img-1M, we randomly selected 2,000 images from
CIFAR-10 dataset [4] and set them as a background;
for bg-rand-1M, we used uniform random noise as a
background; for rot-1M and rot-bg-img-1M, each digit
was rotated at a random angle.

For rect-img-1M, we generated 1 million rectangular
shapes with random width and height on top of ran-
domly selected 2,000 images (background) and then
filled the rectangular shapes with another randomly
selected 2,000 images (foreground). All the foreground
and background images were from CIFAR-10 dataset.

As Table 1 suggests, the extended MNIST variation
dataset involves more diverse background images and
deformed digits. To assess the datasets’ difficulty, we
test DBN-3, SAE-3 and SDAE-3 on both the original

"Mttp://www.iro.umontreal.ca/~lisa/twiki/bin/
view.cgi/Public/MnistVariations

MNIST variation benchmark and the extend dataset
with the limited number of training and testing exam-
ples as the original dataset (i.e., 10,000 for training and
50,000 for testing). The summary results are shown in
Table 2. Our implementations of the existing baseline
models are comparable to [6] with a small performance
difference. Moreover, given the same amount of train-
ing and testing data, we can see that the extended
dataset is more challenging than the original bench-
mark datasets.

References

[1] Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. ICML, 1996.

J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting. The
annals of statistics, 28(2):337-407, 2000.

2]

[3] T. Hastie, R. Tibshirani, and J. H. Friedman. The

elements of statistical learning. Springer, 2009.
[4] A. Krizhevsky. Learning multiple layers of features
from Tiny Images. Master’s thesis, University of
Toronto, 2009.

G. Loosli, S. Canu, and L. Bottou. Training invari-
ant support vector machines using selective sampling.
In Large Scale Kernel Machines, pages 301-320. MIT
Press, 2007.

[6] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol.
Extracting and composing robust features with denois-
ing autoencoders. In ICML, 2008.

